| 1 |
// class template regex -*- C++ -*- |
| 2 |
|
| 3 |
// Copyright (C) 2013-2021 Free Software Foundation, Inc. |
| 4 |
// |
| 5 |
// This file is part of the GNU ISO C++ Library. This library is free |
| 6 |
// software; you can redistribute it and/or modify it under the |
| 7 |
// terms of the GNU General Public License as published by the |
| 8 |
// Free Software Foundation; either version 3, or (at your option) |
| 9 |
// any later version. |
| 10 |
|
| 11 |
// This library is distributed in the hope that it will be useful, |
| 12 |
// but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 13 |
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 14 |
// GNU General Public License for more details. |
| 15 |
|
| 16 |
// Under Section 7 of GPL version 3, you are granted additional |
| 17 |
// permissions described in the GCC Runtime Library Exception, version |
| 18 |
// 3.1, as published by the Free Software Foundation. |
| 19 |
|
| 20 |
// You should have received a copy of the GNU General Public License and |
| 21 |
// a copy of the GCC Runtime Library Exception along with this program; |
| 22 |
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see |
| 23 |
// <http://www.gnu.org/licenses/>. |
| 24 |
|
| 25 |
/** |
| 26 |
* @file bits/regex_executor.tcc |
| 27 |
* This is an internal header file, included by other library headers. |
| 28 |
* Do not attempt to use it directly. @headername{regex} |
| 29 |
*/ |
| 30 |
|
| 31 |
namespace std _GLIBCXX_VISIBILITY(default) |
| 32 |
{ |
| 33 |
_GLIBCXX_BEGIN_NAMESPACE_VERSION |
| 34 |
|
| 35 |
namespace __detail |
| 36 |
{ |
| 37 |
template<typename _BiIter, typename _Alloc, typename _TraitsT, |
| 38 |
bool __dfs_mode> |
| 39 |
bool _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>:: |
| 40 |
_M_search() |
| 41 |
{ |
| 42 |
if (_M_search_from_first()) |
| 43 |
return true; |
| 44 |
if (_M_flags & regex_constants::match_continuous) |
| 45 |
return false; |
| 46 |
_M_flags |= regex_constants::match_prev_avail; |
| 47 |
while (_M_begin != _M_end) |
| 48 |
{ |
| 49 |
++_M_begin; |
| 50 |
if (_M_search_from_first()) |
| 51 |
return true; |
| 52 |
} |
| 53 |
return false; |
| 54 |
} |
| 55 |
|
| 56 |
// The _M_main function operates in different modes, DFS mode or BFS mode, |
| 57 |
// indicated by template parameter __dfs_mode, and dispatches to one of the |
| 58 |
// _M_main_dispatch overloads. |
| 59 |
// |
| 60 |
// ------------------------------------------------------------ |
| 61 |
// |
| 62 |
// DFS mode: |
| 63 |
// |
| 64 |
// It applies a Depth-First-Search (aka backtracking) on given NFA and input |
| 65 |
// string. |
| 66 |
// At the very beginning the executor stands in the start state, then it |
| 67 |
// tries every possible state transition in current state recursively. Some |
| 68 |
// state transitions consume input string, say, a single-char-matcher or a |
| 69 |
// back-reference matcher; some don't, like assertion or other anchor nodes. |
| 70 |
// When the input is exhausted and/or the current state is an accepting |
| 71 |
// state, the whole executor returns true. |
| 72 |
// |
| 73 |
// TODO: This approach is exponentially slow for certain input. |
| 74 |
// Try to compile the NFA to a DFA. |
| 75 |
// |
| 76 |
// Time complexity: \Omega(match_length), O(2^(_M_nfa.size())) |
| 77 |
// Space complexity: \theta(match_results.size() + match_length) |
| 78 |
// |
| 79 |
template<typename _BiIter, typename _Alloc, typename _TraitsT, |
| 80 |
bool __dfs_mode> |
| 81 |
bool _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>:: |
| 82 |
_M_main_dispatch(_Match_mode __match_mode, __dfs) |
| 83 |
{ |
| 84 |
_M_has_sol = false; |
| 85 |
*_M_states._M_get_sol_pos() = _BiIter(); |
| 86 |
_M_cur_results = _M_results; |
| 87 |
_M_dfs(__match_mode, _M_states._M_start); |
| 88 |
return _M_has_sol; |
| 89 |
} |
| 90 |
|
| 91 |
// ------------------------------------------------------------ |
| 92 |
// |
| 93 |
// BFS mode: |
| 94 |
// |
| 95 |
// Russ Cox's article (http://swtch.com/~rsc/regexp/regexp1.html) |
| 96 |
// explained this algorithm clearly. |
| 97 |
// |
| 98 |
// It first computes epsilon closure (states that can be achieved without |
| 99 |
// consuming characters) for every state that's still matching, |
| 100 |
// using the same DFS algorithm, but doesn't re-enter states (using |
| 101 |
// _M_states._M_visited to check), nor follow _S_opcode_match. |
| 102 |
// |
| 103 |
// Then apply DFS using every _S_opcode_match (in _M_states._M_match_queue) |
| 104 |
// as the start state. |
| 105 |
// |
| 106 |
// It significantly reduces potential duplicate states, so has a better |
| 107 |
// upper bound; but it requires more overhead. |
| 108 |
// |
| 109 |
// Time complexity: \Omega(match_length * match_results.size()) |
| 110 |
// O(match_length * _M_nfa.size() * match_results.size()) |
| 111 |
// Space complexity: \Omega(_M_nfa.size() + match_results.size()) |
| 112 |
// O(_M_nfa.size() * match_results.size()) |
| 113 |
template<typename _BiIter, typename _Alloc, typename _TraitsT, |
| 114 |
bool __dfs_mode> |
| 115 |
bool _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>:: |
| 116 |
_M_main_dispatch(_Match_mode __match_mode, __bfs) |
| 117 |
{ |
| 118 |
_M_states._M_queue(_M_states._M_start, _M_results); |
| 119 |
bool __ret = false; |
| 120 |
while (1) |
| 121 |
{ |
| 122 |
_M_has_sol = false; |
| 123 |
if (_M_states._M_match_queue.empty()) |
| 124 |
break; |
| 125 |
std::fill_n(_M_states._M_visited_states.get(), _M_nfa.size(), false); |
| 126 |
auto __old_queue = std::move(_M_states._M_match_queue); |
| 127 |
for (auto& __task : __old_queue) |
| 128 |
{ |
| 129 |
_M_cur_results = std::move(__task.second); |
| 130 |
_M_dfs(__match_mode, __task.first); |
| 131 |
} |
| 132 |
if (__match_mode == _Match_mode::_Prefix) |
| 133 |
__ret |= _M_has_sol; |
| 134 |
if (_M_current == _M_end) |
| 135 |
break; |
| 136 |
++_M_current; |
| 137 |
} |
| 138 |
if (__match_mode == _Match_mode::_Exact) |
| 139 |
__ret = _M_has_sol; |
| 140 |
_M_states._M_match_queue.clear(); |
| 141 |
return __ret; |
| 142 |
} |
| 143 |
|
| 144 |
// Return whether now match the given sub-NFA. |
| 145 |
template<typename _BiIter, typename _Alloc, typename _TraitsT, |
| 146 |
bool __dfs_mode> |
| 147 |
bool _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>:: |
| 148 |
_M_lookahead(_StateIdT __next) |
| 149 |
{ |
| 150 |
// Backreferences may refer to captured content. |
| 151 |
// We may want to make this faster by not copying, |
| 152 |
// but let's not be clever prematurely. |
| 153 |
_ResultsVec __what(_M_cur_results); |
| 154 |
_Executor __sub(_M_current, _M_end, __what, _M_re, _M_flags); |
| 155 |
__sub._M_states._M_start = __next; |
| 156 |
if (__sub._M_search_from_first()) |
| 157 |
{ |
| 158 |
for (size_t __i = 0; __i < __what.size(); __i++) |
| 159 |
if (__what[__i].matched) |
| 160 |
_M_cur_results[__i] = __what[__i]; |
| 161 |
return true; |
| 162 |
} |
| 163 |
return false; |
| 164 |
} |
| 165 |
|
| 166 |
// __rep_count records how many times (__rep_count.second) |
| 167 |
// this node is visited under certain input iterator |
| 168 |
// (__rep_count.first). This prevent the executor from entering |
| 169 |
// infinite loop by refusing to continue when it's already been |
| 170 |
// visited more than twice. It's `twice` instead of `once` because |
| 171 |
// we need to spare one more time for potential group capture. |
| 172 |
template<typename _BiIter, typename _Alloc, typename _TraitsT, |
| 173 |
bool __dfs_mode> |
| 174 |
void _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>:: |
| 175 |
_M_rep_once_more(_Match_mode __match_mode, _StateIdT __i) |
| 176 |
{ |
| 177 |
const auto& __state = _M_nfa[__i]; |
| 178 |
auto& __rep_count = _M_rep_count[__i]; |
| 179 |
if (__rep_count.second == 0 || __rep_count.first != _M_current) |
| 180 |
{ |
| 181 |
auto __back = __rep_count; |
| 182 |
__rep_count.first = _M_current; |
| 183 |
__rep_count.second = 1; |
| 184 |
_M_dfs(__match_mode, __state._M_alt); |
| 185 |
__rep_count = __back; |
| 186 |
} |
| 187 |
else |
| 188 |
{ |
| 189 |
if (__rep_count.second < 2) |
| 190 |
{ |
| 191 |
__rep_count.second++; |
| 192 |
_M_dfs(__match_mode, __state._M_alt); |
| 193 |
__rep_count.second--; |
| 194 |
} |
| 195 |
} |
| 196 |
} |
| 197 |
|
| 198 |
// _M_alt branch is "match once more", while _M_next is "get me out |
| 199 |
// of this quantifier". Executing _M_next first or _M_alt first don't |
| 200 |
// mean the same thing, and we need to choose the correct order under |
| 201 |
// given greedy mode. |
| 202 |
template<typename _BiIter, typename _Alloc, typename _TraitsT, |
| 203 |
bool __dfs_mode> |
| 204 |
void _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>:: |
| 205 |
_M_handle_repeat(_Match_mode __match_mode, _StateIdT __i) |
| 206 |
{ |
| 207 |
const auto& __state = _M_nfa[__i]; |
| 208 |
|
| 209 |
// Greedy. |
| 210 |
if (!__state._M_neg) |
| 211 |
{ |
| 212 |
_M_rep_once_more(__match_mode, __i); |
| 213 |
// If it's DFS executor and already accepted, we're done. |
| 214 |
if (!__dfs_mode || !_M_has_sol) |
| 215 |
_M_dfs(__match_mode, __state._M_next); |
| 216 |
} |
| 217 |
else // Non-greedy mode |
| 218 |
{ |
| 219 |
if (__dfs_mode) |
| 220 |
{ |
| 221 |
// vice-versa. |
| 222 |
_M_dfs(__match_mode, __state._M_next); |
| 223 |
if (!_M_has_sol) |
| 224 |
_M_rep_once_more(__match_mode, __i); |
| 225 |
} |
| 226 |
else |
| 227 |
{ |
| 228 |
// DON'T attempt anything, because there's already another |
| 229 |
// state with higher priority accepted. This state cannot |
| 230 |
// be better by attempting its next node. |
| 231 |
if (!_M_has_sol) |
| 232 |
{ |
| 233 |
_M_dfs(__match_mode, __state._M_next); |
| 234 |
// DON'T attempt anything if it's already accepted. An |
| 235 |
// accepted state *must* be better than a solution that |
| 236 |
// matches a non-greedy quantifier one more time. |
| 237 |
if (!_M_has_sol) |
| 238 |
_M_rep_once_more(__match_mode, __i); |
| 239 |
} |
| 240 |
} |
| 241 |
} |
| 242 |
} |
| 243 |
|
| 244 |
template<typename _BiIter, typename _Alloc, typename _TraitsT, |
| 245 |
bool __dfs_mode> |
| 246 |
void _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>:: |
| 247 |
_M_handle_subexpr_begin(_Match_mode __match_mode, _StateIdT __i) |
| 248 |
{ |
| 249 |
const auto& __state = _M_nfa[__i]; |
| 250 |
|
| 251 |
auto& __res = _M_cur_results[__state._M_subexpr]; |
| 252 |
auto __back = __res.first; |
| 253 |
__res.first = _M_current; |
| 254 |
_M_dfs(__match_mode, __state._M_next); |
| 255 |
__res.first = __back; |
| 256 |
} |
| 257 |
|
| 258 |
template<typename _BiIter, typename _Alloc, typename _TraitsT, |
| 259 |
bool __dfs_mode> |
| 260 |
void _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>:: |
| 261 |
_M_handle_subexpr_end(_Match_mode __match_mode, _StateIdT __i) |
| 262 |
{ |
| 263 |
const auto& __state = _M_nfa[__i]; |
| 264 |
|
| 265 |
auto& __res = _M_cur_results[__state._M_subexpr]; |
| 266 |
auto __back = __res; |
| 267 |
__res.second = _M_current; |
| 268 |
__res.matched = true; |
| 269 |
_M_dfs(__match_mode, __state._M_next); |
| 270 |
__res = __back; |
| 271 |
} |
| 272 |
|
| 273 |
template<typename _BiIter, typename _Alloc, typename _TraitsT, |
| 274 |
bool __dfs_mode> |
| 275 |
inline void _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>:: |
| 276 |
_M_handle_line_begin_assertion(_Match_mode __match_mode, _StateIdT __i) |
| 277 |
{ |
| 278 |
const auto& __state = _M_nfa[__i]; |
| 279 |
if (_M_at_begin()) |
| 280 |
_M_dfs(__match_mode, __state._M_next); |
| 281 |
} |
| 282 |
|
| 283 |
template<typename _BiIter, typename _Alloc, typename _TraitsT, |
| 284 |
bool __dfs_mode> |
| 285 |
inline void _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>:: |
| 286 |
_M_handle_line_end_assertion(_Match_mode __match_mode, _StateIdT __i) |
| 287 |
{ |
| 288 |
const auto& __state = _M_nfa[__i]; |
| 289 |
if (_M_at_end()) |
| 290 |
_M_dfs(__match_mode, __state._M_next); |
| 291 |
} |
| 292 |
|
| 293 |
template<typename _BiIter, typename _Alloc, typename _TraitsT, |
| 294 |
bool __dfs_mode> |
| 295 |
inline void _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>:: |
| 296 |
_M_handle_word_boundary(_Match_mode __match_mode, _StateIdT __i) |
| 297 |
{ |
| 298 |
const auto& __state = _M_nfa[__i]; |
| 299 |
if (_M_word_boundary() == !__state._M_neg) |
| 300 |
_M_dfs(__match_mode, __state._M_next); |
| 301 |
} |
| 302 |
|
| 303 |
// Here __state._M_alt offers a single start node for a sub-NFA. |
| 304 |
// We recursively invoke our algorithm to match the sub-NFA. |
| 305 |
template<typename _BiIter, typename _Alloc, typename _TraitsT, |
| 306 |
bool __dfs_mode> |
| 307 |
void _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>:: |
| 308 |
_M_handle_subexpr_lookahead(_Match_mode __match_mode, _StateIdT __i) |
| 309 |
{ |
| 310 |
const auto& __state = _M_nfa[__i]; |
| 311 |
if (_M_lookahead(__state._M_alt) == !__state._M_neg) |
| 312 |
_M_dfs(__match_mode, __state._M_next); |
| 313 |
} |
| 314 |
|
| 315 |
template<typename _BiIter, typename _Alloc, typename _TraitsT, |
| 316 |
bool __dfs_mode> |
| 317 |
void _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>:: |
| 318 |
_M_handle_match(_Match_mode __match_mode, _StateIdT __i) |
| 319 |
{ |
| 320 |
const auto& __state = _M_nfa[__i]; |
| 321 |
|
| 322 |
if (_M_current == _M_end) |
| 323 |
return; |
| 324 |
if (__dfs_mode) |
| 325 |
{ |
| 326 |
if (__state._M_matches(*_M_current)) |
| 327 |
{ |
| 328 |
++_M_current; |
| 329 |
_M_dfs(__match_mode, __state._M_next); |
| 330 |
--_M_current; |
| 331 |
} |
| 332 |
} |
| 333 |
else |
| 334 |
if (__state._M_matches(*_M_current)) |
| 335 |
_M_states._M_queue(__state._M_next, _M_cur_results); |
| 336 |
} |
| 337 |
|
| 338 |
template<typename _BiIter, typename _TraitsT> |
| 339 |
struct _Backref_matcher |
| 340 |
{ |
| 341 |
_Backref_matcher(bool __icase, const _TraitsT& __traits) |
| 342 |
: _M_traits(__traits) { } |
| 343 |
|
| 344 |
bool |
| 345 |
_M_apply(_BiIter __expected_begin, |
| 346 |
_BiIter __expected_end, _BiIter __actual_begin, |
| 347 |
_BiIter __actual_end) |
| 348 |
{ |
| 349 |
return _M_traits.transform(__expected_begin, __expected_end) |
| 350 |
== _M_traits.transform(__actual_begin, __actual_end); |
| 351 |
} |
| 352 |
|
| 353 |
const _TraitsT& _M_traits; |
| 354 |
}; |
| 355 |
|
| 356 |
template<typename _BiIter, typename _CharT> |
| 357 |
struct _Backref_matcher<_BiIter, std::regex_traits<_CharT>> |
| 358 |
{ |
| 359 |
using _TraitsT = std::regex_traits<_CharT>; |
| 360 |
_Backref_matcher(bool __icase, const _TraitsT& __traits) |
| 361 |
: _M_icase(__icase), _M_traits(__traits) { } |
| 362 |
|
| 363 |
bool |
| 364 |
_M_apply(_BiIter __expected_begin, |
| 365 |
_BiIter __expected_end, _BiIter __actual_begin, |
| 366 |
_BiIter __actual_end) |
| 367 |
{ |
| 368 |
if (!_M_icase) |
| 369 |
return _GLIBCXX_STD_A::__equal4(__expected_begin, __expected_end, |
| 370 |
__actual_begin, __actual_end); |
| 371 |
typedef std::ctype<_CharT> __ctype_type; |
| 372 |
const auto& __fctyp = use_facet<__ctype_type>(_M_traits.getloc()); |
| 373 |
return _GLIBCXX_STD_A::__equal4(__expected_begin, __expected_end, |
| 374 |
__actual_begin, __actual_end, |
| 375 |
[this, &__fctyp](_CharT __lhs, _CharT __rhs) |
| 376 |
{ |
| 377 |
return __fctyp.tolower(__lhs) |
| 378 |
== __fctyp.tolower(__rhs); |
| 379 |
}); |
| 380 |
} |
| 381 |
|
| 382 |
bool _M_icase; |
| 383 |
const _TraitsT& _M_traits; |
| 384 |
}; |
| 385 |
|
| 386 |
// First fetch the matched result from _M_cur_results as __submatch; |
| 387 |
// then compare it with |
| 388 |
// (_M_current, _M_current + (__submatch.second - __submatch.first)). |
| 389 |
// If matched, keep going; else just return and try another state. |
| 390 |
template<typename _BiIter, typename _Alloc, typename _TraitsT, |
| 391 |
bool __dfs_mode> |
| 392 |
void _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>:: |
| 393 |
_M_handle_backref(_Match_mode __match_mode, _StateIdT __i) |
| 394 |
{ |
| 395 |
__glibcxx_assert(__dfs_mode); |
| 396 |
|
| 397 |
const auto& __state = _M_nfa[__i]; |
| 398 |
auto& __submatch = _M_cur_results[__state._M_backref_index]; |
| 399 |
if (!__submatch.matched) |
| 400 |
return; |
| 401 |
auto __last = _M_current; |
| 402 |
for (auto __tmp = __submatch.first; |
| 403 |
__last != _M_end && __tmp != __submatch.second; |
| 404 |
++__tmp) |
| 405 |
++__last; |
| 406 |
if (_Backref_matcher<_BiIter, _TraitsT>( |
| 407 |
_M_re.flags() & regex_constants::icase, |
| 408 |
_M_re._M_automaton->_M_traits)._M_apply( |
| 409 |
__submatch.first, __submatch.second, _M_current, __last)) |
| 410 |
{ |
| 411 |
if (__last != _M_current) |
| 412 |
{ |
| 413 |
auto __backup = _M_current; |
| 414 |
_M_current = __last; |
| 415 |
_M_dfs(__match_mode, __state._M_next); |
| 416 |
_M_current = __backup; |
| 417 |
} |
| 418 |
else |
| 419 |
_M_dfs(__match_mode, __state._M_next); |
| 420 |
} |
| 421 |
} |
| 422 |
|
| 423 |
template<typename _BiIter, typename _Alloc, typename _TraitsT, |
| 424 |
bool __dfs_mode> |
| 425 |
void _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>:: |
| 426 |
_M_handle_accept(_Match_mode __match_mode, _StateIdT __i) |
| 427 |
{ |
| 428 |
if (__dfs_mode) |
| 429 |
{ |
| 430 |
__glibcxx_assert(!_M_has_sol); |
| 431 |
if (__match_mode == _Match_mode::_Exact) |
| 432 |
_M_has_sol = _M_current == _M_end; |
| 433 |
else |
| 434 |
_M_has_sol = true; |
| 435 |
if (_M_current == _M_begin |
| 436 |
&& (_M_flags & regex_constants::match_not_null)) |
| 437 |
_M_has_sol = false; |
| 438 |
if (_M_has_sol) |
| 439 |
{ |
| 440 |
if (_M_nfa._M_flags & regex_constants::ECMAScript) |
| 441 |
_M_results = _M_cur_results; |
| 442 |
else // POSIX |
| 443 |
{ |
| 444 |
__glibcxx_assert(_M_states._M_get_sol_pos()); |
| 445 |
// Here's POSIX's logic: match the longest one. However |
| 446 |
// we never know which one (lhs or rhs of "|") is longer |
| 447 |
// unless we try both of them and compare the results. |
| 448 |
// The member variable _M_sol_pos records the end |
| 449 |
// position of the last successful match. It's better |
| 450 |
// to be larger, because POSIX regex is always greedy. |
| 451 |
// TODO: This could be slow. |
| 452 |
if (*_M_states._M_get_sol_pos() == _BiIter() |
| 453 |
|| std::distance(_M_begin, |
| 454 |
*_M_states._M_get_sol_pos()) |
| 455 |
< std::distance(_M_begin, _M_current)) |
| 456 |
{ |
| 457 |
*_M_states._M_get_sol_pos() = _M_current; |
| 458 |
_M_results = _M_cur_results; |
| 459 |
} |
| 460 |
} |
| 461 |
} |
| 462 |
} |
| 463 |
else |
| 464 |
{ |
| 465 |
if (_M_current == _M_begin |
| 466 |
&& (_M_flags & regex_constants::match_not_null)) |
| 467 |
return; |
| 468 |
if (__match_mode == _Match_mode::_Prefix || _M_current == _M_end) |
| 469 |
if (!_M_has_sol) |
| 470 |
{ |
| 471 |
_M_has_sol = true; |
| 472 |
_M_results = _M_cur_results; |
| 473 |
} |
| 474 |
} |
| 475 |
} |
| 476 |
|
| 477 |
template<typename _BiIter, typename _Alloc, typename _TraitsT, |
| 478 |
bool __dfs_mode> |
| 479 |
void _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>:: |
| 480 |
_M_handle_alternative(_Match_mode __match_mode, _StateIdT __i) |
| 481 |
{ |
| 482 |
const auto& __state = _M_nfa[__i]; |
| 483 |
|
| 484 |
if (_M_nfa._M_flags & regex_constants::ECMAScript) |
| 485 |
{ |
| 486 |
// TODO: Fix BFS support. It is wrong. |
| 487 |
_M_dfs(__match_mode, __state._M_alt); |
| 488 |
// Pick lhs if it matches. Only try rhs if it doesn't. |
| 489 |
if (!_M_has_sol) |
| 490 |
_M_dfs(__match_mode, __state._M_next); |
| 491 |
} |
| 492 |
else |
| 493 |
{ |
| 494 |
// Try both and compare the result. |
| 495 |
// See "case _S_opcode_accept:" handling above. |
| 496 |
_M_dfs(__match_mode, __state._M_alt); |
| 497 |
auto __has_sol = _M_has_sol; |
| 498 |
_M_has_sol = false; |
| 499 |
_M_dfs(__match_mode, __state._M_next); |
| 500 |
_M_has_sol |= __has_sol; |
| 501 |
} |
| 502 |
} |
| 503 |
|
| 504 |
template<typename _BiIter, typename _Alloc, typename _TraitsT, |
| 505 |
bool __dfs_mode> |
| 506 |
void _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>:: |
| 507 |
_M_dfs(_Match_mode __match_mode, _StateIdT __i) |
| 508 |
{ |
| 509 |
if (_M_states._M_visited(__i)) |
| 510 |
return; |
| 511 |
|
| 512 |
switch (_M_nfa[__i]._M_opcode()) |
| 513 |
{ |
| 514 |
case _S_opcode_repeat: |
| 515 |
_M_handle_repeat(__match_mode, __i); break; |
| 516 |
case _S_opcode_subexpr_begin: |
| 517 |
_M_handle_subexpr_begin(__match_mode, __i); break; |
| 518 |
case _S_opcode_subexpr_end: |
| 519 |
_M_handle_subexpr_end(__match_mode, __i); break; |
| 520 |
case _S_opcode_line_begin_assertion: |
| 521 |
_M_handle_line_begin_assertion(__match_mode, __i); break; |
| 522 |
case _S_opcode_line_end_assertion: |
| 523 |
_M_handle_line_end_assertion(__match_mode, __i); break; |
| 524 |
case _S_opcode_word_boundary: |
| 525 |
_M_handle_word_boundary(__match_mode, __i); break; |
| 526 |
case _S_opcode_subexpr_lookahead: |
| 527 |
_M_handle_subexpr_lookahead(__match_mode, __i); break; |
| 528 |
case _S_opcode_match: |
| 529 |
_M_handle_match(__match_mode, __i); break; |
| 530 |
case _S_opcode_backref: |
| 531 |
_M_handle_backref(__match_mode, __i); break; |
| 532 |
case _S_opcode_accept: |
| 533 |
_M_handle_accept(__match_mode, __i); break; |
| 534 |
case _S_opcode_alternative: |
| 535 |
_M_handle_alternative(__match_mode, __i); break; |
| 536 |
default: |
| 537 |
__glibcxx_assert(false); |
| 538 |
} |
| 539 |
} |
| 540 |
|
| 541 |
// Return whether now is at some word boundary. |
| 542 |
template<typename _BiIter, typename _Alloc, typename _TraitsT, |
| 543 |
bool __dfs_mode> |
| 544 |
bool _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>:: |
| 545 |
_M_word_boundary() const |
| 546 |
{ |
| 547 |
if (_M_current == _M_begin && (_M_flags & regex_constants::match_not_bow)) |
| 548 |
return false; |
| 549 |
if (_M_current == _M_end && (_M_flags & regex_constants::match_not_eow)) |
| 550 |
return false; |
| 551 |
|
| 552 |
bool __left_is_word = false; |
| 553 |
if (_M_current != _M_begin |
| 554 |
|| (_M_flags & regex_constants::match_prev_avail)) |
| 555 |
{ |
| 556 |
auto __prev = _M_current; |
| 557 |
if (_M_is_word(*std::prev(__prev))) |
| 558 |
__left_is_word = true; |
| 559 |
} |
| 560 |
bool __right_is_word = |
| 561 |
_M_current != _M_end && _M_is_word(*_M_current); |
| 562 |
|
| 563 |
return __left_is_word != __right_is_word; |
| 564 |
} |
| 565 |
} // namespace __detail |
| 566 |
|
| 567 |
_GLIBCXX_END_NAMESPACE_VERSION |
| 568 |
} // namespace |