| 1 |
// Special functions -*- C++ -*- |
| 2 |
|
| 3 |
// Copyright (C) 2006-2021 Free Software Foundation, Inc. |
| 4 |
// |
| 5 |
// This file is part of the GNU ISO C++ Library. This library is free |
| 6 |
// software; you can redistribute it and/or modify it under the |
| 7 |
// terms of the GNU General Public License as published by the |
| 8 |
// Free Software Foundation; either version 3, or (at your option) |
| 9 |
// any later version. |
| 10 |
// |
| 11 |
// This library is distributed in the hope that it will be useful, |
| 12 |
// but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 13 |
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 14 |
// GNU General Public License for more details. |
| 15 |
// |
| 16 |
// Under Section 7 of GPL version 3, you are granted additional |
| 17 |
// permissions described in the GCC Runtime Library Exception, version |
| 18 |
// 3.1, as published by the Free Software Foundation. |
| 19 |
|
| 20 |
// You should have received a copy of the GNU General Public License and |
| 21 |
// a copy of the GCC Runtime Library Exception along with this program; |
| 22 |
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see |
| 23 |
// <http://www.gnu.org/licenses/>. |
| 24 |
|
| 25 |
/** @file tr1/riemann_zeta.tcc |
| 26 |
* This is an internal header file, included by other library headers. |
| 27 |
* Do not attempt to use it directly. @headername{tr1/cmath} |
| 28 |
*/ |
| 29 |
|
| 30 |
// |
| 31 |
// ISO C++ 14882 TR1: 5.2 Special functions |
| 32 |
// |
| 33 |
|
| 34 |
// Written by Edward Smith-Rowland based on: |
| 35 |
// (1) Handbook of Mathematical Functions, |
| 36 |
// Ed. by Milton Abramowitz and Irene A. Stegun, |
| 37 |
// Dover Publications, New-York, Section 5, pp. 807-808. |
| 38 |
// (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl |
| 39 |
// (3) Gamma, Exploring Euler's Constant, Julian Havil, |
| 40 |
// Princeton, 2003. |
| 41 |
|
| 42 |
#ifndef _GLIBCXX_TR1_RIEMANN_ZETA_TCC |
| 43 |
#define _GLIBCXX_TR1_RIEMANN_ZETA_TCC 1 |
| 44 |
|
| 45 |
#include <tr1/special_function_util.h> |
| 46 |
|
| 47 |
namespace std _GLIBCXX_VISIBILITY(default) |
| 48 |
{ |
| 49 |
_GLIBCXX_BEGIN_NAMESPACE_VERSION |
| 50 |
|
| 51 |
#if _GLIBCXX_USE_STD_SPEC_FUNCS |
| 52 |
# define _GLIBCXX_MATH_NS ::std |
| 53 |
#elif defined(_GLIBCXX_TR1_CMATH) |
| 54 |
namespace tr1 |
| 55 |
{ |
| 56 |
# define _GLIBCXX_MATH_NS ::std::tr1 |
| 57 |
#else |
| 58 |
# error do not include this header directly, use <cmath> or <tr1/cmath> |
| 59 |
#endif |
| 60 |
// [5.2] Special functions |
| 61 |
|
| 62 |
// Implementation-space details. |
| 63 |
namespace __detail |
| 64 |
{ |
| 65 |
/** |
| 66 |
* @brief Compute the Riemann zeta function @f$ \zeta(s) @f$ |
| 67 |
* by summation for s > 1. |
| 68 |
* |
| 69 |
* The Riemann zeta function is defined by: |
| 70 |
* \f[ |
| 71 |
* \zeta(s) = \sum_{k=1}^{\infty} \frac{1}{k^{s}} for s > 1 |
| 72 |
* \f] |
| 73 |
* For s < 1 use the reflection formula: |
| 74 |
* \f[ |
| 75 |
* \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s) |
| 76 |
* \f] |
| 77 |
*/ |
| 78 |
template<typename _Tp> |
| 79 |
_Tp |
| 80 |
__riemann_zeta_sum(_Tp __s) |
| 81 |
{ |
| 82 |
// A user shouldn't get to this. |
| 83 |
if (__s < _Tp(1)) |
| 84 |
std::__throw_domain_error(__N("Bad argument in zeta sum.")); |
| 85 |
|
| 86 |
const unsigned int max_iter = 10000; |
| 87 |
_Tp __zeta = _Tp(0); |
| 88 |
for (unsigned int __k = 1; __k < max_iter; ++__k) |
| 89 |
{ |
| 90 |
_Tp __term = std::pow(static_cast<_Tp>(__k), -__s); |
| 91 |
if (__term < std::numeric_limits<_Tp>::epsilon()) |
| 92 |
{ |
| 93 |
break; |
| 94 |
} |
| 95 |
__zeta += __term; |
| 96 |
} |
| 97 |
|
| 98 |
return __zeta; |
| 99 |
} |
| 100 |
|
| 101 |
|
| 102 |
/** |
| 103 |
* @brief Evaluate the Riemann zeta function @f$ \zeta(s) @f$ |
| 104 |
* by an alternate series for s > 0. |
| 105 |
* |
| 106 |
* The Riemann zeta function is defined by: |
| 107 |
* \f[ |
| 108 |
* \zeta(s) = \sum_{k=1}^{\infty} \frac{1}{k^{s}} for s > 1 |
| 109 |
* \f] |
| 110 |
* For s < 1 use the reflection formula: |
| 111 |
* \f[ |
| 112 |
* \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s) |
| 113 |
* \f] |
| 114 |
*/ |
| 115 |
template<typename _Tp> |
| 116 |
_Tp |
| 117 |
__riemann_zeta_alt(_Tp __s) |
| 118 |
{ |
| 119 |
_Tp __sgn = _Tp(1); |
| 120 |
_Tp __zeta = _Tp(0); |
| 121 |
for (unsigned int __i = 1; __i < 10000000; ++__i) |
| 122 |
{ |
| 123 |
_Tp __term = __sgn / std::pow(__i, __s); |
| 124 |
if (std::abs(__term) < std::numeric_limits<_Tp>::epsilon()) |
| 125 |
break; |
| 126 |
__zeta += __term; |
| 127 |
__sgn *= _Tp(-1); |
| 128 |
} |
| 129 |
__zeta /= _Tp(1) - std::pow(_Tp(2), _Tp(1) - __s); |
| 130 |
|
| 131 |
return __zeta; |
| 132 |
} |
| 133 |
|
| 134 |
|
| 135 |
/** |
| 136 |
* @brief Evaluate the Riemann zeta function by series for all s != 1. |
| 137 |
* Convergence is great until largish negative numbers. |
| 138 |
* Then the convergence of the > 0 sum gets better. |
| 139 |
* |
| 140 |
* The series is: |
| 141 |
* \f[ |
| 142 |
* \zeta(s) = \frac{1}{1-2^{1-s}} |
| 143 |
* \sum_{n=0}^{\infty} \frac{1}{2^{n+1}} |
| 144 |
* \sum_{k=0}^{n} (-1)^k \frac{n!}{(n-k)!k!} (k+1)^{-s} |
| 145 |
* \f] |
| 146 |
* Havil 2003, p. 206. |
| 147 |
* |
| 148 |
* The Riemann zeta function is defined by: |
| 149 |
* \f[ |
| 150 |
* \zeta(s) = \sum_{k=1}^{\infty} \frac{1}{k^{s}} for s > 1 |
| 151 |
* \f] |
| 152 |
* For s < 1 use the reflection formula: |
| 153 |
* \f[ |
| 154 |
* \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s) |
| 155 |
* \f] |
| 156 |
*/ |
| 157 |
template<typename _Tp> |
| 158 |
_Tp |
| 159 |
__riemann_zeta_glob(_Tp __s) |
| 160 |
{ |
| 161 |
_Tp __zeta = _Tp(0); |
| 162 |
|
| 163 |
const _Tp __eps = std::numeric_limits<_Tp>::epsilon(); |
| 164 |
// Max e exponent before overflow. |
| 165 |
const _Tp __max_bincoeff = std::numeric_limits<_Tp>::max_exponent10 |
| 166 |
* std::log(_Tp(10)) - _Tp(1); |
| 167 |
|
| 168 |
// This series works until the binomial coefficient blows up |
| 169 |
// so use reflection. |
| 170 |
if (__s < _Tp(0)) |
| 171 |
{ |
| 172 |
#if _GLIBCXX_USE_C99_MATH_TR1 |
| 173 |
if (_GLIBCXX_MATH_NS::fmod(__s,_Tp(2)) == _Tp(0)) |
| 174 |
return _Tp(0); |
| 175 |
else |
| 176 |
#endif |
| 177 |
{ |
| 178 |
_Tp __zeta = __riemann_zeta_glob(_Tp(1) - __s); |
| 179 |
__zeta *= std::pow(_Tp(2) |
| 180 |
* __numeric_constants<_Tp>::__pi(), __s) |
| 181 |
* std::sin(__numeric_constants<_Tp>::__pi_2() * __s) |
| 182 |
#if _GLIBCXX_USE_C99_MATH_TR1 |
| 183 |
* std::exp(_GLIBCXX_MATH_NS::lgamma(_Tp(1) - __s)) |
| 184 |
#else |
| 185 |
* std::exp(__log_gamma(_Tp(1) - __s)) |
| 186 |
#endif |
| 187 |
/ __numeric_constants<_Tp>::__pi(); |
| 188 |
return __zeta; |
| 189 |
} |
| 190 |
} |
| 191 |
|
| 192 |
_Tp __num = _Tp(0.5L); |
| 193 |
const unsigned int __maxit = 10000; |
| 194 |
for (unsigned int __i = 0; __i < __maxit; ++__i) |
| 195 |
{ |
| 196 |
bool __punt = false; |
| 197 |
_Tp __sgn = _Tp(1); |
| 198 |
_Tp __term = _Tp(0); |
| 199 |
for (unsigned int __j = 0; __j <= __i; ++__j) |
| 200 |
{ |
| 201 |
#if _GLIBCXX_USE_C99_MATH_TR1 |
| 202 |
_Tp __bincoeff = _GLIBCXX_MATH_NS::lgamma(_Tp(1 + __i)) |
| 203 |
- _GLIBCXX_MATH_NS::lgamma(_Tp(1 + __j)) |
| 204 |
- _GLIBCXX_MATH_NS::lgamma(_Tp(1 + __i - __j)); |
| 205 |
#else |
| 206 |
_Tp __bincoeff = __log_gamma(_Tp(1 + __i)) |
| 207 |
- __log_gamma(_Tp(1 + __j)) |
| 208 |
- __log_gamma(_Tp(1 + __i - __j)); |
| 209 |
#endif |
| 210 |
if (__bincoeff > __max_bincoeff) |
| 211 |
{ |
| 212 |
// This only gets hit for x << 0. |
| 213 |
__punt = true; |
| 214 |
break; |
| 215 |
} |
| 216 |
__bincoeff = std::exp(__bincoeff); |
| 217 |
__term += __sgn * __bincoeff * std::pow(_Tp(1 + __j), -__s); |
| 218 |
__sgn *= _Tp(-1); |
| 219 |
} |
| 220 |
if (__punt) |
| 221 |
break; |
| 222 |
__term *= __num; |
| 223 |
__zeta += __term; |
| 224 |
if (std::abs(__term/__zeta) < __eps) |
| 225 |
break; |
| 226 |
__num *= _Tp(0.5L); |
| 227 |
} |
| 228 |
|
| 229 |
__zeta /= _Tp(1) - std::pow(_Tp(2), _Tp(1) - __s); |
| 230 |
|
| 231 |
return __zeta; |
| 232 |
} |
| 233 |
|
| 234 |
|
| 235 |
/** |
| 236 |
* @brief Compute the Riemann zeta function @f$ \zeta(s) @f$ |
| 237 |
* using the product over prime factors. |
| 238 |
* \f[ |
| 239 |
* \zeta(s) = \Pi_{i=1}^\infty \frac{1}{1 - p_i^{-s}} |
| 240 |
* \f] |
| 241 |
* where @f$ {p_i} @f$ are the prime numbers. |
| 242 |
* |
| 243 |
* The Riemann zeta function is defined by: |
| 244 |
* \f[ |
| 245 |
* \zeta(s) = \sum_{k=1}^{\infty} \frac{1}{k^{s}} for s > 1 |
| 246 |
* \f] |
| 247 |
* For s < 1 use the reflection formula: |
| 248 |
* \f[ |
| 249 |
* \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s) |
| 250 |
* \f] |
| 251 |
*/ |
| 252 |
template<typename _Tp> |
| 253 |
_Tp |
| 254 |
__riemann_zeta_product(_Tp __s) |
| 255 |
{ |
| 256 |
static const _Tp __prime[] = { |
| 257 |
_Tp(2), _Tp(3), _Tp(5), _Tp(7), _Tp(11), _Tp(13), _Tp(17), _Tp(19), |
| 258 |
_Tp(23), _Tp(29), _Tp(31), _Tp(37), _Tp(41), _Tp(43), _Tp(47), |
| 259 |
_Tp(53), _Tp(59), _Tp(61), _Tp(67), _Tp(71), _Tp(73), _Tp(79), |
| 260 |
_Tp(83), _Tp(89), _Tp(97), _Tp(101), _Tp(103), _Tp(107), _Tp(109) |
| 261 |
}; |
| 262 |
static const unsigned int __num_primes = sizeof(__prime) / sizeof(_Tp); |
| 263 |
|
| 264 |
_Tp __zeta = _Tp(1); |
| 265 |
for (unsigned int __i = 0; __i < __num_primes; ++__i) |
| 266 |
{ |
| 267 |
const _Tp __fact = _Tp(1) - std::pow(__prime[__i], -__s); |
| 268 |
__zeta *= __fact; |
| 269 |
if (_Tp(1) - __fact < std::numeric_limits<_Tp>::epsilon()) |
| 270 |
break; |
| 271 |
} |
| 272 |
|
| 273 |
__zeta = _Tp(1) / __zeta; |
| 274 |
|
| 275 |
return __zeta; |
| 276 |
} |
| 277 |
|
| 278 |
|
| 279 |
/** |
| 280 |
* @brief Return the Riemann zeta function @f$ \zeta(s) @f$. |
| 281 |
* |
| 282 |
* The Riemann zeta function is defined by: |
| 283 |
* \f[ |
| 284 |
* \zeta(s) = \sum_{k=1}^{\infty} k^{-s} for s > 1 |
| 285 |
* \frac{(2\pi)^s}{pi} sin(\frac{\pi s}{2}) |
| 286 |
* \Gamma (1 - s) \zeta (1 - s) for s < 1 |
| 287 |
* \f] |
| 288 |
* For s < 1 use the reflection formula: |
| 289 |
* \f[ |
| 290 |
* \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s) |
| 291 |
* \f] |
| 292 |
*/ |
| 293 |
template<typename _Tp> |
| 294 |
_Tp |
| 295 |
__riemann_zeta(_Tp __s) |
| 296 |
{ |
| 297 |
if (__isnan(__s)) |
| 298 |
return std::numeric_limits<_Tp>::quiet_NaN(); |
| 299 |
else if (__s == _Tp(1)) |
| 300 |
return std::numeric_limits<_Tp>::infinity(); |
| 301 |
else if (__s < -_Tp(19)) |
| 302 |
{ |
| 303 |
_Tp __zeta = __riemann_zeta_product(_Tp(1) - __s); |
| 304 |
__zeta *= std::pow(_Tp(2) * __numeric_constants<_Tp>::__pi(), __s) |
| 305 |
* std::sin(__numeric_constants<_Tp>::__pi_2() * __s) |
| 306 |
#if _GLIBCXX_USE_C99_MATH_TR1 |
| 307 |
* std::exp(_GLIBCXX_MATH_NS::lgamma(_Tp(1) - __s)) |
| 308 |
#else |
| 309 |
* std::exp(__log_gamma(_Tp(1) - __s)) |
| 310 |
#endif |
| 311 |
/ __numeric_constants<_Tp>::__pi(); |
| 312 |
return __zeta; |
| 313 |
} |
| 314 |
else if (__s < _Tp(20)) |
| 315 |
{ |
| 316 |
// Global double sum or McLaurin? |
| 317 |
bool __glob = true; |
| 318 |
if (__glob) |
| 319 |
return __riemann_zeta_glob(__s); |
| 320 |
else |
| 321 |
{ |
| 322 |
if (__s > _Tp(1)) |
| 323 |
return __riemann_zeta_sum(__s); |
| 324 |
else |
| 325 |
{ |
| 326 |
_Tp __zeta = std::pow(_Tp(2) |
| 327 |
* __numeric_constants<_Tp>::__pi(), __s) |
| 328 |
* std::sin(__numeric_constants<_Tp>::__pi_2() * __s) |
| 329 |
#if _GLIBCXX_USE_C99_MATH_TR1 |
| 330 |
* _GLIBCXX_MATH_NS::tgamma(_Tp(1) - __s) |
| 331 |
#else |
| 332 |
* std::exp(__log_gamma(_Tp(1) - __s)) |
| 333 |
#endif |
| 334 |
* __riemann_zeta_sum(_Tp(1) - __s); |
| 335 |
return __zeta; |
| 336 |
} |
| 337 |
} |
| 338 |
} |
| 339 |
else |
| 340 |
return __riemann_zeta_product(__s); |
| 341 |
} |
| 342 |
|
| 343 |
|
| 344 |
/** |
| 345 |
* @brief Return the Hurwitz zeta function @f$ \zeta(x,s) @f$ |
| 346 |
* for all s != 1 and x > -1. |
| 347 |
* |
| 348 |
* The Hurwitz zeta function is defined by: |
| 349 |
* @f[ |
| 350 |
* \zeta(x,s) = \sum_{n=0}^{\infty} \frac{1}{(n + x)^s} |
| 351 |
* @f] |
| 352 |
* The Riemann zeta function is a special case: |
| 353 |
* @f[ |
| 354 |
* \zeta(s) = \zeta(1,s) |
| 355 |
* @f] |
| 356 |
* |
| 357 |
* This functions uses the double sum that converges for s != 1 |
| 358 |
* and x > -1: |
| 359 |
* @f[ |
| 360 |
* \zeta(x,s) = \frac{1}{s-1} |
| 361 |
* \sum_{n=0}^{\infty} \frac{1}{n + 1} |
| 362 |
* \sum_{k=0}^{n} (-1)^k \frac{n!}{(n-k)!k!} (x+k)^{-s} |
| 363 |
* @f] |
| 364 |
*/ |
| 365 |
template<typename _Tp> |
| 366 |
_Tp |
| 367 |
__hurwitz_zeta_glob(_Tp __a, _Tp __s) |
| 368 |
{ |
| 369 |
_Tp __zeta = _Tp(0); |
| 370 |
|
| 371 |
const _Tp __eps = std::numeric_limits<_Tp>::epsilon(); |
| 372 |
// Max e exponent before overflow. |
| 373 |
const _Tp __max_bincoeff = std::numeric_limits<_Tp>::max_exponent10 |
| 374 |
* std::log(_Tp(10)) - _Tp(1); |
| 375 |
|
| 376 |
const unsigned int __maxit = 10000; |
| 377 |
for (unsigned int __i = 0; __i < __maxit; ++__i) |
| 378 |
{ |
| 379 |
bool __punt = false; |
| 380 |
_Tp __sgn = _Tp(1); |
| 381 |
_Tp __term = _Tp(0); |
| 382 |
for (unsigned int __j = 0; __j <= __i; ++__j) |
| 383 |
{ |
| 384 |
#if _GLIBCXX_USE_C99_MATH_TR1 |
| 385 |
_Tp __bincoeff = _GLIBCXX_MATH_NS::lgamma(_Tp(1 + __i)) |
| 386 |
- _GLIBCXX_MATH_NS::lgamma(_Tp(1 + __j)) |
| 387 |
- _GLIBCXX_MATH_NS::lgamma(_Tp(1 + __i - __j)); |
| 388 |
#else |
| 389 |
_Tp __bincoeff = __log_gamma(_Tp(1 + __i)) |
| 390 |
- __log_gamma(_Tp(1 + __j)) |
| 391 |
- __log_gamma(_Tp(1 + __i - __j)); |
| 392 |
#endif |
| 393 |
if (__bincoeff > __max_bincoeff) |
| 394 |
{ |
| 395 |
// This only gets hit for x << 0. |
| 396 |
__punt = true; |
| 397 |
break; |
| 398 |
} |
| 399 |
__bincoeff = std::exp(__bincoeff); |
| 400 |
__term += __sgn * __bincoeff * std::pow(_Tp(__a + __j), -__s); |
| 401 |
__sgn *= _Tp(-1); |
| 402 |
} |
| 403 |
if (__punt) |
| 404 |
break; |
| 405 |
__term /= _Tp(__i + 1); |
| 406 |
if (std::abs(__term / __zeta) < __eps) |
| 407 |
break; |
| 408 |
__zeta += __term; |
| 409 |
} |
| 410 |
|
| 411 |
__zeta /= __s - _Tp(1); |
| 412 |
|
| 413 |
return __zeta; |
| 414 |
} |
| 415 |
|
| 416 |
|
| 417 |
/** |
| 418 |
* @brief Return the Hurwitz zeta function @f$ \zeta(x,s) @f$ |
| 419 |
* for all s != 1 and x > -1. |
| 420 |
* |
| 421 |
* The Hurwitz zeta function is defined by: |
| 422 |
* @f[ |
| 423 |
* \zeta(x,s) = \sum_{n=0}^{\infty} \frac{1}{(n + x)^s} |
| 424 |
* @f] |
| 425 |
* The Riemann zeta function is a special case: |
| 426 |
* @f[ |
| 427 |
* \zeta(s) = \zeta(1,s) |
| 428 |
* @f] |
| 429 |
*/ |
| 430 |
template<typename _Tp> |
| 431 |
inline _Tp |
| 432 |
__hurwitz_zeta(_Tp __a, _Tp __s) |
| 433 |
{ return __hurwitz_zeta_glob(__a, __s); } |
| 434 |
} // namespace __detail |
| 435 |
#undef _GLIBCXX_MATH_NS |
| 436 |
#if ! _GLIBCXX_USE_STD_SPEC_FUNCS && defined(_GLIBCXX_TR1_CMATH) |
| 437 |
} // namespace tr1 |
| 438 |
#endif |
| 439 |
|
| 440 |
_GLIBCXX_END_NAMESPACE_VERSION |
| 441 |
} |
| 442 |
|
| 443 |
#endif // _GLIBCXX_TR1_RIEMANN_ZETA_TCC |