| 1 |
// Special functions -*- C++ -*- |
| 2 |
|
| 3 |
// Copyright (C) 2006-2021 Free Software Foundation, Inc. |
| 4 |
// |
| 5 |
// This file is part of the GNU ISO C++ Library. This library is free |
| 6 |
// software; you can redistribute it and/or modify it under the |
| 7 |
// terms of the GNU General Public License as published by the |
| 8 |
// Free Software Foundation; either version 3, or (at your option) |
| 9 |
// any later version. |
| 10 |
// |
| 11 |
// This library is distributed in the hope that it will be useful, |
| 12 |
// but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 13 |
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 14 |
// GNU General Public License for more details. |
| 15 |
// |
| 16 |
// Under Section 7 of GPL version 3, you are granted additional |
| 17 |
// permissions described in the GCC Runtime Library Exception, version |
| 18 |
// 3.1, as published by the Free Software Foundation. |
| 19 |
|
| 20 |
// You should have received a copy of the GNU General Public License and |
| 21 |
// a copy of the GCC Runtime Library Exception along with this program; |
| 22 |
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see |
| 23 |
// <http://www.gnu.org/licenses/>. |
| 24 |
|
| 25 |
/** @file tr1/poly_laguerre.tcc |
| 26 |
* This is an internal header file, included by other library headers. |
| 27 |
* Do not attempt to use it directly. @headername{tr1/cmath} |
| 28 |
*/ |
| 29 |
|
| 30 |
// |
| 31 |
// ISO C++ 14882 TR1: 5.2 Special functions |
| 32 |
// |
| 33 |
|
| 34 |
// Written by Edward Smith-Rowland based on: |
| 35 |
// (1) Handbook of Mathematical Functions, |
| 36 |
// Ed. Milton Abramowitz and Irene A. Stegun, |
| 37 |
// Dover Publications, |
| 38 |
// Section 13, pp. 509-510, Section 22 pp. 773-802 |
| 39 |
// (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl |
| 40 |
|
| 41 |
#ifndef _GLIBCXX_TR1_POLY_LAGUERRE_TCC |
| 42 |
#define _GLIBCXX_TR1_POLY_LAGUERRE_TCC 1 |
| 43 |
|
| 44 |
namespace std _GLIBCXX_VISIBILITY(default) |
| 45 |
{ |
| 46 |
_GLIBCXX_BEGIN_NAMESPACE_VERSION |
| 47 |
|
| 48 |
#if _GLIBCXX_USE_STD_SPEC_FUNCS |
| 49 |
# define _GLIBCXX_MATH_NS ::std |
| 50 |
#elif defined(_GLIBCXX_TR1_CMATH) |
| 51 |
namespace tr1 |
| 52 |
{ |
| 53 |
# define _GLIBCXX_MATH_NS ::std::tr1 |
| 54 |
#else |
| 55 |
# error do not include this header directly, use <cmath> or <tr1/cmath> |
| 56 |
#endif |
| 57 |
// [5.2] Special functions |
| 58 |
|
| 59 |
// Implementation-space details. |
| 60 |
namespace __detail |
| 61 |
{ |
| 62 |
/** |
| 63 |
* @brief This routine returns the associated Laguerre polynomial |
| 64 |
* of order @f$ n @f$, degree @f$ \alpha @f$ for large n. |
| 65 |
* Abramowitz & Stegun, 13.5.21 |
| 66 |
* |
| 67 |
* @param __n The order of the Laguerre function. |
| 68 |
* @param __alpha The degree of the Laguerre function. |
| 69 |
* @param __x The argument of the Laguerre function. |
| 70 |
* @return The value of the Laguerre function of order n, |
| 71 |
* degree @f$ \alpha @f$, and argument x. |
| 72 |
* |
| 73 |
* This is from the GNU Scientific Library. |
| 74 |
*/ |
| 75 |
template<typename _Tpa, typename _Tp> |
| 76 |
_Tp |
| 77 |
__poly_laguerre_large_n(unsigned __n, _Tpa __alpha1, _Tp __x) |
| 78 |
{ |
| 79 |
const _Tp __a = -_Tp(__n); |
| 80 |
const _Tp __b = _Tp(__alpha1) + _Tp(1); |
| 81 |
const _Tp __eta = _Tp(2) * __b - _Tp(4) * __a; |
| 82 |
const _Tp __cos2th = __x / __eta; |
| 83 |
const _Tp __sin2th = _Tp(1) - __cos2th; |
| 84 |
const _Tp __th = std::acos(std::sqrt(__cos2th)); |
| 85 |
const _Tp __pre_h = __numeric_constants<_Tp>::__pi_2() |
| 86 |
* __numeric_constants<_Tp>::__pi_2() |
| 87 |
* __eta * __eta * __cos2th * __sin2th; |
| 88 |
|
| 89 |
#if _GLIBCXX_USE_C99_MATH_TR1 |
| 90 |
const _Tp __lg_b = _GLIBCXX_MATH_NS::lgamma(_Tp(__n) + __b); |
| 91 |
const _Tp __lnfact = _GLIBCXX_MATH_NS::lgamma(_Tp(__n + 1)); |
| 92 |
#else |
| 93 |
const _Tp __lg_b = __log_gamma(_Tp(__n) + __b); |
| 94 |
const _Tp __lnfact = __log_gamma(_Tp(__n + 1)); |
| 95 |
#endif |
| 96 |
|
| 97 |
_Tp __pre_term1 = _Tp(0.5L) * (_Tp(1) - __b) |
| 98 |
* std::log(_Tp(0.25L) * __x * __eta); |
| 99 |
_Tp __pre_term2 = _Tp(0.25L) * std::log(__pre_h); |
| 100 |
_Tp __lnpre = __lg_b - __lnfact + _Tp(0.5L) * __x |
| 101 |
+ __pre_term1 - __pre_term2; |
| 102 |
_Tp __ser_term1 = std::sin(__a * __numeric_constants<_Tp>::__pi()); |
| 103 |
_Tp __ser_term2 = std::sin(_Tp(0.25L) * __eta |
| 104 |
* (_Tp(2) * __th |
| 105 |
- std::sin(_Tp(2) * __th)) |
| 106 |
+ __numeric_constants<_Tp>::__pi_4()); |
| 107 |
_Tp __ser = __ser_term1 + __ser_term2; |
| 108 |
|
| 109 |
return std::exp(__lnpre) * __ser; |
| 110 |
} |
| 111 |
|
| 112 |
|
| 113 |
/** |
| 114 |
* @brief Evaluate the polynomial based on the confluent hypergeometric |
| 115 |
* function in a safe way, with no restriction on the arguments. |
| 116 |
* |
| 117 |
* The associated Laguerre function is defined by |
| 118 |
* @f[ |
| 119 |
* L_n^\alpha(x) = \frac{(\alpha + 1)_n}{n!} |
| 120 |
* _1F_1(-n; \alpha + 1; x) |
| 121 |
* @f] |
| 122 |
* where @f$ (\alpha)_n @f$ is the Pochhammer symbol and |
| 123 |
* @f$ _1F_1(a; c; x) @f$ is the confluent hypergeometric function. |
| 124 |
* |
| 125 |
* This function assumes x != 0. |
| 126 |
* |
| 127 |
* This is from the GNU Scientific Library. |
| 128 |
*/ |
| 129 |
template<typename _Tpa, typename _Tp> |
| 130 |
_Tp |
| 131 |
__poly_laguerre_hyperg(unsigned int __n, _Tpa __alpha1, _Tp __x) |
| 132 |
{ |
| 133 |
const _Tp __b = _Tp(__alpha1) + _Tp(1); |
| 134 |
const _Tp __mx = -__x; |
| 135 |
const _Tp __tc_sgn = (__x < _Tp(0) ? _Tp(1) |
| 136 |
: ((__n % 2 == 1) ? -_Tp(1) : _Tp(1))); |
| 137 |
// Get |x|^n/n! |
| 138 |
_Tp __tc = _Tp(1); |
| 139 |
const _Tp __ax = std::abs(__x); |
| 140 |
for (unsigned int __k = 1; __k <= __n; ++__k) |
| 141 |
__tc *= (__ax / __k); |
| 142 |
|
| 143 |
_Tp __term = __tc * __tc_sgn; |
| 144 |
_Tp __sum = __term; |
| 145 |
for (int __k = int(__n) - 1; __k >= 0; --__k) |
| 146 |
{ |
| 147 |
__term *= ((__b + _Tp(__k)) / _Tp(int(__n) - __k)) |
| 148 |
* _Tp(__k + 1) / __mx; |
| 149 |
__sum += __term; |
| 150 |
} |
| 151 |
|
| 152 |
return __sum; |
| 153 |
} |
| 154 |
|
| 155 |
|
| 156 |
/** |
| 157 |
* @brief This routine returns the associated Laguerre polynomial |
| 158 |
* of order @f$ n @f$, degree @f$ \alpha @f$: @f$ L_n^\alpha(x) @f$ |
| 159 |
* by recursion. |
| 160 |
* |
| 161 |
* The associated Laguerre function is defined by |
| 162 |
* @f[ |
| 163 |
* L_n^\alpha(x) = \frac{(\alpha + 1)_n}{n!} |
| 164 |
* _1F_1(-n; \alpha + 1; x) |
| 165 |
* @f] |
| 166 |
* where @f$ (\alpha)_n @f$ is the Pochhammer symbol and |
| 167 |
* @f$ _1F_1(a; c; x) @f$ is the confluent hypergeometric function. |
| 168 |
* |
| 169 |
* The associated Laguerre polynomial is defined for integral |
| 170 |
* @f$ \alpha = m @f$ by: |
| 171 |
* @f[ |
| 172 |
* L_n^m(x) = (-1)^m \frac{d^m}{dx^m} L_{n + m}(x) |
| 173 |
* @f] |
| 174 |
* where the Laguerre polynomial is defined by: |
| 175 |
* @f[ |
| 176 |
* L_n(x) = \frac{e^x}{n!} \frac{d^n}{dx^n} (x^ne^{-x}) |
| 177 |
* @f] |
| 178 |
* |
| 179 |
* @param __n The order of the Laguerre function. |
| 180 |
* @param __alpha The degree of the Laguerre function. |
| 181 |
* @param __x The argument of the Laguerre function. |
| 182 |
* @return The value of the Laguerre function of order n, |
| 183 |
* degree @f$ \alpha @f$, and argument x. |
| 184 |
*/ |
| 185 |
template<typename _Tpa, typename _Tp> |
| 186 |
_Tp |
| 187 |
__poly_laguerre_recursion(unsigned int __n, _Tpa __alpha1, _Tp __x) |
| 188 |
{ |
| 189 |
// Compute l_0. |
| 190 |
_Tp __l_0 = _Tp(1); |
| 191 |
if (__n == 0) |
| 192 |
return __l_0; |
| 193 |
|
| 194 |
// Compute l_1^alpha. |
| 195 |
_Tp __l_1 = -__x + _Tp(1) + _Tp(__alpha1); |
| 196 |
if (__n == 1) |
| 197 |
return __l_1; |
| 198 |
|
| 199 |
// Compute l_n^alpha by recursion on n. |
| 200 |
_Tp __l_n2 = __l_0; |
| 201 |
_Tp __l_n1 = __l_1; |
| 202 |
_Tp __l_n = _Tp(0); |
| 203 |
for (unsigned int __nn = 2; __nn <= __n; ++__nn) |
| 204 |
{ |
| 205 |
__l_n = (_Tp(2 * __nn - 1) + _Tp(__alpha1) - __x) |
| 206 |
* __l_n1 / _Tp(__nn) |
| 207 |
- (_Tp(__nn - 1) + _Tp(__alpha1)) * __l_n2 / _Tp(__nn); |
| 208 |
__l_n2 = __l_n1; |
| 209 |
__l_n1 = __l_n; |
| 210 |
} |
| 211 |
|
| 212 |
return __l_n; |
| 213 |
} |
| 214 |
|
| 215 |
|
| 216 |
/** |
| 217 |
* @brief This routine returns the associated Laguerre polynomial |
| 218 |
* of order n, degree @f$ \alpha @f$: @f$ L_n^alpha(x) @f$. |
| 219 |
* |
| 220 |
* The associated Laguerre function is defined by |
| 221 |
* @f[ |
| 222 |
* L_n^\alpha(x) = \frac{(\alpha + 1)_n}{n!} |
| 223 |
* _1F_1(-n; \alpha + 1; x) |
| 224 |
* @f] |
| 225 |
* where @f$ (\alpha)_n @f$ is the Pochhammer symbol and |
| 226 |
* @f$ _1F_1(a; c; x) @f$ is the confluent hypergeometric function. |
| 227 |
* |
| 228 |
* The associated Laguerre polynomial is defined for integral |
| 229 |
* @f$ \alpha = m @f$ by: |
| 230 |
* @f[ |
| 231 |
* L_n^m(x) = (-1)^m \frac{d^m}{dx^m} L_{n + m}(x) |
| 232 |
* @f] |
| 233 |
* where the Laguerre polynomial is defined by: |
| 234 |
* @f[ |
| 235 |
* L_n(x) = \frac{e^x}{n!} \frac{d^n}{dx^n} (x^ne^{-x}) |
| 236 |
* @f] |
| 237 |
* |
| 238 |
* @param __n The order of the Laguerre function. |
| 239 |
* @param __alpha The degree of the Laguerre function. |
| 240 |
* @param __x The argument of the Laguerre function. |
| 241 |
* @return The value of the Laguerre function of order n, |
| 242 |
* degree @f$ \alpha @f$, and argument x. |
| 243 |
*/ |
| 244 |
template<typename _Tpa, typename _Tp> |
| 245 |
_Tp |
| 246 |
__poly_laguerre(unsigned int __n, _Tpa __alpha1, _Tp __x) |
| 247 |
{ |
| 248 |
if (__x < _Tp(0)) |
| 249 |
std::__throw_domain_error(__N("Negative argument " |
| 250 |
"in __poly_laguerre.")); |
| 251 |
// Return NaN on NaN input. |
| 252 |
else if (__isnan(__x)) |
| 253 |
return std::numeric_limits<_Tp>::quiet_NaN(); |
| 254 |
else if (__n == 0) |
| 255 |
return _Tp(1); |
| 256 |
else if (__n == 1) |
| 257 |
return _Tp(1) + _Tp(__alpha1) - __x; |
| 258 |
else if (__x == _Tp(0)) |
| 259 |
{ |
| 260 |
_Tp __prod = _Tp(__alpha1) + _Tp(1); |
| 261 |
for (unsigned int __k = 2; __k <= __n; ++__k) |
| 262 |
__prod *= (_Tp(__alpha1) + _Tp(__k)) / _Tp(__k); |
| 263 |
return __prod; |
| 264 |
} |
| 265 |
else if (__n > 10000000 && _Tp(__alpha1) > -_Tp(1) |
| 266 |
&& __x < _Tp(2) * (_Tp(__alpha1) + _Tp(1)) + _Tp(4 * __n)) |
| 267 |
return __poly_laguerre_large_n(__n, __alpha1, __x); |
| 268 |
else if (_Tp(__alpha1) >= _Tp(0) |
| 269 |
|| (__x > _Tp(0) && _Tp(__alpha1) < -_Tp(__n + 1))) |
| 270 |
return __poly_laguerre_recursion(__n, __alpha1, __x); |
| 271 |
else |
| 272 |
return __poly_laguerre_hyperg(__n, __alpha1, __x); |
| 273 |
} |
| 274 |
|
| 275 |
|
| 276 |
/** |
| 277 |
* @brief This routine returns the associated Laguerre polynomial |
| 278 |
* of order n, degree m: @f$ L_n^m(x) @f$. |
| 279 |
* |
| 280 |
* The associated Laguerre polynomial is defined for integral |
| 281 |
* @f$ \alpha = m @f$ by: |
| 282 |
* @f[ |
| 283 |
* L_n^m(x) = (-1)^m \frac{d^m}{dx^m} L_{n + m}(x) |
| 284 |
* @f] |
| 285 |
* where the Laguerre polynomial is defined by: |
| 286 |
* @f[ |
| 287 |
* L_n(x) = \frac{e^x}{n!} \frac{d^n}{dx^n} (x^ne^{-x}) |
| 288 |
* @f] |
| 289 |
* |
| 290 |
* @param __n The order of the Laguerre polynomial. |
| 291 |
* @param __m The degree of the Laguerre polynomial. |
| 292 |
* @param __x The argument of the Laguerre polynomial. |
| 293 |
* @return The value of the associated Laguerre polynomial of order n, |
| 294 |
* degree m, and argument x. |
| 295 |
*/ |
| 296 |
template<typename _Tp> |
| 297 |
inline _Tp |
| 298 |
__assoc_laguerre(unsigned int __n, unsigned int __m, _Tp __x) |
| 299 |
{ return __poly_laguerre<unsigned int, _Tp>(__n, __m, __x); } |
| 300 |
|
| 301 |
|
| 302 |
/** |
| 303 |
* @brief This routine returns the Laguerre polynomial |
| 304 |
* of order n: @f$ L_n(x) @f$. |
| 305 |
* |
| 306 |
* The Laguerre polynomial is defined by: |
| 307 |
* @f[ |
| 308 |
* L_n(x) = \frac{e^x}{n!} \frac{d^n}{dx^n} (x^ne^{-x}) |
| 309 |
* @f] |
| 310 |
* |
| 311 |
* @param __n The order of the Laguerre polynomial. |
| 312 |
* @param __x The argument of the Laguerre polynomial. |
| 313 |
* @return The value of the Laguerre polynomial of order n |
| 314 |
* and argument x. |
| 315 |
*/ |
| 316 |
template<typename _Tp> |
| 317 |
inline _Tp |
| 318 |
__laguerre(unsigned int __n, _Tp __x) |
| 319 |
{ return __poly_laguerre<unsigned int, _Tp>(__n, 0, __x); } |
| 320 |
} // namespace __detail |
| 321 |
#undef _GLIBCXX_MATH_NS |
| 322 |
#if ! _GLIBCXX_USE_STD_SPEC_FUNCS && defined(_GLIBCXX_TR1_CMATH) |
| 323 |
} // namespace tr1 |
| 324 |
#endif |
| 325 |
|
| 326 |
_GLIBCXX_END_NAMESPACE_VERSION |
| 327 |
} |
| 328 |
|
| 329 |
#endif // _GLIBCXX_TR1_POLY_LAGUERRE_TCC |