1 |
/* trees.c -- output deflated data using Huffman coding |
2 |
* Copyright (C) 1995-2012 Jean-loup Gailly |
3 |
* detect_data_type() function provided freely by Cosmin Truta, 2006 |
4 |
* For conditions of distribution and use, see copyright notice in zlib.h |
5 |
*/ |
6 |
|
7 |
/* |
8 |
* ALGORITHM |
9 |
* |
10 |
* The "deflation" process uses several Huffman trees. The more |
11 |
* common source values are represented by shorter bit sequences. |
12 |
* |
13 |
* Each code tree is stored in a compressed form which is itself |
14 |
* a Huffman encoding of the lengths of all the code strings (in |
15 |
* ascending order by source values). The actual code strings are |
16 |
* reconstructed from the lengths in the inflate process, as described |
17 |
* in the deflate specification. |
18 |
* |
19 |
* REFERENCES |
20 |
* |
21 |
* Deutsch, L.P.,"'Deflate' Compressed Data Format Specification". |
22 |
* Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc |
23 |
* |
24 |
* Storer, James A. |
25 |
* Data Compression: Methods and Theory, pp. 49-50. |
26 |
* Computer Science Press, 1988. ISBN 0-7167-8156-5. |
27 |
* |
28 |
* Sedgewick, R. |
29 |
* Algorithms, p290. |
30 |
* Addison-Wesley, 1983. ISBN 0-201-06672-6. |
31 |
*/ |
32 |
|
33 |
/* @(#) $Id$ */ |
34 |
|
35 |
/* #define GEN_TREES_H */ |
36 |
|
37 |
#include "deflate.h" |
38 |
|
39 |
#ifdef DEBUG |
40 |
# include <ctype.h> |
41 |
#endif |
42 |
|
43 |
/* =========================================================================== |
44 |
* Constants |
45 |
*/ |
46 |
|
47 |
#define MAX_BL_BITS 7 |
48 |
/* Bit length codes must not exceed MAX_BL_BITS bits */ |
49 |
|
50 |
#define END_BLOCK 256 |
51 |
/* end of block literal code */ |
52 |
|
53 |
#define REP_3_6 16 |
54 |
/* repeat previous bit length 3-6 times (2 bits of repeat count) */ |
55 |
|
56 |
#define REPZ_3_10 17 |
57 |
/* repeat a zero length 3-10 times (3 bits of repeat count) */ |
58 |
|
59 |
#define REPZ_11_138 18 |
60 |
/* repeat a zero length 11-138 times (7 bits of repeat count) */ |
61 |
|
62 |
local const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */ |
63 |
= {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0}; |
64 |
|
65 |
local const int extra_dbits[D_CODES] /* extra bits for each distance code */ |
66 |
= {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13}; |
67 |
|
68 |
local const int extra_blbits[BL_CODES]/* extra bits for each bit length code */ |
69 |
= {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7}; |
70 |
|
71 |
local const uch bl_order[BL_CODES] |
72 |
= {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15}; |
73 |
/* The lengths of the bit length codes are sent in order of decreasing |
74 |
* probability, to avoid transmitting the lengths for unused bit length codes. |
75 |
*/ |
76 |
|
77 |
/* =========================================================================== |
78 |
* Local data. These are initialized only once. |
79 |
*/ |
80 |
|
81 |
#define DIST_CODE_LEN 512 /* see definition of array dist_code below */ |
82 |
|
83 |
#if defined(GEN_TREES_H) || !defined(STDC) |
84 |
/* non ANSI compilers may not accept trees.h */ |
85 |
|
86 |
local ct_data static_ltree[L_CODES+2]; |
87 |
/* The static literal tree. Since the bit lengths are imposed, there is no |
88 |
* need for the L_CODES extra codes used during heap construction. However |
89 |
* The codes 286 and 287 are needed to build a canonical tree (see _tr_init |
90 |
* below). |
91 |
*/ |
92 |
|
93 |
local ct_data static_dtree[D_CODES]; |
94 |
/* The static distance tree. (Actually a trivial tree since all codes use |
95 |
* 5 bits.) |
96 |
*/ |
97 |
|
98 |
uch _dist_code[DIST_CODE_LEN]; |
99 |
/* Distance codes. The first 256 values correspond to the distances |
100 |
* 3 .. 258, the last 256 values correspond to the top 8 bits of |
101 |
* the 15 bit distances. |
102 |
*/ |
103 |
|
104 |
uch _length_code[MAX_MATCH-MIN_MATCH+1]; |
105 |
/* length code for each normalized match length (0 == MIN_MATCH) */ |
106 |
|
107 |
local int base_length[LENGTH_CODES]; |
108 |
/* First normalized length for each code (0 = MIN_MATCH) */ |
109 |
|
110 |
local int base_dist[D_CODES]; |
111 |
/* First normalized distance for each code (0 = distance of 1) */ |
112 |
|
113 |
#else |
114 |
# include "trees.h" |
115 |
#endif /* GEN_TREES_H */ |
116 |
|
117 |
struct static_tree_desc_s { |
118 |
const ct_data *static_tree; /* static tree or NULL */ |
119 |
const intf *extra_bits; /* extra bits for each code or NULL */ |
120 |
int extra_base; /* base index for extra_bits */ |
121 |
int elems; /* max number of elements in the tree */ |
122 |
int max_length; /* max bit length for the codes */ |
123 |
}; |
124 |
|
125 |
local static_tree_desc static_l_desc = |
126 |
{static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS}; |
127 |
|
128 |
local static_tree_desc static_d_desc = |
129 |
{static_dtree, extra_dbits, 0, D_CODES, MAX_BITS}; |
130 |
|
131 |
local static_tree_desc static_bl_desc = |
132 |
{(const ct_data *)0, extra_blbits, 0, BL_CODES, MAX_BL_BITS}; |
133 |
|
134 |
/* =========================================================================== |
135 |
* Local (static) routines in this file. |
136 |
*/ |
137 |
|
138 |
local void tr_static_init OF((void)); |
139 |
local void init_block OF((deflate_state *s)); |
140 |
local void pqdownheap OF((deflate_state *s, ct_data *tree, int k)); |
141 |
local void gen_bitlen OF((deflate_state *s, tree_desc *desc)); |
142 |
local void gen_codes OF((ct_data *tree, int max_code, ushf *bl_count)); |
143 |
local void build_tree OF((deflate_state *s, tree_desc *desc)); |
144 |
local void scan_tree OF((deflate_state *s, ct_data *tree, int max_code)); |
145 |
local void send_tree OF((deflate_state *s, ct_data *tree, int max_code)); |
146 |
local int build_bl_tree OF((deflate_state *s)); |
147 |
local void send_all_trees OF((deflate_state *s, int lcodes, int dcodes, |
148 |
int blcodes)); |
149 |
local void compress_block OF((deflate_state *s, const ct_data *ltree, |
150 |
const ct_data *dtree)); |
151 |
local int detect_data_type OF((deflate_state *s)); |
152 |
local unsigned bi_reverse OF((unsigned value, int length)); |
153 |
local void bi_windup OF((deflate_state *s)); |
154 |
local void bi_flush OF((deflate_state *s)); |
155 |
local void copy_block OF((deflate_state *s, charf *buf, unsigned len, |
156 |
int header)); |
157 |
|
158 |
#ifdef GEN_TREES_H |
159 |
local void gen_trees_header OF((void)); |
160 |
#endif |
161 |
|
162 |
#ifndef DEBUG |
163 |
# define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len) |
164 |
/* Send a code of the given tree. c and tree must not have side effects */ |
165 |
|
166 |
#else /* DEBUG */ |
167 |
# define send_code(s, c, tree) \ |
168 |
{ if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \ |
169 |
send_bits(s, tree[c].Code, tree[c].Len); } |
170 |
#endif |
171 |
|
172 |
/* =========================================================================== |
173 |
* Output a short LSB first on the stream. |
174 |
* IN assertion: there is enough room in pendingBuf. |
175 |
*/ |
176 |
#define put_short(s, w) { \ |
177 |
put_byte(s, (uch)((w) & 0xff)); \ |
178 |
put_byte(s, (uch)((ush)(w) >> 8)); \ |
179 |
} |
180 |
|
181 |
/* =========================================================================== |
182 |
* Send a value on a given number of bits. |
183 |
* IN assertion: length <= 16 and value fits in length bits. |
184 |
*/ |
185 |
#ifdef DEBUG |
186 |
local void send_bits OF((deflate_state *s, int value, int length)); |
187 |
|
188 |
local void send_bits(s, value, length) |
189 |
deflate_state *s; |
190 |
int value; /* value to send */ |
191 |
int length; /* number of bits */ |
192 |
{ |
193 |
Tracevv((stderr," l %2d v %4x ", length, value)); |
194 |
Assert(length > 0 && length <= 15, "invalid length"); |
195 |
s->bits_sent += (ulg)length; |
196 |
|
197 |
/* If not enough room in bi_buf, use (valid) bits from bi_buf and |
198 |
* (16 - bi_valid) bits from value, leaving (width - (16-bi_valid)) |
199 |
* unused bits in value. |
200 |
*/ |
201 |
if (s->bi_valid > (int)Buf_size - length) { |
202 |
s->bi_buf |= (ush)value << s->bi_valid; |
203 |
put_short(s, s->bi_buf); |
204 |
s->bi_buf = (ush)value >> (Buf_size - s->bi_valid); |
205 |
s->bi_valid += length - Buf_size; |
206 |
} else { |
207 |
s->bi_buf |= (ush)value << s->bi_valid; |
208 |
s->bi_valid += length; |
209 |
} |
210 |
} |
211 |
#else /* !DEBUG */ |
212 |
|
213 |
#define send_bits(s, value, length) \ |
214 |
{ int len = length;\ |
215 |
if (s->bi_valid > (int)Buf_size - len) {\ |
216 |
int val = value;\ |
217 |
s->bi_buf |= (ush)val << s->bi_valid;\ |
218 |
put_short(s, s->bi_buf);\ |
219 |
s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\ |
220 |
s->bi_valid += len - Buf_size;\ |
221 |
} else {\ |
222 |
s->bi_buf |= (ush)(value) << s->bi_valid;\ |
223 |
s->bi_valid += len;\ |
224 |
}\ |
225 |
} |
226 |
#endif /* DEBUG */ |
227 |
|
228 |
|
229 |
/* the arguments must not have side effects */ |
230 |
|
231 |
/* =========================================================================== |
232 |
* Initialize the various 'constant' tables. |
233 |
*/ |
234 |
local void tr_static_init() |
235 |
{ |
236 |
#if defined(GEN_TREES_H) || !defined(STDC) |
237 |
static int static_init_done = 0; |
238 |
int n; /* iterates over tree elements */ |
239 |
int bits; /* bit counter */ |
240 |
int length; /* length value */ |
241 |
int code; /* code value */ |
242 |
int dist; /* distance index */ |
243 |
ush bl_count[MAX_BITS+1]; |
244 |
/* number of codes at each bit length for an optimal tree */ |
245 |
|
246 |
if (static_init_done) return; |
247 |
|
248 |
/* For some embedded targets, global variables are not initialized: */ |
249 |
#ifdef NO_INIT_GLOBAL_POINTERS |
250 |
static_l_desc.static_tree = static_ltree; |
251 |
static_l_desc.extra_bits = extra_lbits; |
252 |
static_d_desc.static_tree = static_dtree; |
253 |
static_d_desc.extra_bits = extra_dbits; |
254 |
static_bl_desc.extra_bits = extra_blbits; |
255 |
#endif |
256 |
|
257 |
/* Initialize the mapping length (0..255) -> length code (0..28) */ |
258 |
length = 0; |
259 |
for (code = 0; code < LENGTH_CODES-1; code++) { |
260 |
base_length[code] = length; |
261 |
for (n = 0; n < (1<<extra_lbits[code]); n++) { |
262 |
_length_code[length++] = (uch)code; |
263 |
} |
264 |
} |
265 |
Assert (length == 256, "tr_static_init: length != 256"); |
266 |
/* Note that the length 255 (match length 258) can be represented |
267 |
* in two different ways: code 284 + 5 bits or code 285, so we |
268 |
* overwrite length_code[255] to use the best encoding: |
269 |
*/ |
270 |
_length_code[length-1] = (uch)code; |
271 |
|
272 |
/* Initialize the mapping dist (0..32K) -> dist code (0..29) */ |
273 |
dist = 0; |
274 |
for (code = 0 ; code < 16; code++) { |
275 |
base_dist[code] = dist; |
276 |
for (n = 0; n < (1<<extra_dbits[code]); n++) { |
277 |
_dist_code[dist++] = (uch)code; |
278 |
} |
279 |
} |
280 |
Assert (dist == 256, "tr_static_init: dist != 256"); |
281 |
dist >>= 7; /* from now on, all distances are divided by 128 */ |
282 |
for ( ; code < D_CODES; code++) { |
283 |
base_dist[code] = dist << 7; |
284 |
for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) { |
285 |
_dist_code[256 + dist++] = (uch)code; |
286 |
} |
287 |
} |
288 |
Assert (dist == 256, "tr_static_init: 256+dist != 512"); |
289 |
|
290 |
/* Construct the codes of the static literal tree */ |
291 |
for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0; |
292 |
n = 0; |
293 |
while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++; |
294 |
while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++; |
295 |
while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++; |
296 |
while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++; |
297 |
/* Codes 286 and 287 do not exist, but we must include them in the |
298 |
* tree construction to get a canonical Huffman tree (longest code |
299 |
* all ones) |
300 |
*/ |
301 |
gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count); |
302 |
|
303 |
/* The static distance tree is trivial: */ |
304 |
for (n = 0; n < D_CODES; n++) { |
305 |
static_dtree[n].Len = 5; |
306 |
static_dtree[n].Code = bi_reverse((unsigned)n, 5); |
307 |
} |
308 |
static_init_done = 1; |
309 |
|
310 |
# ifdef GEN_TREES_H |
311 |
gen_trees_header(); |
312 |
# endif |
313 |
#endif /* defined(GEN_TREES_H) || !defined(STDC) */ |
314 |
} |
315 |
|
316 |
/* =========================================================================== |
317 |
* Genererate the file trees.h describing the static trees. |
318 |
*/ |
319 |
#ifdef GEN_TREES_H |
320 |
# ifndef DEBUG |
321 |
# include <stdio.h> |
322 |
# endif |
323 |
|
324 |
# define SEPARATOR(i, last, width) \ |
325 |
((i) == (last)? "\n};\n\n" : \ |
326 |
((i) % (width) == (width)-1 ? ",\n" : ", ")) |
327 |
|
328 |
void gen_trees_header() |
329 |
{ |
330 |
FILE *header = fopen("trees.h", "w"); |
331 |
int i; |
332 |
|
333 |
Assert (header != NULL, "Can't open trees.h"); |
334 |
fprintf(header, |
335 |
"/* header created automatically with -DGEN_TREES_H */\n\n"); |
336 |
|
337 |
fprintf(header, "local const ct_data static_ltree[L_CODES+2] = {\n"); |
338 |
for (i = 0; i < L_CODES+2; i++) { |
339 |
fprintf(header, "{{%3u},{%3u}}%s", static_ltree[i].Code, |
340 |
static_ltree[i].Len, SEPARATOR(i, L_CODES+1, 5)); |
341 |
} |
342 |
|
343 |
fprintf(header, "local const ct_data static_dtree[D_CODES] = {\n"); |
344 |
for (i = 0; i < D_CODES; i++) { |
345 |
fprintf(header, "{{%2u},{%2u}}%s", static_dtree[i].Code, |
346 |
static_dtree[i].Len, SEPARATOR(i, D_CODES-1, 5)); |
347 |
} |
348 |
|
349 |
fprintf(header, "const uch ZLIB_INTERNAL _dist_code[DIST_CODE_LEN] = {\n"); |
350 |
for (i = 0; i < DIST_CODE_LEN; i++) { |
351 |
fprintf(header, "%2u%s", _dist_code[i], |
352 |
SEPARATOR(i, DIST_CODE_LEN-1, 20)); |
353 |
} |
354 |
|
355 |
fprintf(header, |
356 |
"const uch ZLIB_INTERNAL _length_code[MAX_MATCH-MIN_MATCH+1]= {\n"); |
357 |
for (i = 0; i < MAX_MATCH-MIN_MATCH+1; i++) { |
358 |
fprintf(header, "%2u%s", _length_code[i], |
359 |
SEPARATOR(i, MAX_MATCH-MIN_MATCH, 20)); |
360 |
} |
361 |
|
362 |
fprintf(header, "local const int base_length[LENGTH_CODES] = {\n"); |
363 |
for (i = 0; i < LENGTH_CODES; i++) { |
364 |
fprintf(header, "%1u%s", base_length[i], |
365 |
SEPARATOR(i, LENGTH_CODES-1, 20)); |
366 |
} |
367 |
|
368 |
fprintf(header, "local const int base_dist[D_CODES] = {\n"); |
369 |
for (i = 0; i < D_CODES; i++) { |
370 |
fprintf(header, "%5u%s", base_dist[i], |
371 |
SEPARATOR(i, D_CODES-1, 10)); |
372 |
} |
373 |
|
374 |
fclose(header); |
375 |
} |
376 |
#endif /* GEN_TREES_H */ |
377 |
|
378 |
/* =========================================================================== |
379 |
* Initialize the tree data structures for a new zlib stream. |
380 |
*/ |
381 |
void ZLIB_INTERNAL _tr_init(s) |
382 |
deflate_state *s; |
383 |
{ |
384 |
tr_static_init(); |
385 |
|
386 |
s->l_desc.dyn_tree = s->dyn_ltree; |
387 |
s->l_desc.stat_desc = &static_l_desc; |
388 |
|
389 |
s->d_desc.dyn_tree = s->dyn_dtree; |
390 |
s->d_desc.stat_desc = &static_d_desc; |
391 |
|
392 |
s->bl_desc.dyn_tree = s->bl_tree; |
393 |
s->bl_desc.stat_desc = &static_bl_desc; |
394 |
|
395 |
s->bi_buf = 0; |
396 |
s->bi_valid = 0; |
397 |
#ifdef DEBUG |
398 |
s->compressed_len = 0L; |
399 |
s->bits_sent = 0L; |
400 |
#endif |
401 |
|
402 |
/* Initialize the first block of the first file: */ |
403 |
init_block(s); |
404 |
} |
405 |
|
406 |
/* =========================================================================== |
407 |
* Initialize a new block. |
408 |
*/ |
409 |
local void init_block(s) |
410 |
deflate_state *s; |
411 |
{ |
412 |
int n; /* iterates over tree elements */ |
413 |
|
414 |
/* Initialize the trees. */ |
415 |
for (n = 0; n < L_CODES; n++) s->dyn_ltree[n].Freq = 0; |
416 |
for (n = 0; n < D_CODES; n++) s->dyn_dtree[n].Freq = 0; |
417 |
for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0; |
418 |
|
419 |
s->dyn_ltree[END_BLOCK].Freq = 1; |
420 |
s->opt_len = s->static_len = 0L; |
421 |
s->last_lit = s->matches = 0; |
422 |
} |
423 |
|
424 |
#define SMALLEST 1 |
425 |
/* Index within the heap array of least frequent node in the Huffman tree */ |
426 |
|
427 |
|
428 |
/* =========================================================================== |
429 |
* Remove the smallest element from the heap and recreate the heap with |
430 |
* one less element. Updates heap and heap_len. |
431 |
*/ |
432 |
#define pqremove(s, tree, top) \ |
433 |
{\ |
434 |
top = s->heap[SMALLEST]; \ |
435 |
s->heap[SMALLEST] = s->heap[s->heap_len--]; \ |
436 |
pqdownheap(s, tree, SMALLEST); \ |
437 |
} |
438 |
|
439 |
/* =========================================================================== |
440 |
* Compares to subtrees, using the tree depth as tie breaker when |
441 |
* the subtrees have equal frequency. This minimizes the worst case length. |
442 |
*/ |
443 |
#define smaller(tree, n, m, depth) \ |
444 |
(tree[n].Freq < tree[m].Freq || \ |
445 |
(tree[n].Freq == tree[m].Freq && depth[n] <= depth[m])) |
446 |
|
447 |
/* =========================================================================== |
448 |
* Restore the heap property by moving down the tree starting at node k, |
449 |
* exchanging a node with the smallest of its two sons if necessary, stopping |
450 |
* when the heap property is re-established (each father smaller than its |
451 |
* two sons). |
452 |
*/ |
453 |
local void pqdownheap(s, tree, k) |
454 |
deflate_state *s; |
455 |
ct_data *tree; /* the tree to restore */ |
456 |
int k; /* node to move down */ |
457 |
{ |
458 |
int v = s->heap[k]; |
459 |
int j = k << 1; /* left son of k */ |
460 |
while (j <= s->heap_len) { |
461 |
/* Set j to the smallest of the two sons: */ |
462 |
if (j < s->heap_len && |
463 |
smaller(tree, s->heap[j+1], s->heap[j], s->depth)) { |
464 |
j++; |
465 |
} |
466 |
/* Exit if v is smaller than both sons */ |
467 |
if (smaller(tree, v, s->heap[j], s->depth)) break; |
468 |
|
469 |
/* Exchange v with the smallest son */ |
470 |
s->heap[k] = s->heap[j]; k = j; |
471 |
|
472 |
/* And continue down the tree, setting j to the left son of k */ |
473 |
j <<= 1; |
474 |
} |
475 |
s->heap[k] = v; |
476 |
} |
477 |
|
478 |
/* =========================================================================== |
479 |
* Compute the optimal bit lengths for a tree and update the total bit length |
480 |
* for the current block. |
481 |
* IN assertion: the fields freq and dad are set, heap[heap_max] and |
482 |
* above are the tree nodes sorted by increasing frequency. |
483 |
* OUT assertions: the field len is set to the optimal bit length, the |
484 |
* array bl_count contains the frequencies for each bit length. |
485 |
* The length opt_len is updated; static_len is also updated if stree is |
486 |
* not null. |
487 |
*/ |
488 |
local void gen_bitlen(s, desc) |
489 |
deflate_state *s; |
490 |
tree_desc *desc; /* the tree descriptor */ |
491 |
{ |
492 |
ct_data *tree = desc->dyn_tree; |
493 |
int max_code = desc->max_code; |
494 |
const ct_data *stree = desc->stat_desc->static_tree; |
495 |
const intf *extra = desc->stat_desc->extra_bits; |
496 |
int base = desc->stat_desc->extra_base; |
497 |
int max_length = desc->stat_desc->max_length; |
498 |
int h; /* heap index */ |
499 |
int n, m; /* iterate over the tree elements */ |
500 |
int bits; /* bit length */ |
501 |
int xbits; /* extra bits */ |
502 |
ush f; /* frequency */ |
503 |
int overflow = 0; /* number of elements with bit length too large */ |
504 |
|
505 |
for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0; |
506 |
|
507 |
/* In a first pass, compute the optimal bit lengths (which may |
508 |
* overflow in the case of the bit length tree). |
509 |
*/ |
510 |
tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */ |
511 |
|
512 |
for (h = s->heap_max+1; h < HEAP_SIZE; h++) { |
513 |
n = s->heap[h]; |
514 |
bits = tree[tree[n].Dad].Len + 1; |
515 |
if (bits > max_length) bits = max_length, overflow++; |
516 |
tree[n].Len = (ush)bits; |
517 |
/* We overwrite tree[n].Dad which is no longer needed */ |
518 |
|
519 |
if (n > max_code) continue; /* not a leaf node */ |
520 |
|
521 |
s->bl_count[bits]++; |
522 |
xbits = 0; |
523 |
if (n >= base) xbits = extra[n-base]; |
524 |
f = tree[n].Freq; |
525 |
s->opt_len += (ulg)f * (bits + xbits); |
526 |
if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits); |
527 |
} |
528 |
if (overflow == 0) return; |
529 |
|
530 |
Trace((stderr,"\nbit length overflow\n")); |
531 |
/* This happens for example on obj2 and pic of the Calgary corpus */ |
532 |
|
533 |
/* Find the first bit length which could increase: */ |
534 |
do { |
535 |
bits = max_length-1; |
536 |
while (s->bl_count[bits] == 0) bits--; |
537 |
s->bl_count[bits]--; /* move one leaf down the tree */ |
538 |
s->bl_count[bits+1] += 2; /* move one overflow item as its brother */ |
539 |
s->bl_count[max_length]--; |
540 |
/* The brother of the overflow item also moves one step up, |
541 |
* but this does not affect bl_count[max_length] |
542 |
*/ |
543 |
overflow -= 2; |
544 |
} while (overflow > 0); |
545 |
|
546 |
/* Now recompute all bit lengths, scanning in increasing frequency. |
547 |
* h is still equal to HEAP_SIZE. (It is simpler to reconstruct all |
548 |
* lengths instead of fixing only the wrong ones. This idea is taken |
549 |
* from 'ar' written by Haruhiko Okumura.) |
550 |
*/ |
551 |
for (bits = max_length; bits != 0; bits--) { |
552 |
n = s->bl_count[bits]; |
553 |
while (n != 0) { |
554 |
m = s->heap[--h]; |
555 |
if (m > max_code) continue; |
556 |
if ((unsigned) tree[m].Len != (unsigned) bits) { |
557 |
Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits)); |
558 |
s->opt_len += ((long)bits - (long)tree[m].Len) |
559 |
*(long)tree[m].Freq; |
560 |
tree[m].Len = (ush)bits; |
561 |
} |
562 |
n--; |
563 |
} |
564 |
} |
565 |
} |
566 |
|
567 |
/* =========================================================================== |
568 |
* Generate the codes for a given tree and bit counts (which need not be |
569 |
* optimal). |
570 |
* IN assertion: the array bl_count contains the bit length statistics for |
571 |
* the given tree and the field len is set for all tree elements. |
572 |
* OUT assertion: the field code is set for all tree elements of non |
573 |
* zero code length. |
574 |
*/ |
575 |
local void gen_codes (tree, max_code, bl_count) |
576 |
ct_data *tree; /* the tree to decorate */ |
577 |
int max_code; /* largest code with non zero frequency */ |
578 |
ushf *bl_count; /* number of codes at each bit length */ |
579 |
{ |
580 |
ush next_code[MAX_BITS+1]; /* next code value for each bit length */ |
581 |
ush code = 0; /* running code value */ |
582 |
int bits; /* bit index */ |
583 |
int n; /* code index */ |
584 |
|
585 |
/* The distribution counts are first used to generate the code values |
586 |
* without bit reversal. |
587 |
*/ |
588 |
for (bits = 1; bits <= MAX_BITS; bits++) { |
589 |
next_code[bits] = code = (code + bl_count[bits-1]) << 1; |
590 |
} |
591 |
/* Check that the bit counts in bl_count are consistent. The last code |
592 |
* must be all ones. |
593 |
*/ |
594 |
Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1, |
595 |
"inconsistent bit counts"); |
596 |
Tracev((stderr,"\ngen_codes: max_code %d ", max_code)); |
597 |
|
598 |
for (n = 0; n <= max_code; n++) { |
599 |
int len = tree[n].Len; |
600 |
if (len == 0) continue; |
601 |
/* Now reverse the bits */ |
602 |
tree[n].Code = bi_reverse(next_code[len]++, len); |
603 |
|
604 |
Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ", |
605 |
n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1)); |
606 |
} |
607 |
} |
608 |
|
609 |
/* =========================================================================== |
610 |
* Construct one Huffman tree and assigns the code bit strings and lengths. |
611 |
* Update the total bit length for the current block. |
612 |
* IN assertion: the field freq is set for all tree elements. |
613 |
* OUT assertions: the fields len and code are set to the optimal bit length |
614 |
* and corresponding code. The length opt_len is updated; static_len is |
615 |
* also updated if stree is not null. The field max_code is set. |
616 |
*/ |
617 |
local void build_tree(s, desc) |
618 |
deflate_state *s; |
619 |
tree_desc *desc; /* the tree descriptor */ |
620 |
{ |
621 |
ct_data *tree = desc->dyn_tree; |
622 |
const ct_data *stree = desc->stat_desc->static_tree; |
623 |
int elems = desc->stat_desc->elems; |
624 |
int n, m; /* iterate over heap elements */ |
625 |
int max_code = -1; /* largest code with non zero frequency */ |
626 |
int node; /* new node being created */ |
627 |
|
628 |
/* Construct the initial heap, with least frequent element in |
629 |
* heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1]. |
630 |
* heap[0] is not used. |
631 |
*/ |
632 |
s->heap_len = 0, s->heap_max = HEAP_SIZE; |
633 |
|
634 |
for (n = 0; n < elems; n++) { |
635 |
if (tree[n].Freq != 0) { |
636 |
s->heap[++(s->heap_len)] = max_code = n; |
637 |
s->depth[n] = 0; |
638 |
} else { |
639 |
tree[n].Len = 0; |
640 |
} |
641 |
} |
642 |
|
643 |
/* The pkzip format requires that at least one distance code exists, |
644 |
* and that at least one bit should be sent even if there is only one |
645 |
* possible code. So to avoid special checks later on we force at least |
646 |
* two codes of non zero frequency. |
647 |
*/ |
648 |
while (s->heap_len < 2) { |
649 |
node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0); |
650 |
tree[node].Freq = 1; |
651 |
s->depth[node] = 0; |
652 |
s->opt_len--; if (stree) s->static_len -= stree[node].Len; |
653 |
/* node is 0 or 1 so it does not have extra bits */ |
654 |
} |
655 |
desc->max_code = max_code; |
656 |
|
657 |
/* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree, |
658 |
* establish sub-heaps of increasing lengths: |
659 |
*/ |
660 |
for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n); |
661 |
|
662 |
/* Construct the Huffman tree by repeatedly combining the least two |
663 |
* frequent nodes. |
664 |
*/ |
665 |
node = elems; /* next internal node of the tree */ |
666 |
do { |
667 |
pqremove(s, tree, n); /* n = node of least frequency */ |
668 |
m = s->heap[SMALLEST]; /* m = node of next least frequency */ |
669 |
|
670 |
s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */ |
671 |
s->heap[--(s->heap_max)] = m; |
672 |
|
673 |
/* Create a new node father of n and m */ |
674 |
tree[node].Freq = tree[n].Freq + tree[m].Freq; |
675 |
s->depth[node] = (uch)((s->depth[n] >= s->depth[m] ? |
676 |
s->depth[n] : s->depth[m]) + 1); |
677 |
tree[n].Dad = tree[m].Dad = (ush)node; |
678 |
#ifdef DUMP_BL_TREE |
679 |
if (tree == s->bl_tree) { |
680 |
fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)", |
681 |
node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq); |
682 |
} |
683 |
#endif |
684 |
/* and insert the new node in the heap */ |
685 |
s->heap[SMALLEST] = node++; |
686 |
pqdownheap(s, tree, SMALLEST); |
687 |
|
688 |
} while (s->heap_len >= 2); |
689 |
|
690 |
s->heap[--(s->heap_max)] = s->heap[SMALLEST]; |
691 |
|
692 |
/* At this point, the fields freq and dad are set. We can now |
693 |
* generate the bit lengths. |
694 |
*/ |
695 |
gen_bitlen(s, (tree_desc *)desc); |
696 |
|
697 |
/* The field len is now set, we can generate the bit codes */ |
698 |
gen_codes ((ct_data *)tree, max_code, s->bl_count); |
699 |
} |
700 |
|
701 |
/* =========================================================================== |
702 |
* Scan a literal or distance tree to determine the frequencies of the codes |
703 |
* in the bit length tree. |
704 |
*/ |
705 |
local void scan_tree (s, tree, max_code) |
706 |
deflate_state *s; |
707 |
ct_data *tree; /* the tree to be scanned */ |
708 |
int max_code; /* and its largest code of non zero frequency */ |
709 |
{ |
710 |
int n; /* iterates over all tree elements */ |
711 |
int prevlen = -1; /* last emitted length */ |
712 |
int curlen; /* length of current code */ |
713 |
int nextlen = tree[0].Len; /* length of next code */ |
714 |
int count = 0; /* repeat count of the current code */ |
715 |
int max_count = 7; /* max repeat count */ |
716 |
int min_count = 4; /* min repeat count */ |
717 |
|
718 |
if (nextlen == 0) max_count = 138, min_count = 3; |
719 |
tree[max_code+1].Len = (ush)0xffff; /* guard */ |
720 |
|
721 |
for (n = 0; n <= max_code; n++) { |
722 |
curlen = nextlen; nextlen = tree[n+1].Len; |
723 |
if (++count < max_count && curlen == nextlen) { |
724 |
continue; |
725 |
} else if (count < min_count) { |
726 |
s->bl_tree[curlen].Freq += count; |
727 |
} else if (curlen != 0) { |
728 |
if (curlen != prevlen) s->bl_tree[curlen].Freq++; |
729 |
s->bl_tree[REP_3_6].Freq++; |
730 |
} else if (count <= 10) { |
731 |
s->bl_tree[REPZ_3_10].Freq++; |
732 |
} else { |
733 |
s->bl_tree[REPZ_11_138].Freq++; |
734 |
} |
735 |
count = 0; prevlen = curlen; |
736 |
if (nextlen == 0) { |
737 |
max_count = 138, min_count = 3; |
738 |
} else if (curlen == nextlen) { |
739 |
max_count = 6, min_count = 3; |
740 |
} else { |
741 |
max_count = 7, min_count = 4; |
742 |
} |
743 |
} |
744 |
} |
745 |
|
746 |
/* =========================================================================== |
747 |
* Send a literal or distance tree in compressed form, using the codes in |
748 |
* bl_tree. |
749 |
*/ |
750 |
local void send_tree (s, tree, max_code) |
751 |
deflate_state *s; |
752 |
ct_data *tree; /* the tree to be scanned */ |
753 |
int max_code; /* and its largest code of non zero frequency */ |
754 |
{ |
755 |
int n; /* iterates over all tree elements */ |
756 |
int prevlen = -1; /* last emitted length */ |
757 |
int curlen; /* length of current code */ |
758 |
int nextlen = tree[0].Len; /* length of next code */ |
759 |
int count = 0; /* repeat count of the current code */ |
760 |
int max_count = 7; /* max repeat count */ |
761 |
int min_count = 4; /* min repeat count */ |
762 |
|
763 |
/* tree[max_code+1].Len = -1; */ /* guard already set */ |
764 |
if (nextlen == 0) max_count = 138, min_count = 3; |
765 |
|
766 |
for (n = 0; n <= max_code; n++) { |
767 |
curlen = nextlen; nextlen = tree[n+1].Len; |
768 |
if (++count < max_count && curlen == nextlen) { |
769 |
continue; |
770 |
} else if (count < min_count) { |
771 |
do { send_code(s, curlen, s->bl_tree); } while (--count != 0); |
772 |
|
773 |
} else if (curlen != 0) { |
774 |
if (curlen != prevlen) { |
775 |
send_code(s, curlen, s->bl_tree); count--; |
776 |
} |
777 |
Assert(count >= 3 && count <= 6, " 3_6?"); |
778 |
send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2); |
779 |
|
780 |
} else if (count <= 10) { |
781 |
send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3); |
782 |
|
783 |
} else { |
784 |
send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7); |
785 |
} |
786 |
count = 0; prevlen = curlen; |
787 |
if (nextlen == 0) { |
788 |
max_count = 138, min_count = 3; |
789 |
} else if (curlen == nextlen) { |
790 |
max_count = 6, min_count = 3; |
791 |
} else { |
792 |
max_count = 7, min_count = 4; |
793 |
} |
794 |
} |
795 |
} |
796 |
|
797 |
/* =========================================================================== |
798 |
* Construct the Huffman tree for the bit lengths and return the index in |
799 |
* bl_order of the last bit length code to send. |
800 |
*/ |
801 |
local int build_bl_tree(s) |
802 |
deflate_state *s; |
803 |
{ |
804 |
int max_blindex; /* index of last bit length code of non zero freq */ |
805 |
|
806 |
/* Determine the bit length frequencies for literal and distance trees */ |
807 |
scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code); |
808 |
scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code); |
809 |
|
810 |
/* Build the bit length tree: */ |
811 |
build_tree(s, (tree_desc *)(&(s->bl_desc))); |
812 |
/* opt_len now includes the length of the tree representations, except |
813 |
* the lengths of the bit lengths codes and the 5+5+4 bits for the counts. |
814 |
*/ |
815 |
|
816 |
/* Determine the number of bit length codes to send. The pkzip format |
817 |
* requires that at least 4 bit length codes be sent. (appnote.txt says |
818 |
* 3 but the actual value used is 4.) |
819 |
*/ |
820 |
for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) { |
821 |
if (s->bl_tree[bl_order[max_blindex]].Len != 0) break; |
822 |
} |
823 |
/* Update opt_len to include the bit length tree and counts */ |
824 |
s->opt_len += 3*(max_blindex+1) + 5+5+4; |
825 |
Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld", |
826 |
s->opt_len, s->static_len)); |
827 |
|
828 |
return max_blindex; |
829 |
} |
830 |
|
831 |
/* =========================================================================== |
832 |
* Send the header for a block using dynamic Huffman trees: the counts, the |
833 |
* lengths of the bit length codes, the literal tree and the distance tree. |
834 |
* IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4. |
835 |
*/ |
836 |
local void send_all_trees(s, lcodes, dcodes, blcodes) |
837 |
deflate_state *s; |
838 |
int lcodes, dcodes, blcodes; /* number of codes for each tree */ |
839 |
{ |
840 |
int rank; /* index in bl_order */ |
841 |
|
842 |
Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes"); |
843 |
Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES, |
844 |
"too many codes"); |
845 |
Tracev((stderr, "\nbl counts: ")); |
846 |
send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */ |
847 |
send_bits(s, dcodes-1, 5); |
848 |
send_bits(s, blcodes-4, 4); /* not -3 as stated in appnote.txt */ |
849 |
for (rank = 0; rank < blcodes; rank++) { |
850 |
Tracev((stderr, "\nbl code %2d ", bl_order[rank])); |
851 |
send_bits(s, s->bl_tree[bl_order[rank]].Len, 3); |
852 |
} |
853 |
Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent)); |
854 |
|
855 |
send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */ |
856 |
Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent)); |
857 |
|
858 |
send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */ |
859 |
Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent)); |
860 |
} |
861 |
|
862 |
/* =========================================================================== |
863 |
* Send a stored block |
864 |
*/ |
865 |
void ZLIB_INTERNAL _tr_stored_block(s, buf, stored_len, last) |
866 |
deflate_state *s; |
867 |
charf *buf; /* input block */ |
868 |
ulg stored_len; /* length of input block */ |
869 |
int last; /* one if this is the last block for a file */ |
870 |
{ |
871 |
send_bits(s, (STORED_BLOCK<<1)+last, 3); /* send block type */ |
872 |
#ifdef DEBUG |
873 |
s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L; |
874 |
s->compressed_len += (stored_len + 4) << 3; |
875 |
#endif |
876 |
copy_block(s, buf, (unsigned)stored_len, 1); /* with header */ |
877 |
} |
878 |
|
879 |
/* =========================================================================== |
880 |
* Flush the bits in the bit buffer to pending output (leaves at most 7 bits) |
881 |
*/ |
882 |
void ZLIB_INTERNAL _tr_flush_bits(s) |
883 |
deflate_state *s; |
884 |
{ |
885 |
bi_flush(s); |
886 |
} |
887 |
|
888 |
/* =========================================================================== |
889 |
* Send one empty static block to give enough lookahead for inflate. |
890 |
* This takes 10 bits, of which 7 may remain in the bit buffer. |
891 |
*/ |
892 |
void ZLIB_INTERNAL _tr_align(s) |
893 |
deflate_state *s; |
894 |
{ |
895 |
send_bits(s, STATIC_TREES<<1, 3); |
896 |
send_code(s, END_BLOCK, static_ltree); |
897 |
#ifdef DEBUG |
898 |
s->compressed_len += 10L; /* 3 for block type, 7 for EOB */ |
899 |
#endif |
900 |
bi_flush(s); |
901 |
} |
902 |
|
903 |
/* =========================================================================== |
904 |
* Determine the best encoding for the current block: dynamic trees, static |
905 |
* trees or store, and output the encoded block to the zip file. |
906 |
*/ |
907 |
void ZLIB_INTERNAL _tr_flush_block(s, buf, stored_len, last) |
908 |
deflate_state *s; |
909 |
charf *buf; /* input block, or NULL if too old */ |
910 |
ulg stored_len; /* length of input block */ |
911 |
int last; /* one if this is the last block for a file */ |
912 |
{ |
913 |
ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */ |
914 |
int max_blindex = 0; /* index of last bit length code of non zero freq */ |
915 |
|
916 |
/* Build the Huffman trees unless a stored block is forced */ |
917 |
if (s->level > 0) { |
918 |
|
919 |
/* Check if the file is binary or text */ |
920 |
if (s->strm->data_type == Z_UNKNOWN) |
921 |
s->strm->data_type = detect_data_type(s); |
922 |
|
923 |
/* Construct the literal and distance trees */ |
924 |
build_tree(s, (tree_desc *)(&(s->l_desc))); |
925 |
Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len, |
926 |
s->static_len)); |
927 |
|
928 |
build_tree(s, (tree_desc *)(&(s->d_desc))); |
929 |
Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len, |
930 |
s->static_len)); |
931 |
/* At this point, opt_len and static_len are the total bit lengths of |
932 |
* the compressed block data, excluding the tree representations. |
933 |
*/ |
934 |
|
935 |
/* Build the bit length tree for the above two trees, and get the index |
936 |
* in bl_order of the last bit length code to send. |
937 |
*/ |
938 |
max_blindex = build_bl_tree(s); |
939 |
|
940 |
/* Determine the best encoding. Compute the block lengths in bytes. */ |
941 |
opt_lenb = (s->opt_len+3+7)>>3; |
942 |
static_lenb = (s->static_len+3+7)>>3; |
943 |
|
944 |
Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ", |
945 |
opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len, |
946 |
s->last_lit)); |
947 |
|
948 |
if (static_lenb <= opt_lenb) opt_lenb = static_lenb; |
949 |
|
950 |
} else { |
951 |
Assert(buf != (char*)0, "lost buf"); |
952 |
opt_lenb = static_lenb = stored_len + 5; /* force a stored block */ |
953 |
} |
954 |
|
955 |
#ifdef FORCE_STORED |
956 |
if (buf != (char*)0) { /* force stored block */ |
957 |
#else |
958 |
if (stored_len+4 <= opt_lenb && buf != (char*)0) { |
959 |
/* 4: two words for the lengths */ |
960 |
#endif |
961 |
/* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE. |
962 |
* Otherwise we can't have processed more than WSIZE input bytes since |
963 |
* the last block flush, because compression would have been |
964 |
* successful. If LIT_BUFSIZE <= WSIZE, it is never too late to |
965 |
* transform a block into a stored block. |
966 |
*/ |
967 |
_tr_stored_block(s, buf, stored_len, last); |
968 |
|
969 |
#ifdef FORCE_STATIC |
970 |
} else if (static_lenb >= 0) { /* force static trees */ |
971 |
#else |
972 |
} else if (s->strategy == Z_FIXED || static_lenb == opt_lenb) { |
973 |
#endif |
974 |
send_bits(s, (STATIC_TREES<<1)+last, 3); |
975 |
compress_block(s, (const ct_data *)static_ltree, |
976 |
(const ct_data *)static_dtree); |
977 |
#ifdef DEBUG |
978 |
s->compressed_len += 3 + s->static_len; |
979 |
#endif |
980 |
} else { |
981 |
send_bits(s, (DYN_TREES<<1)+last, 3); |
982 |
send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1, |
983 |
max_blindex+1); |
984 |
compress_block(s, (const ct_data *)s->dyn_ltree, |
985 |
(const ct_data *)s->dyn_dtree); |
986 |
#ifdef DEBUG |
987 |
s->compressed_len += 3 + s->opt_len; |
988 |
#endif |
989 |
} |
990 |
Assert (s->compressed_len == s->bits_sent, "bad compressed size"); |
991 |
/* The above check is made mod 2^32, for files larger than 512 MB |
992 |
* and uLong implemented on 32 bits. |
993 |
*/ |
994 |
init_block(s); |
995 |
|
996 |
if (last) { |
997 |
bi_windup(s); |
998 |
#ifdef DEBUG |
999 |
s->compressed_len += 7; /* align on byte boundary */ |
1000 |
#endif |
1001 |
} |
1002 |
Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3, |
1003 |
s->compressed_len-7*last)); |
1004 |
} |
1005 |
|
1006 |
/* =========================================================================== |
1007 |
* Save the match info and tally the frequency counts. Return true if |
1008 |
* the current block must be flushed. |
1009 |
*/ |
1010 |
int ZLIB_INTERNAL _tr_tally (s, dist, lc) |
1011 |
deflate_state *s; |
1012 |
unsigned dist; /* distance of matched string */ |
1013 |
unsigned lc; /* match length-MIN_MATCH or unmatched char (if dist==0) */ |
1014 |
{ |
1015 |
s->d_buf[s->last_lit] = (ush)dist; |
1016 |
s->l_buf[s->last_lit++] = (uch)lc; |
1017 |
if (dist == 0) { |
1018 |
/* lc is the unmatched char */ |
1019 |
s->dyn_ltree[lc].Freq++; |
1020 |
} else { |
1021 |
s->matches++; |
1022 |
/* Here, lc is the match length - MIN_MATCH */ |
1023 |
dist--; /* dist = match distance - 1 */ |
1024 |
Assert((ush)dist < (ush)MAX_DIST(s) && |
1025 |
(ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) && |
1026 |
(ush)d_code(dist) < (ush)D_CODES, "_tr_tally: bad match"); |
1027 |
|
1028 |
s->dyn_ltree[_length_code[lc]+LITERALS+1].Freq++; |
1029 |
s->dyn_dtree[d_code(dist)].Freq++; |
1030 |
} |
1031 |
|
1032 |
#ifdef TRUNCATE_BLOCK |
1033 |
/* Try to guess if it is profitable to stop the current block here */ |
1034 |
if ((s->last_lit & 0x1fff) == 0 && s->level > 2) { |
1035 |
/* Compute an upper bound for the compressed length */ |
1036 |
ulg out_length = (ulg)s->last_lit*8L; |
1037 |
ulg in_length = (ulg)((long)s->strstart - s->block_start); |
1038 |
int dcode; |
1039 |
for (dcode = 0; dcode < D_CODES; dcode++) { |
1040 |
out_length += (ulg)s->dyn_dtree[dcode].Freq * |
1041 |
(5L+extra_dbits[dcode]); |
1042 |
} |
1043 |
out_length >>= 3; |
1044 |
Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ", |
1045 |
s->last_lit, in_length, out_length, |
1046 |
100L - out_length*100L/in_length)); |
1047 |
if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1; |
1048 |
} |
1049 |
#endif |
1050 |
return (s->last_lit == s->lit_bufsize-1); |
1051 |
/* We avoid equality with lit_bufsize because of wraparound at 64K |
1052 |
* on 16 bit machines and because stored blocks are restricted to |
1053 |
* 64K-1 bytes. |
1054 |
*/ |
1055 |
} |
1056 |
|
1057 |
/* =========================================================================== |
1058 |
* Send the block data compressed using the given Huffman trees |
1059 |
*/ |
1060 |
local void compress_block(s, ltree, dtree) |
1061 |
deflate_state *s; |
1062 |
const ct_data *ltree; /* literal tree */ |
1063 |
const ct_data *dtree; /* distance tree */ |
1064 |
{ |
1065 |
unsigned dist; /* distance of matched string */ |
1066 |
int lc; /* match length or unmatched char (if dist == 0) */ |
1067 |
unsigned lx = 0; /* running index in l_buf */ |
1068 |
unsigned code; /* the code to send */ |
1069 |
int extra; /* number of extra bits to send */ |
1070 |
|
1071 |
if (s->last_lit != 0) do { |
1072 |
dist = s->d_buf[lx]; |
1073 |
lc = s->l_buf[lx++]; |
1074 |
if (dist == 0) { |
1075 |
send_code(s, lc, ltree); /* send a literal byte */ |
1076 |
Tracecv(isgraph(lc), (stderr," '%c' ", lc)); |
1077 |
} else { |
1078 |
/* Here, lc is the match length - MIN_MATCH */ |
1079 |
code = _length_code[lc]; |
1080 |
send_code(s, code+LITERALS+1, ltree); /* send the length code */ |
1081 |
extra = extra_lbits[code]; |
1082 |
if (extra != 0) { |
1083 |
lc -= base_length[code]; |
1084 |
send_bits(s, lc, extra); /* send the extra length bits */ |
1085 |
} |
1086 |
dist--; /* dist is now the match distance - 1 */ |
1087 |
code = d_code(dist); |
1088 |
Assert (code < D_CODES, "bad d_code"); |
1089 |
|
1090 |
send_code(s, code, dtree); /* send the distance code */ |
1091 |
extra = extra_dbits[code]; |
1092 |
if (extra != 0) { |
1093 |
dist -= base_dist[code]; |
1094 |
send_bits(s, dist, extra); /* send the extra distance bits */ |
1095 |
} |
1096 |
} /* literal or match pair ? */ |
1097 |
|
1098 |
/* Check that the overlay between pending_buf and d_buf+l_buf is ok: */ |
1099 |
Assert((uInt)(s->pending) < s->lit_bufsize + 2*lx, |
1100 |
"pendingBuf overflow"); |
1101 |
|
1102 |
} while (lx < s->last_lit); |
1103 |
|
1104 |
send_code(s, END_BLOCK, ltree); |
1105 |
} |
1106 |
|
1107 |
/* =========================================================================== |
1108 |
* Check if the data type is TEXT or BINARY, using the following algorithm: |
1109 |
* - TEXT if the two conditions below are satisfied: |
1110 |
* a) There are no non-portable control characters belonging to the |
1111 |
* "black list" (0..6, 14..25, 28..31). |
1112 |
* b) There is at least one printable character belonging to the |
1113 |
* "white list" (9 {TAB}, 10 {LF}, 13 {CR}, 32..255). |
1114 |
* - BINARY otherwise. |
1115 |
* - The following partially-portable control characters form a |
1116 |
* "gray list" that is ignored in this detection algorithm: |
1117 |
* (7 {BEL}, 8 {BS}, 11 {VT}, 12 {FF}, 26 {SUB}, 27 {ESC}). |
1118 |
* IN assertion: the fields Freq of dyn_ltree are set. |
1119 |
*/ |
1120 |
local int detect_data_type(s) |
1121 |
deflate_state *s; |
1122 |
{ |
1123 |
/* black_mask is the bit mask of black-listed bytes |
1124 |
* set bits 0..6, 14..25, and 28..31 |
1125 |
* 0xf3ffc07f = binary 11110011111111111100000001111111 |
1126 |
*/ |
1127 |
unsigned long black_mask = 0xf3ffc07fUL; |
1128 |
int n; |
1129 |
|
1130 |
/* Check for non-textual ("black-listed") bytes. */ |
1131 |
for (n = 0; n <= 31; n++, black_mask >>= 1) |
1132 |
if ((black_mask & 1) && (s->dyn_ltree[n].Freq != 0)) |
1133 |
return Z_BINARY; |
1134 |
|
1135 |
/* Check for textual ("white-listed") bytes. */ |
1136 |
if (s->dyn_ltree[9].Freq != 0 || s->dyn_ltree[10].Freq != 0 |
1137 |
|| s->dyn_ltree[13].Freq != 0) |
1138 |
return Z_TEXT; |
1139 |
for (n = 32; n < LITERALS; n++) |
1140 |
if (s->dyn_ltree[n].Freq != 0) |
1141 |
return Z_TEXT; |
1142 |
|
1143 |
/* There are no "black-listed" or "white-listed" bytes: |
1144 |
* this stream either is empty or has tolerated ("gray-listed") bytes only. |
1145 |
*/ |
1146 |
return Z_BINARY; |
1147 |
} |
1148 |
|
1149 |
/* =========================================================================== |
1150 |
* Reverse the first len bits of a code, using straightforward code (a faster |
1151 |
* method would use a table) |
1152 |
* IN assertion: 1 <= len <= 15 |
1153 |
*/ |
1154 |
local unsigned bi_reverse(code, len) |
1155 |
unsigned code; /* the value to invert */ |
1156 |
int len; /* its bit length */ |
1157 |
{ |
1158 |
register unsigned res = 0; |
1159 |
do { |
1160 |
res |= code & 1; |
1161 |
code >>= 1, res <<= 1; |
1162 |
} while (--len > 0); |
1163 |
return res >> 1; |
1164 |
} |
1165 |
|
1166 |
/* =========================================================================== |
1167 |
* Flush the bit buffer, keeping at most 7 bits in it. |
1168 |
*/ |
1169 |
local void bi_flush(s) |
1170 |
deflate_state *s; |
1171 |
{ |
1172 |
if (s->bi_valid == 16) { |
1173 |
put_short(s, s->bi_buf); |
1174 |
s->bi_buf = 0; |
1175 |
s->bi_valid = 0; |
1176 |
} else if (s->bi_valid >= 8) { |
1177 |
put_byte(s, (Byte)s->bi_buf); |
1178 |
s->bi_buf >>= 8; |
1179 |
s->bi_valid -= 8; |
1180 |
} |
1181 |
} |
1182 |
|
1183 |
/* =========================================================================== |
1184 |
* Flush the bit buffer and align the output on a byte boundary |
1185 |
*/ |
1186 |
local void bi_windup(s) |
1187 |
deflate_state *s; |
1188 |
{ |
1189 |
if (s->bi_valid > 8) { |
1190 |
put_short(s, s->bi_buf); |
1191 |
} else if (s->bi_valid > 0) { |
1192 |
put_byte(s, (Byte)s->bi_buf); |
1193 |
} |
1194 |
s->bi_buf = 0; |
1195 |
s->bi_valid = 0; |
1196 |
#ifdef DEBUG |
1197 |
s->bits_sent = (s->bits_sent+7) & ~7; |
1198 |
#endif |
1199 |
} |
1200 |
|
1201 |
/* =========================================================================== |
1202 |
* Copy a stored block, storing first the length and its |
1203 |
* one's complement if requested. |
1204 |
*/ |
1205 |
local void copy_block(s, buf, len, header) |
1206 |
deflate_state *s; |
1207 |
charf *buf; /* the input data */ |
1208 |
unsigned len; /* its length */ |
1209 |
int header; /* true if block header must be written */ |
1210 |
{ |
1211 |
bi_windup(s); /* align on byte boundary */ |
1212 |
|
1213 |
if (header) { |
1214 |
put_short(s, (ush)len); |
1215 |
put_short(s, (ush)~len); |
1216 |
#ifdef DEBUG |
1217 |
s->bits_sent += 2*16; |
1218 |
#endif |
1219 |
} |
1220 |
#ifdef DEBUG |
1221 |
s->bits_sent += (ulg)len<<3; |
1222 |
#endif |
1223 |
while (len--) { |
1224 |
put_byte(s, *buf++); |
1225 |
} |
1226 |
} |