1 |
/* infcover.c -- test zlib's inflate routines with full code coverage |
2 |
* Copyright (C) 2011 Mark Adler |
3 |
* For conditions of distribution and use, see copyright notice in zlib.h |
4 |
*/ |
5 |
|
6 |
/* to use, do: ./configure --cover && make cover */ |
7 |
|
8 |
#include <stdio.h> |
9 |
#include <stdlib.h> |
10 |
#include <string.h> |
11 |
#include <assert.h> |
12 |
#include "zlib.h" |
13 |
|
14 |
/* get definition of internal structure so we can mess with it (see pull()), |
15 |
and so we can call inflate_trees() (see cover5()) */ |
16 |
#define ZLIB_INTERNAL |
17 |
#include "inftrees.h" |
18 |
#include "inflate.h" |
19 |
|
20 |
#define local static |
21 |
|
22 |
/* -- memory tracking routines -- */ |
23 |
|
24 |
/* |
25 |
These memory tracking routines are provided to zlib and track all of zlib's |
26 |
allocations and deallocations, check for LIFO operations, keep a current |
27 |
and high water mark of total bytes requested, optionally set a limit on the |
28 |
total memory that can be allocated, and when done check for memory leaks. |
29 |
|
30 |
They are used as follows: |
31 |
|
32 |
z_stream strm; |
33 |
mem_setup(&strm) initializes the memory tracking and sets the |
34 |
zalloc, zfree, and opaque members of strm to use |
35 |
memory tracking for all zlib operations on strm |
36 |
mem_limit(&strm, limit) sets a limit on the total bytes requested -- a |
37 |
request that exceeds this limit will result in an |
38 |
allocation failure (returns NULL) -- setting the |
39 |
limit to zero means no limit, which is the default |
40 |
after mem_setup() |
41 |
mem_used(&strm, "msg") prints to stderr "msg" and the total bytes used |
42 |
mem_high(&strm, "msg") prints to stderr "msg" and the high water mark |
43 |
mem_done(&strm, "msg") ends memory tracking, releases all allocations |
44 |
for the tracking as well as leaked zlib blocks, if |
45 |
any. If there was anything unusual, such as leaked |
46 |
blocks, non-FIFO frees, or frees of addresses not |
47 |
allocated, then "msg" and information about the |
48 |
problem is printed to stderr. If everything is |
49 |
normal, nothing is printed. mem_done resets the |
50 |
strm members to Z_NULL to use the default memory |
51 |
allocation routines on the next zlib initialization |
52 |
using strm. |
53 |
*/ |
54 |
|
55 |
/* these items are strung together in a linked list, one for each allocation */ |
56 |
struct mem_item { |
57 |
void *ptr; /* pointer to allocated memory */ |
58 |
size_t size; /* requested size of allocation */ |
59 |
struct mem_item *next; /* pointer to next item in list, or NULL */ |
60 |
}; |
61 |
|
62 |
/* this structure is at the root of the linked list, and tracks statistics */ |
63 |
struct mem_zone { |
64 |
struct mem_item *first; /* pointer to first item in list, or NULL */ |
65 |
size_t total, highwater; /* total allocations, and largest total */ |
66 |
size_t limit; /* memory allocation limit, or 0 if no limit */ |
67 |
int notlifo, rogue; /* counts of non-LIFO frees and rogue frees */ |
68 |
}; |
69 |
|
70 |
/* memory allocation routine to pass to zlib */ |
71 |
local void *mem_alloc(void *mem, unsigned count, unsigned size) |
72 |
{ |
73 |
void *ptr; |
74 |
struct mem_item *item; |
75 |
struct mem_zone *zone = mem; |
76 |
size_t len = count * (size_t)size; |
77 |
|
78 |
/* induced allocation failure */ |
79 |
if (zone == NULL || (zone->limit && zone->total + len > zone->limit)) |
80 |
return NULL; |
81 |
|
82 |
/* perform allocation using the standard library, fill memory with a |
83 |
non-zero value to make sure that the code isn't depending on zeros */ |
84 |
ptr = malloc(len); |
85 |
if (ptr == NULL) |
86 |
return NULL; |
87 |
memset(ptr, 0xa5, len); |
88 |
|
89 |
/* create a new item for the list */ |
90 |
item = malloc(sizeof(struct mem_item)); |
91 |
if (item == NULL) { |
92 |
free(ptr); |
93 |
return NULL; |
94 |
} |
95 |
item->ptr = ptr; |
96 |
item->size = len; |
97 |
|
98 |
/* insert item at the beginning of the list */ |
99 |
item->next = zone->first; |
100 |
zone->first = item; |
101 |
|
102 |
/* update the statistics */ |
103 |
zone->total += item->size; |
104 |
if (zone->total > zone->highwater) |
105 |
zone->highwater = zone->total; |
106 |
|
107 |
/* return the allocated memory */ |
108 |
return ptr; |
109 |
} |
110 |
|
111 |
/* memory free routine to pass to zlib */ |
112 |
local void mem_free(void *mem, void *ptr) |
113 |
{ |
114 |
struct mem_item *item, *next; |
115 |
struct mem_zone *zone = mem; |
116 |
|
117 |
/* if no zone, just do a free */ |
118 |
if (zone == NULL) { |
119 |
free(ptr); |
120 |
return; |
121 |
} |
122 |
|
123 |
/* point next to the item that matches ptr, or NULL if not found -- remove |
124 |
the item from the linked list if found */ |
125 |
next = zone->first; |
126 |
if (next) { |
127 |
if (next->ptr == ptr) |
128 |
zone->first = next->next; /* first one is it, remove from list */ |
129 |
else { |
130 |
do { /* search the linked list */ |
131 |
item = next; |
132 |
next = item->next; |
133 |
} while (next != NULL && next->ptr != ptr); |
134 |
if (next) { /* if found, remove from linked list */ |
135 |
item->next = next->next; |
136 |
zone->notlifo++; /* not a LIFO free */ |
137 |
} |
138 |
|
139 |
} |
140 |
} |
141 |
|
142 |
/* if found, update the statistics and free the item */ |
143 |
if (next) { |
144 |
zone->total -= next->size; |
145 |
free(next); |
146 |
} |
147 |
|
148 |
/* if not found, update the rogue count */ |
149 |
else |
150 |
zone->rogue++; |
151 |
|
152 |
/* in any case, do the requested free with the standard library function */ |
153 |
free(ptr); |
154 |
} |
155 |
|
156 |
/* set up a controlled memory allocation space for monitoring, set the stream |
157 |
parameters to the controlled routines, with opaque pointing to the space */ |
158 |
local void mem_setup(z_stream *strm) |
159 |
{ |
160 |
struct mem_zone *zone; |
161 |
|
162 |
zone = malloc(sizeof(struct mem_zone)); |
163 |
assert(zone != NULL); |
164 |
zone->first = NULL; |
165 |
zone->total = 0; |
166 |
zone->highwater = 0; |
167 |
zone->limit = 0; |
168 |
zone->notlifo = 0; |
169 |
zone->rogue = 0; |
170 |
strm->opaque = zone; |
171 |
strm->zalloc = mem_alloc; |
172 |
strm->zfree = mem_free; |
173 |
} |
174 |
|
175 |
/* set a limit on the total memory allocation, or 0 to remove the limit */ |
176 |
local void mem_limit(z_stream *strm, size_t limit) |
177 |
{ |
178 |
struct mem_zone *zone = strm->opaque; |
179 |
|
180 |
zone->limit = limit; |
181 |
} |
182 |
|
183 |
/* show the current total requested allocations in bytes */ |
184 |
local void mem_used(z_stream *strm, char *prefix) |
185 |
{ |
186 |
struct mem_zone *zone = strm->opaque; |
187 |
|
188 |
fprintf(stderr, "%s: %lu allocated\n", prefix, zone->total); |
189 |
} |
190 |
|
191 |
/* show the high water allocation in bytes */ |
192 |
local void mem_high(z_stream *strm, char *prefix) |
193 |
{ |
194 |
struct mem_zone *zone = strm->opaque; |
195 |
|
196 |
fprintf(stderr, "%s: %lu high water mark\n", prefix, zone->highwater); |
197 |
} |
198 |
|
199 |
/* release the memory allocation zone -- if there are any surprises, notify */ |
200 |
local void mem_done(z_stream *strm, char *prefix) |
201 |
{ |
202 |
int count = 0; |
203 |
struct mem_item *item, *next; |
204 |
struct mem_zone *zone = strm->opaque; |
205 |
|
206 |
/* show high water mark */ |
207 |
mem_high(strm, prefix); |
208 |
|
209 |
/* free leftover allocations and item structures, if any */ |
210 |
item = zone->first; |
211 |
while (item != NULL) { |
212 |
free(item->ptr); |
213 |
next = item->next; |
214 |
free(item); |
215 |
item = next; |
216 |
count++; |
217 |
} |
218 |
|
219 |
/* issue alerts about anything unexpected */ |
220 |
if (count || zone->total) |
221 |
fprintf(stderr, "** %s: %lu bytes in %d blocks not freed\n", |
222 |
prefix, zone->total, count); |
223 |
if (zone->notlifo) |
224 |
fprintf(stderr, "** %s: %d frees not LIFO\n", prefix, zone->notlifo); |
225 |
if (zone->rogue) |
226 |
fprintf(stderr, "** %s: %d frees not recognized\n", |
227 |
prefix, zone->rogue); |
228 |
|
229 |
/* free the zone and delete from the stream */ |
230 |
free(zone); |
231 |
strm->opaque = Z_NULL; |
232 |
strm->zalloc = Z_NULL; |
233 |
strm->zfree = Z_NULL; |
234 |
} |
235 |
|
236 |
/* -- inflate test routines -- */ |
237 |
|
238 |
/* Decode a hexadecimal string, set *len to length, in[] to the bytes. This |
239 |
decodes liberally, in that hex digits can be adjacent, in which case two in |
240 |
a row writes a byte. Or they can delimited by any non-hex character, where |
241 |
the delimiters are ignored except when a single hex digit is followed by a |
242 |
delimiter in which case that single digit writes a byte. The returned |
243 |
data is allocated and must eventually be freed. NULL is returned if out of |
244 |
memory. If the length is not needed, then len can be NULL. */ |
245 |
local unsigned char *h2b(const char *hex, unsigned *len) |
246 |
{ |
247 |
unsigned char *in; |
248 |
unsigned next, val; |
249 |
|
250 |
in = malloc((strlen(hex) + 1) >> 1); |
251 |
if (in == NULL) |
252 |
return NULL; |
253 |
next = 0; |
254 |
val = 1; |
255 |
do { |
256 |
if (*hex >= '0' && *hex <= '9') |
257 |
val = (val << 4) + *hex - '0'; |
258 |
else if (*hex >= 'A' && *hex <= 'F') |
259 |
val = (val << 4) + *hex - 'A' + 10; |
260 |
else if (*hex >= 'a' && *hex <= 'f') |
261 |
val = (val << 4) + *hex - 'a' + 10; |
262 |
else if (val != 1 && val < 32) /* one digit followed by delimiter */ |
263 |
val += 240; /* make it look like two digits */ |
264 |
if (val > 255) { /* have two digits */ |
265 |
in[next++] = val & 0xff; /* save the decoded byte */ |
266 |
val = 1; /* start over */ |
267 |
} |
268 |
} while (*hex++); /* go through the loop with the terminating null */ |
269 |
if (len != NULL) |
270 |
*len = next; |
271 |
in = reallocf(in, next); |
272 |
return in; |
273 |
} |
274 |
|
275 |
/* generic inflate() run, where hex is the hexadecimal input data, what is the |
276 |
text to include in an error message, step is how much input data to feed |
277 |
inflate() on each call, or zero to feed it all, win is the window bits |
278 |
parameter to inflateInit2(), len is the size of the output buffer, and err |
279 |
is the error code expected from the first inflate() call (the second |
280 |
inflate() call is expected to return Z_STREAM_END). If win is 47, then |
281 |
header information is collected with inflateGetHeader(). If a zlib stream |
282 |
is looking for a dictionary, then an empty dictionary is provided. |
283 |
inflate() is run until all of the input data is consumed. */ |
284 |
local void inf(char *hex, char *what, unsigned step, int win, unsigned len, |
285 |
int err) |
286 |
{ |
287 |
int ret; |
288 |
unsigned have; |
289 |
unsigned char *in, *out; |
290 |
z_stream strm, copy; |
291 |
gz_header head; |
292 |
|
293 |
mem_setup(&strm); |
294 |
strm.avail_in = 0; |
295 |
strm.next_in = Z_NULL; |
296 |
ret = inflateInit2(&strm, win); |
297 |
if (ret != Z_OK) { |
298 |
mem_done(&strm, what); |
299 |
return; |
300 |
} |
301 |
out = malloc(len); assert(out != NULL); |
302 |
if (win == 47) { |
303 |
head.extra = out; |
304 |
head.extra_max = len; |
305 |
head.name = out; |
306 |
head.name_max = len; |
307 |
head.comment = out; |
308 |
head.comm_max = len; |
309 |
ret = inflateGetHeader(&strm, &head); assert(ret == Z_OK); |
310 |
} |
311 |
in = h2b(hex, &have); assert(in != NULL); |
312 |
if (step == 0 || step > have) |
313 |
step = have; |
314 |
strm.avail_in = step; |
315 |
have -= step; |
316 |
strm.next_in = in; |
317 |
do { |
318 |
strm.avail_out = len; |
319 |
strm.next_out = out; |
320 |
ret = inflate(&strm, Z_NO_FLUSH); assert(err == 9 || ret == err); |
321 |
if (ret != Z_OK && ret != Z_BUF_ERROR && ret != Z_NEED_DICT) |
322 |
break; |
323 |
if (ret == Z_NEED_DICT) { |
324 |
ret = inflateSetDictionary(&strm, in, 1); |
325 |
assert(ret == Z_DATA_ERROR); |
326 |
mem_limit(&strm, 1); |
327 |
ret = inflateSetDictionary(&strm, out, 0); |
328 |
assert(ret == Z_MEM_ERROR); |
329 |
mem_limit(&strm, 0); |
330 |
((struct inflate_state *)strm.state)->mode = DICT; |
331 |
ret = inflateSetDictionary(&strm, out, 0); |
332 |
assert(ret == Z_OK); |
333 |
ret = inflate(&strm, Z_NO_FLUSH); assert(ret == Z_BUF_ERROR); |
334 |
} |
335 |
ret = inflateCopy(©, &strm); assert(ret == Z_OK); |
336 |
ret = inflateEnd(©); assert(ret == Z_OK); |
337 |
err = 9; /* don't care next time around */ |
338 |
have += strm.avail_in; |
339 |
strm.avail_in = step > have ? have : step; |
340 |
have -= strm.avail_in; |
341 |
} while (strm.avail_in); |
342 |
free(in); |
343 |
free(out); |
344 |
ret = inflateReset2(&strm, -8); assert(ret == Z_OK); |
345 |
ret = inflateEnd(&strm); assert(ret == Z_OK); |
346 |
mem_done(&strm, what); |
347 |
} |
348 |
|
349 |
/* cover all of the lines in inflate.c up to inflate() */ |
350 |
local void cover_support(void) |
351 |
{ |
352 |
int ret; |
353 |
z_stream strm; |
354 |
|
355 |
mem_setup(&strm); |
356 |
strm.avail_in = 0; |
357 |
strm.next_in = Z_NULL; |
358 |
ret = inflateInit(&strm); assert(ret == Z_OK); |
359 |
mem_used(&strm, "inflate init"); |
360 |
ret = inflatePrime(&strm, 5, 31); assert(ret == Z_OK); |
361 |
ret = inflatePrime(&strm, -1, 0); assert(ret == Z_OK); |
362 |
ret = inflateSetDictionary(&strm, Z_NULL, 0); |
363 |
assert(ret == Z_STREAM_ERROR); |
364 |
ret = inflateEnd(&strm); assert(ret == Z_OK); |
365 |
mem_done(&strm, "prime"); |
366 |
|
367 |
inf("63 0", "force window allocation", 0, -15, 1, Z_OK); |
368 |
inf("63 18 5", "force window replacement", 0, -8, 259, Z_OK); |
369 |
inf("63 18 68 30 d0 0 0", "force split window update", 4, -8, 259, Z_OK); |
370 |
inf("3 0", "use fixed blocks", 0, -15, 1, Z_STREAM_END); |
371 |
inf("", "bad window size", 0, 1, 0, Z_STREAM_ERROR); |
372 |
|
373 |
mem_setup(&strm); |
374 |
strm.avail_in = 0; |
375 |
strm.next_in = Z_NULL; |
376 |
ret = inflateInit_(&strm, ZLIB_VERSION - 1, (int)sizeof(z_stream)); |
377 |
assert(ret == Z_VERSION_ERROR); |
378 |
mem_done(&strm, "wrong version"); |
379 |
|
380 |
strm.avail_in = 0; |
381 |
strm.next_in = Z_NULL; |
382 |
ret = inflateInit(&strm); assert(ret == Z_OK); |
383 |
ret = inflateEnd(&strm); assert(ret == Z_OK); |
384 |
fputs("inflate built-in memory routines\n", stderr); |
385 |
} |
386 |
|
387 |
/* cover all inflate() header and trailer cases and code after inflate() */ |
388 |
local void cover_wrap(void) |
389 |
{ |
390 |
int ret; |
391 |
z_stream strm, copy; |
392 |
unsigned char dict[257]; |
393 |
|
394 |
ret = inflate(Z_NULL, 0); assert(ret == Z_STREAM_ERROR); |
395 |
ret = inflateEnd(Z_NULL); assert(ret == Z_STREAM_ERROR); |
396 |
ret = inflateCopy(Z_NULL, Z_NULL); assert(ret == Z_STREAM_ERROR); |
397 |
fputs("inflate bad parameters\n", stderr); |
398 |
|
399 |
inf("1f 8b 0 0", "bad gzip method", 0, 31, 0, Z_DATA_ERROR); |
400 |
inf("1f 8b 8 80", "bad gzip flags", 0, 31, 0, Z_DATA_ERROR); |
401 |
inf("77 85", "bad zlib method", 0, 15, 0, Z_DATA_ERROR); |
402 |
inf("8 99", "set window size from header", 0, 0, 0, Z_OK); |
403 |
inf("78 9c", "bad zlib window size", 0, 8, 0, Z_DATA_ERROR); |
404 |
inf("78 9c 63 0 0 0 1 0 1", "check adler32", 0, 15, 1, Z_STREAM_END); |
405 |
inf("1f 8b 8 1e 0 0 0 0 0 0 1 0 0 0 0 0 0", "bad header crc", 0, 47, 1, |
406 |
Z_DATA_ERROR); |
407 |
inf("1f 8b 8 2 0 0 0 0 0 0 1d 26 3 0 0 0 0 0 0 0 0 0", "check gzip length", |
408 |
0, 47, 0, Z_STREAM_END); |
409 |
inf("78 90", "bad zlib header check", 0, 47, 0, Z_DATA_ERROR); |
410 |
inf("8 b8 0 0 0 1", "need dictionary", 0, 8, 0, Z_NEED_DICT); |
411 |
inf("78 9c 63 0", "compute adler32", 0, 15, 1, Z_OK); |
412 |
|
413 |
mem_setup(&strm); |
414 |
strm.avail_in = 0; |
415 |
strm.next_in = Z_NULL; |
416 |
ret = inflateInit2(&strm, -8); |
417 |
strm.avail_in = 2; |
418 |
strm.next_in = (void *)"\x63"; |
419 |
strm.avail_out = 1; |
420 |
strm.next_out = (void *)&ret; |
421 |
mem_limit(&strm, 1); |
422 |
ret = inflate(&strm, Z_NO_FLUSH); assert(ret == Z_MEM_ERROR); |
423 |
ret = inflate(&strm, Z_NO_FLUSH); assert(ret == Z_MEM_ERROR); |
424 |
mem_limit(&strm, 0); |
425 |
memset(dict, 0, 257); |
426 |
ret = inflateSetDictionary(&strm, dict, 257); |
427 |
assert(ret == Z_OK); |
428 |
mem_limit(&strm, (sizeof(struct inflate_state) << 1) + 256); |
429 |
ret = inflatePrime(&strm, 16, 0); assert(ret == Z_OK); |
430 |
strm.avail_in = 2; |
431 |
strm.next_in = (void *)"\x80"; |
432 |
ret = inflateSync(&strm); assert(ret == Z_DATA_ERROR); |
433 |
ret = inflate(&strm, Z_NO_FLUSH); assert(ret == Z_STREAM_ERROR); |
434 |
strm.avail_in = 4; |
435 |
strm.next_in = (void *)"\0\0\xff\xff"; |
436 |
ret = inflateSync(&strm); assert(ret == Z_OK); |
437 |
(void)inflateSyncPoint(&strm); |
438 |
ret = inflateCopy(©, &strm); assert(ret == Z_MEM_ERROR); |
439 |
mem_limit(&strm, 0); |
440 |
ret = inflateUndermine(&strm, 1); assert(ret == Z_DATA_ERROR); |
441 |
(void)inflateMark(&strm); |
442 |
ret = inflateEnd(&strm); assert(ret == Z_OK); |
443 |
mem_done(&strm, "miscellaneous, force memory errors"); |
444 |
} |
445 |
|
446 |
/* input and output functions for inflateBack() */ |
447 |
local unsigned pull(void *desc, unsigned char **buf) |
448 |
{ |
449 |
static unsigned int next = 0; |
450 |
static unsigned char dat[] = {0x63, 0, 2, 0}; |
451 |
struct inflate_state *state; |
452 |
|
453 |
if (desc == Z_NULL) { |
454 |
next = 0; |
455 |
return 0; /* no input (already provided at next_in) */ |
456 |
} |
457 |
state = (void *)((z_stream *)desc)->state; |
458 |
if (state != Z_NULL) |
459 |
state->mode = SYNC; /* force an otherwise impossible situation */ |
460 |
return next < sizeof(dat) ? (*buf = dat + next++, 1) : 0; |
461 |
} |
462 |
|
463 |
local int push(void *desc, unsigned char *buf, unsigned len) |
464 |
{ |
465 |
buf += len; |
466 |
return desc != Z_NULL; /* force error if desc not null */ |
467 |
} |
468 |
|
469 |
/* cover inflateBack() up to common deflate data cases and after those */ |
470 |
local void cover_back(void) |
471 |
{ |
472 |
int ret; |
473 |
z_stream strm; |
474 |
unsigned char win[32768]; |
475 |
|
476 |
ret = inflateBackInit_(Z_NULL, 0, win, 0, 0); |
477 |
assert(ret == Z_VERSION_ERROR); |
478 |
ret = inflateBackInit(Z_NULL, 0, win); assert(ret == Z_STREAM_ERROR); |
479 |
ret = inflateBack(Z_NULL, Z_NULL, Z_NULL, Z_NULL, Z_NULL); |
480 |
assert(ret == Z_STREAM_ERROR); |
481 |
ret = inflateBackEnd(Z_NULL); assert(ret == Z_STREAM_ERROR); |
482 |
fputs("inflateBack bad parameters\n", stderr); |
483 |
|
484 |
mem_setup(&strm); |
485 |
ret = inflateBackInit(&strm, 15, win); assert(ret == Z_OK); |
486 |
strm.avail_in = 2; |
487 |
strm.next_in = (void *)"\x03"; |
488 |
ret = inflateBack(&strm, pull, Z_NULL, push, Z_NULL); |
489 |
assert(ret == Z_STREAM_END); |
490 |
/* force output error */ |
491 |
strm.avail_in = 3; |
492 |
strm.next_in = (void *)"\x63\x00"; |
493 |
ret = inflateBack(&strm, pull, Z_NULL, push, &strm); |
494 |
assert(ret == Z_BUF_ERROR); |
495 |
/* force mode error by mucking with state */ |
496 |
ret = inflateBack(&strm, pull, &strm, push, Z_NULL); |
497 |
assert(ret == Z_STREAM_ERROR); |
498 |
ret = inflateBackEnd(&strm); assert(ret == Z_OK); |
499 |
mem_done(&strm, "inflateBack bad state"); |
500 |
|
501 |
ret = inflateBackInit(&strm, 15, win); assert(ret == Z_OK); |
502 |
ret = inflateBackEnd(&strm); assert(ret == Z_OK); |
503 |
fputs("inflateBack built-in memory routines\n", stderr); |
504 |
} |
505 |
|
506 |
/* do a raw inflate of data in hexadecimal with both inflate and inflateBack */ |
507 |
local int try(char *hex, char *id, int err) |
508 |
{ |
509 |
int ret; |
510 |
unsigned len, size; |
511 |
unsigned char *in, *out, *win; |
512 |
char *prefix; |
513 |
z_stream strm; |
514 |
|
515 |
/* convert to hex */ |
516 |
in = h2b(hex, &len); |
517 |
assert(in != NULL); |
518 |
|
519 |
/* allocate work areas */ |
520 |
size = len << 3; |
521 |
out = malloc(size); |
522 |
assert(out != NULL); |
523 |
win = malloc(32768); |
524 |
assert(win != NULL); |
525 |
prefix = malloc(strlen(id) + 6); |
526 |
assert(prefix != NULL); |
527 |
|
528 |
/* first with inflate */ |
529 |
strcpy(prefix, id); |
530 |
strcat(prefix, "-late"); |
531 |
mem_setup(&strm); |
532 |
strm.avail_in = 0; |
533 |
strm.next_in = Z_NULL; |
534 |
ret = inflateInit2(&strm, err < 0 ? 47 : -15); |
535 |
assert(ret == Z_OK); |
536 |
strm.avail_in = len; |
537 |
strm.next_in = in; |
538 |
do { |
539 |
strm.avail_out = size; |
540 |
strm.next_out = out; |
541 |
ret = inflate(&strm, Z_TREES); |
542 |
assert(ret != Z_STREAM_ERROR && ret != Z_MEM_ERROR); |
543 |
if (ret == Z_DATA_ERROR || ret == Z_NEED_DICT) |
544 |
break; |
545 |
} while (strm.avail_in || strm.avail_out == 0); |
546 |
if (err) { |
547 |
assert(ret == Z_DATA_ERROR); |
548 |
assert(strcmp(id, strm.msg) == 0); |
549 |
} |
550 |
inflateEnd(&strm); |
551 |
mem_done(&strm, prefix); |
552 |
|
553 |
/* then with inflateBack */ |
554 |
if (err >= 0) { |
555 |
strcpy(prefix, id); |
556 |
strcat(prefix, "-back"); |
557 |
mem_setup(&strm); |
558 |
ret = inflateBackInit(&strm, 15, win); |
559 |
assert(ret == Z_OK); |
560 |
strm.avail_in = len; |
561 |
strm.next_in = in; |
562 |
ret = inflateBack(&strm, pull, Z_NULL, push, Z_NULL); |
563 |
assert(ret != Z_STREAM_ERROR); |
564 |
if (err) { |
565 |
assert(ret == Z_DATA_ERROR); |
566 |
assert(strcmp(id, strm.msg) == 0); |
567 |
} |
568 |
inflateBackEnd(&strm); |
569 |
mem_done(&strm, prefix); |
570 |
} |
571 |
|
572 |
/* clean up */ |
573 |
free(prefix); |
574 |
free(win); |
575 |
free(out); |
576 |
free(in); |
577 |
return ret; |
578 |
} |
579 |
|
580 |
/* cover deflate data cases in both inflate() and inflateBack() */ |
581 |
local void cover_inflate(void) |
582 |
{ |
583 |
try("0 0 0 0 0", "invalid stored block lengths", 1); |
584 |
try("3 0", "fixed", 0); |
585 |
try("6", "invalid block type", 1); |
586 |
try("1 1 0 fe ff 0", "stored", 0); |
587 |
try("fc 0 0", "too many length or distance symbols", 1); |
588 |
try("4 0 fe ff", "invalid code lengths set", 1); |
589 |
try("4 0 24 49 0", "invalid bit length repeat", 1); |
590 |
try("4 0 24 e9 ff ff", "invalid bit length repeat", 1); |
591 |
try("4 0 24 e9 ff 6d", "invalid code -- missing end-of-block", 1); |
592 |
try("4 80 49 92 24 49 92 24 71 ff ff 93 11 0", |
593 |
"invalid literal/lengths set", 1); |
594 |
try("4 80 49 92 24 49 92 24 f b4 ff ff c3 84", "invalid distances set", 1); |
595 |
try("4 c0 81 8 0 0 0 0 20 7f eb b 0 0", "invalid literal/length code", 1); |
596 |
try("2 7e ff ff", "invalid distance code", 1); |
597 |
try("c c0 81 0 0 0 0 0 90 ff 6b 4 0", "invalid distance too far back", 1); |
598 |
|
599 |
/* also trailer mismatch just in inflate() */ |
600 |
try("1f 8b 8 0 0 0 0 0 0 0 3 0 0 0 0 1", "incorrect data check", -1); |
601 |
try("1f 8b 8 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 1", |
602 |
"incorrect length check", -1); |
603 |
try("5 c0 21 d 0 0 0 80 b0 fe 6d 2f 91 6c", "pull 17", 0); |
604 |
try("5 e0 81 91 24 cb b2 2c 49 e2 f 2e 8b 9a 47 56 9f fb fe ec d2 ff 1f", |
605 |
"long code", 0); |
606 |
try("ed c0 1 1 0 0 0 40 20 ff 57 1b 42 2c 4f", "length extra", 0); |
607 |
try("ed cf c1 b1 2c 47 10 c4 30 fa 6f 35 1d 1 82 59 3d fb be 2e 2a fc f c", |
608 |
"long distance and extra", 0); |
609 |
try("ed c0 81 0 0 0 0 80 a0 fd a9 17 a9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 " |
610 |
"0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6", "window end", 0); |
611 |
inf("2 8 20 80 0 3 0", "inflate_fast TYPE return", 0, -15, 258, |
612 |
Z_STREAM_END); |
613 |
inf("63 18 5 40 c 0", "window wrap", 3, -8, 300, Z_OK); |
614 |
} |
615 |
|
616 |
/* cover remaining lines in inftrees.c */ |
617 |
local void cover_trees(void) |
618 |
{ |
619 |
int ret; |
620 |
unsigned bits; |
621 |
unsigned short lens[16], work[16]; |
622 |
code *next, table[ENOUGH_DISTS]; |
623 |
|
624 |
/* we need to call inflate_table() directly in order to manifest not- |
625 |
enough errors, since zlib insures that enough is always enough */ |
626 |
for (bits = 0; bits < 15; bits++) |
627 |
lens[bits] = (unsigned short)(bits + 1); |
628 |
lens[15] = 15; |
629 |
next = table; |
630 |
bits = 15; |
631 |
ret = inflate_table(DISTS, lens, 16, &next, &bits, work); |
632 |
assert(ret == 1); |
633 |
next = table; |
634 |
bits = 1; |
635 |
ret = inflate_table(DISTS, lens, 16, &next, &bits, work); |
636 |
assert(ret == 1); |
637 |
fputs("inflate_table not enough errors\n", stderr); |
638 |
} |
639 |
|
640 |
/* cover remaining inffast.c decoding and window copying */ |
641 |
local void cover_fast(void) |
642 |
{ |
643 |
inf("e5 e0 81 ad 6d cb b2 2c c9 01 1e 59 63 ae 7d ee fb 4d fd b5 35 41 68" |
644 |
" ff 7f 0f 0 0 0", "fast length extra bits", 0, -8, 258, Z_DATA_ERROR); |
645 |
inf("25 fd 81 b5 6d 59 b6 6a 49 ea af 35 6 34 eb 8c b9 f6 b9 1e ef 67 49" |
646 |
" 50 fe ff ff 3f 0 0", "fast distance extra bits", 0, -8, 258, |
647 |
Z_DATA_ERROR); |
648 |
inf("3 7e 0 0 0 0 0", "fast invalid distance code", 0, -8, 258, |
649 |
Z_DATA_ERROR); |
650 |
inf("1b 7 0 0 0 0 0", "fast invalid literal/length code", 0, -8, 258, |
651 |
Z_DATA_ERROR); |
652 |
inf("d c7 1 ae eb 38 c 4 41 a0 87 72 de df fb 1f b8 36 b1 38 5d ff ff 0", |
653 |
"fast 2nd level codes and too far back", 0, -8, 258, Z_DATA_ERROR); |
654 |
inf("63 18 5 8c 10 8 0 0 0 0", "very common case", 0, -8, 259, Z_OK); |
655 |
inf("63 60 60 18 c9 0 8 18 18 18 26 c0 28 0 29 0 0 0", |
656 |
"contiguous and wrap around window", 6, -8, 259, Z_OK); |
657 |
inf("63 0 3 0 0 0 0 0", "copy direct from output", 0, -8, 259, |
658 |
Z_STREAM_END); |
659 |
} |
660 |
|
661 |
int main(void) |
662 |
{ |
663 |
fprintf(stderr, "%s\n", zlibVersion()); |
664 |
cover_support(); |
665 |
cover_wrap(); |
666 |
cover_back(); |
667 |
cover_inflate(); |
668 |
cover_trees(); |
669 |
cover_fast(); |
670 |
return 0; |
671 |
} |