| 1 |
/* deflate.c -- compress data using the deflation algorithm |
| 2 |
* Copyright (C) 1995-2013 Jean-loup Gailly and Mark Adler |
| 3 |
* For conditions of distribution and use, see copyright notice in zlib.h |
| 4 |
*/ |
| 5 |
|
| 6 |
/* |
| 7 |
* ALGORITHM |
| 8 |
* |
| 9 |
* The "deflation" process depends on being able to identify portions |
| 10 |
* of the input text which are identical to earlier input (within a |
| 11 |
* sliding window trailing behind the input currently being processed). |
| 12 |
* |
| 13 |
* The most straightforward technique turns out to be the fastest for |
| 14 |
* most input files: try all possible matches and select the longest. |
| 15 |
* The key feature of this algorithm is that insertions into the string |
| 16 |
* dictionary are very simple and thus fast, and deletions are avoided |
| 17 |
* completely. Insertions are performed at each input character, whereas |
| 18 |
* string matches are performed only when the previous match ends. So it |
| 19 |
* is preferable to spend more time in matches to allow very fast string |
| 20 |
* insertions and avoid deletions. The matching algorithm for small |
| 21 |
* strings is inspired from that of Rabin & Karp. A brute force approach |
| 22 |
* is used to find longer strings when a small match has been found. |
| 23 |
* A similar algorithm is used in comic (by Jan-Mark Wams) and freeze |
| 24 |
* (by Leonid Broukhis). |
| 25 |
* A previous version of this file used a more sophisticated algorithm |
| 26 |
* (by Fiala and Greene) which is guaranteed to run in linear amortized |
| 27 |
* time, but has a larger average cost, uses more memory and is patented. |
| 28 |
* However the F&G algorithm may be faster for some highly redundant |
| 29 |
* files if the parameter max_chain_length (described below) is too large. |
| 30 |
* |
| 31 |
* ACKNOWLEDGEMENTS |
| 32 |
* |
| 33 |
* The idea of lazy evaluation of matches is due to Jan-Mark Wams, and |
| 34 |
* I found it in 'freeze' written by Leonid Broukhis. |
| 35 |
* Thanks to many people for bug reports and testing. |
| 36 |
* |
| 37 |
* REFERENCES |
| 38 |
* |
| 39 |
* Deutsch, L.P.,"DEFLATE Compressed Data Format Specification". |
| 40 |
* Available in http://tools.ietf.org/html/rfc1951 |
| 41 |
* |
| 42 |
* A description of the Rabin and Karp algorithm is given in the book |
| 43 |
* "Algorithms" by R. Sedgewick, Addison-Wesley, p252. |
| 44 |
* |
| 45 |
* Fiala,E.R., and Greene,D.H. |
| 46 |
* Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595 |
| 47 |
* |
| 48 |
*/ |
| 49 |
|
| 50 |
/* @(#) $Id$ */ |
| 51 |
|
| 52 |
#include "deflate.h" |
| 53 |
|
| 54 |
const char deflate_copyright[] = |
| 55 |
" deflate 1.2.8 Copyright 1995-2013 Jean-loup Gailly and Mark Adler "; |
| 56 |
/* |
| 57 |
If you use the zlib library in a product, an acknowledgment is welcome |
| 58 |
in the documentation of your product. If for some reason you cannot |
| 59 |
include such an acknowledgment, I would appreciate that you keep this |
| 60 |
copyright string in the executable of your product. |
| 61 |
*/ |
| 62 |
|
| 63 |
/* =========================================================================== |
| 64 |
* Function prototypes. |
| 65 |
*/ |
| 66 |
typedef enum { |
| 67 |
need_more, /* block not completed, need more input or more output */ |
| 68 |
block_done, /* block flush performed */ |
| 69 |
finish_started, /* finish started, need only more output at next deflate */ |
| 70 |
finish_done /* finish done, accept no more input or output */ |
| 71 |
} block_state; |
| 72 |
|
| 73 |
typedef block_state (*compress_func) OF((deflate_state *s, int flush)); |
| 74 |
/* Compression function. Returns the block state after the call. */ |
| 75 |
|
| 76 |
local void fill_window OF((deflate_state *s)); |
| 77 |
local block_state deflate_stored OF((deflate_state *s, int flush)); |
| 78 |
local block_state deflate_fast OF((deflate_state *s, int flush)); |
| 79 |
#ifndef FASTEST |
| 80 |
local block_state deflate_slow OF((deflate_state *s, int flush)); |
| 81 |
#endif |
| 82 |
local block_state deflate_rle OF((deflate_state *s, int flush)); |
| 83 |
local block_state deflate_huff OF((deflate_state *s, int flush)); |
| 84 |
local void lm_init OF((deflate_state *s)); |
| 85 |
local void putShortMSB OF((deflate_state *s, uInt b)); |
| 86 |
local void flush_pending OF((z_streamp strm)); |
| 87 |
local int read_buf OF((z_streamp strm, Bytef *buf, unsigned size)); |
| 88 |
#ifdef ASMV |
| 89 |
void match_init OF((void)); /* asm code initialization */ |
| 90 |
uInt longest_match OF((deflate_state *s, IPos cur_match)); |
| 91 |
#else |
| 92 |
local uInt longest_match OF((deflate_state *s, IPos cur_match)); |
| 93 |
#endif |
| 94 |
|
| 95 |
#ifdef DEBUG |
| 96 |
local void check_match OF((deflate_state *s, IPos start, IPos match, |
| 97 |
int length)); |
| 98 |
#endif |
| 99 |
|
| 100 |
/* =========================================================================== |
| 101 |
* Local data |
| 102 |
*/ |
| 103 |
|
| 104 |
#define NIL 0 |
| 105 |
/* Tail of hash chains */ |
| 106 |
|
| 107 |
#ifndef TOO_FAR |
| 108 |
# define TOO_FAR 4096 |
| 109 |
#endif |
| 110 |
/* Matches of length 3 are discarded if their distance exceeds TOO_FAR */ |
| 111 |
|
| 112 |
/* Values for max_lazy_match, good_match and max_chain_length, depending on |
| 113 |
* the desired pack level (0..9). The values given below have been tuned to |
| 114 |
* exclude worst case performance for pathological files. Better values may be |
| 115 |
* found for specific files. |
| 116 |
*/ |
| 117 |
typedef struct config_s { |
| 118 |
ush good_length; /* reduce lazy search above this match length */ |
| 119 |
ush max_lazy; /* do not perform lazy search above this match length */ |
| 120 |
ush nice_length; /* quit search above this match length */ |
| 121 |
ush max_chain; |
| 122 |
compress_func func; |
| 123 |
} config; |
| 124 |
|
| 125 |
#ifdef FASTEST |
| 126 |
local const config configuration_table[2] = { |
| 127 |
/* good lazy nice chain */ |
| 128 |
/* 0 */ {0, 0, 0, 0, deflate_stored}, /* store only */ |
| 129 |
/* 1 */ {4, 4, 8, 4, deflate_fast}}; /* max speed, no lazy matches */ |
| 130 |
#else |
| 131 |
local const config configuration_table[10] = { |
| 132 |
/* good lazy nice chain */ |
| 133 |
/* 0 */ {0, 0, 0, 0, deflate_stored}, /* store only */ |
| 134 |
/* 1 */ {4, 4, 8, 4, deflate_fast}, /* max speed, no lazy matches */ |
| 135 |
/* 2 */ {4, 5, 16, 8, deflate_fast}, |
| 136 |
/* 3 */ {4, 6, 32, 32, deflate_fast}, |
| 137 |
|
| 138 |
/* 4 */ {4, 4, 16, 16, deflate_slow}, /* lazy matches */ |
| 139 |
/* 5 */ {8, 16, 32, 32, deflate_slow}, |
| 140 |
/* 6 */ {8, 16, 128, 128, deflate_slow}, |
| 141 |
/* 7 */ {8, 32, 128, 256, deflate_slow}, |
| 142 |
/* 8 */ {32, 128, 258, 1024, deflate_slow}, |
| 143 |
/* 9 */ {32, 258, 258, 4096, deflate_slow}}; /* max compression */ |
| 144 |
#endif |
| 145 |
|
| 146 |
/* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4 |
| 147 |
* For deflate_fast() (levels <= 3) good is ignored and lazy has a different |
| 148 |
* meaning. |
| 149 |
*/ |
| 150 |
|
| 151 |
#define EQUAL 0 |
| 152 |
/* result of memcmp for equal strings */ |
| 153 |
|
| 154 |
#ifndef NO_DUMMY_DECL |
| 155 |
struct static_tree_desc_s {int dummy;}; /* for buggy compilers */ |
| 156 |
#endif |
| 157 |
|
| 158 |
/* rank Z_BLOCK between Z_NO_FLUSH and Z_PARTIAL_FLUSH */ |
| 159 |
#define RANK(f) (((f) << 1) - ((f) > 4 ? 9 : 0)) |
| 160 |
|
| 161 |
/* =========================================================================== |
| 162 |
* Update a hash value with the given input byte |
| 163 |
* IN assertion: all calls to to UPDATE_HASH are made with consecutive |
| 164 |
* input characters, so that a running hash key can be computed from the |
| 165 |
* previous key instead of complete recalculation each time. |
| 166 |
*/ |
| 167 |
#define UPDATE_HASH(s,h,c) (h = (((h)<<s->hash_shift) ^ (c)) & s->hash_mask) |
| 168 |
|
| 169 |
|
| 170 |
/* =========================================================================== |
| 171 |
* Insert string str in the dictionary and set match_head to the previous head |
| 172 |
* of the hash chain (the most recent string with same hash key). Return |
| 173 |
* the previous length of the hash chain. |
| 174 |
* If this file is compiled with -DFASTEST, the compression level is forced |
| 175 |
* to 1, and no hash chains are maintained. |
| 176 |
* IN assertion: all calls to to INSERT_STRING are made with consecutive |
| 177 |
* input characters and the first MIN_MATCH bytes of str are valid |
| 178 |
* (except for the last MIN_MATCH-1 bytes of the input file). |
| 179 |
*/ |
| 180 |
#ifdef FASTEST |
| 181 |
#define INSERT_STRING(s, str, match_head) \ |
| 182 |
(UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \ |
| 183 |
match_head = s->head[s->ins_h], \ |
| 184 |
s->head[s->ins_h] = (Pos)(str)) |
| 185 |
#else |
| 186 |
#define INSERT_STRING(s, str, match_head) \ |
| 187 |
(UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \ |
| 188 |
match_head = s->prev[(str) & s->w_mask] = s->head[s->ins_h], \ |
| 189 |
s->head[s->ins_h] = (Pos)(str)) |
| 190 |
#endif |
| 191 |
|
| 192 |
/* =========================================================================== |
| 193 |
* Initialize the hash table (avoiding 64K overflow for 16 bit systems). |
| 194 |
* prev[] will be initialized on the fly. |
| 195 |
*/ |
| 196 |
#define CLEAR_HASH(s) \ |
| 197 |
s->head[s->hash_size-1] = NIL; \ |
| 198 |
zmemzero((Bytef *)s->head, (unsigned)(s->hash_size-1)*sizeof(*s->head)); |
| 199 |
|
| 200 |
/* ========================================================================= */ |
| 201 |
int ZEXPORT deflateInit_(strm, level, version, stream_size) |
| 202 |
z_streamp strm; |
| 203 |
int level; |
| 204 |
const char *version; |
| 205 |
int stream_size; |
| 206 |
{ |
| 207 |
return deflateInit2_(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL, |
| 208 |
Z_DEFAULT_STRATEGY, version, stream_size); |
| 209 |
/* To do: ignore strm->next_in if we use it as window */ |
| 210 |
} |
| 211 |
|
| 212 |
/* ========================================================================= */ |
| 213 |
int ZEXPORT deflateInit2_(strm, level, method, windowBits, memLevel, strategy, |
| 214 |
version, stream_size) |
| 215 |
z_streamp strm; |
| 216 |
int level; |
| 217 |
int method; |
| 218 |
int windowBits; |
| 219 |
int memLevel; |
| 220 |
int strategy; |
| 221 |
const char *version; |
| 222 |
int stream_size; |
| 223 |
{ |
| 224 |
deflate_state *s; |
| 225 |
int wrap = 1; |
| 226 |
static const char my_version[] = ZLIB_VERSION; |
| 227 |
|
| 228 |
ushf *overlay; |
| 229 |
/* We overlay pending_buf and d_buf+l_buf. This works since the average |
| 230 |
* output size for (length,distance) codes is <= 24 bits. |
| 231 |
*/ |
| 232 |
|
| 233 |
if (version == Z_NULL || version[0] != my_version[0] || |
| 234 |
stream_size != sizeof(z_stream)) { |
| 235 |
return Z_VERSION_ERROR; |
| 236 |
} |
| 237 |
if (strm == Z_NULL) return Z_STREAM_ERROR; |
| 238 |
|
| 239 |
strm->msg = Z_NULL; |
| 240 |
if (strm->zalloc == (alloc_func)0) { |
| 241 |
#ifdef Z_SOLO |
| 242 |
return Z_STREAM_ERROR; |
| 243 |
#else |
| 244 |
strm->zalloc = zcalloc; |
| 245 |
strm->opaque = (voidpf)0; |
| 246 |
#endif |
| 247 |
} |
| 248 |
if (strm->zfree == (free_func)0) |
| 249 |
#ifdef Z_SOLO |
| 250 |
return Z_STREAM_ERROR; |
| 251 |
#else |
| 252 |
strm->zfree = zcfree; |
| 253 |
#endif |
| 254 |
|
| 255 |
#ifdef FASTEST |
| 256 |
if (level != 0) level = 1; |
| 257 |
#else |
| 258 |
if (level == Z_DEFAULT_COMPRESSION) level = 6; |
| 259 |
#endif |
| 260 |
|
| 261 |
if (windowBits < 0) { /* suppress zlib wrapper */ |
| 262 |
wrap = 0; |
| 263 |
windowBits = -windowBits; |
| 264 |
} |
| 265 |
#ifdef GZIP |
| 266 |
else if (windowBits > 15) { |
| 267 |
wrap = 2; /* write gzip wrapper instead */ |
| 268 |
windowBits -= 16; |
| 269 |
} |
| 270 |
#endif |
| 271 |
if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != Z_DEFLATED || |
| 272 |
windowBits < 8 || windowBits > 15 || level < 0 || level > 9 || |
| 273 |
strategy < 0 || strategy > Z_FIXED) { |
| 274 |
return Z_STREAM_ERROR; |
| 275 |
} |
| 276 |
if (windowBits == 8) windowBits = 9; /* until 256-byte window bug fixed */ |
| 277 |
s = (deflate_state *) ZALLOC(strm, 1, sizeof(deflate_state)); |
| 278 |
if (s == Z_NULL) return Z_MEM_ERROR; |
| 279 |
strm->state = (struct internal_state FAR *)s; |
| 280 |
s->strm = strm; |
| 281 |
|
| 282 |
s->wrap = wrap; |
| 283 |
s->gzhead = Z_NULL; |
| 284 |
s->w_bits = windowBits; |
| 285 |
s->w_size = 1 << s->w_bits; |
| 286 |
s->w_mask = s->w_size - 1; |
| 287 |
|
| 288 |
s->hash_bits = memLevel + 7; |
| 289 |
s->hash_size = 1 << s->hash_bits; |
| 290 |
s->hash_mask = s->hash_size - 1; |
| 291 |
s->hash_shift = ((s->hash_bits+MIN_MATCH-1)/MIN_MATCH); |
| 292 |
|
| 293 |
s->window = (Bytef *) ZALLOC(strm, s->w_size, 2*sizeof(Byte)); |
| 294 |
s->prev = (Posf *) ZALLOC(strm, s->w_size, sizeof(Pos)); |
| 295 |
s->head = (Posf *) ZALLOC(strm, s->hash_size, sizeof(Pos)); |
| 296 |
|
| 297 |
s->high_water = 0; /* nothing written to s->window yet */ |
| 298 |
|
| 299 |
s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */ |
| 300 |
|
| 301 |
overlay = (ushf *) ZALLOC(strm, s->lit_bufsize, sizeof(ush)+2); |
| 302 |
s->pending_buf = (uchf *) overlay; |
| 303 |
s->pending_buf_size = (ulg)s->lit_bufsize * (sizeof(ush)+2L); |
| 304 |
|
| 305 |
if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL || |
| 306 |
s->pending_buf == Z_NULL) { |
| 307 |
s->status = FINISH_STATE; |
| 308 |
strm->msg = ERR_MSG(Z_MEM_ERROR); |
| 309 |
deflateEnd (strm); |
| 310 |
return Z_MEM_ERROR; |
| 311 |
} |
| 312 |
s->d_buf = overlay + s->lit_bufsize/sizeof(ush); |
| 313 |
s->l_buf = s->pending_buf + (1+sizeof(ush))*s->lit_bufsize; |
| 314 |
|
| 315 |
s->level = level; |
| 316 |
s->strategy = strategy; |
| 317 |
s->method = (Byte)method; |
| 318 |
|
| 319 |
return deflateReset(strm); |
| 320 |
} |
| 321 |
|
| 322 |
/* ========================================================================= */ |
| 323 |
int ZEXPORT deflateSetDictionary (strm, dictionary, dictLength) |
| 324 |
z_streamp strm; |
| 325 |
const Bytef *dictionary; |
| 326 |
uInt dictLength; |
| 327 |
{ |
| 328 |
deflate_state *s; |
| 329 |
uInt str, n; |
| 330 |
int wrap; |
| 331 |
unsigned avail; |
| 332 |
z_const unsigned char *next; |
| 333 |
|
| 334 |
if (strm == Z_NULL || strm->state == Z_NULL || dictionary == Z_NULL) |
| 335 |
return Z_STREAM_ERROR; |
| 336 |
s = strm->state; |
| 337 |
wrap = s->wrap; |
| 338 |
if (wrap == 2 || (wrap == 1 && s->status != INIT_STATE) || s->lookahead) |
| 339 |
return Z_STREAM_ERROR; |
| 340 |
|
| 341 |
/* when using zlib wrappers, compute Adler-32 for provided dictionary */ |
| 342 |
if (wrap == 1) |
| 343 |
strm->adler = adler32(strm->adler, dictionary, dictLength); |
| 344 |
s->wrap = 0; /* avoid computing Adler-32 in read_buf */ |
| 345 |
|
| 346 |
/* if dictionary would fill window, just replace the history */ |
| 347 |
if (dictLength >= s->w_size) { |
| 348 |
if (wrap == 0) { /* already empty otherwise */ |
| 349 |
CLEAR_HASH(s); |
| 350 |
s->strstart = 0; |
| 351 |
s->block_start = 0L; |
| 352 |
s->insert = 0; |
| 353 |
} |
| 354 |
dictionary += dictLength - s->w_size; /* use the tail */ |
| 355 |
dictLength = s->w_size; |
| 356 |
} |
| 357 |
|
| 358 |
/* insert dictionary into window and hash */ |
| 359 |
avail = strm->avail_in; |
| 360 |
next = strm->next_in; |
| 361 |
strm->avail_in = dictLength; |
| 362 |
strm->next_in = (z_const Bytef *)dictionary; |
| 363 |
fill_window(s); |
| 364 |
while (s->lookahead >= MIN_MATCH) { |
| 365 |
str = s->strstart; |
| 366 |
n = s->lookahead - (MIN_MATCH-1); |
| 367 |
do { |
| 368 |
UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]); |
| 369 |
#ifndef FASTEST |
| 370 |
s->prev[str & s->w_mask] = s->head[s->ins_h]; |
| 371 |
#endif |
| 372 |
s->head[s->ins_h] = (Pos)str; |
| 373 |
str++; |
| 374 |
} while (--n); |
| 375 |
s->strstart = str; |
| 376 |
s->lookahead = MIN_MATCH-1; |
| 377 |
fill_window(s); |
| 378 |
} |
| 379 |
s->strstart += s->lookahead; |
| 380 |
s->block_start = (long)s->strstart; |
| 381 |
s->insert = s->lookahead; |
| 382 |
s->lookahead = 0; |
| 383 |
s->match_length = s->prev_length = MIN_MATCH-1; |
| 384 |
s->match_available = 0; |
| 385 |
strm->next_in = next; |
| 386 |
strm->avail_in = avail; |
| 387 |
s->wrap = wrap; |
| 388 |
return Z_OK; |
| 389 |
} |
| 390 |
|
| 391 |
/* ========================================================================= */ |
| 392 |
int ZEXPORT deflateResetKeep (strm) |
| 393 |
z_streamp strm; |
| 394 |
{ |
| 395 |
deflate_state *s; |
| 396 |
|
| 397 |
if (strm == Z_NULL || strm->state == Z_NULL || |
| 398 |
strm->zalloc == (alloc_func)0 || strm->zfree == (free_func)0) { |
| 399 |
return Z_STREAM_ERROR; |
| 400 |
} |
| 401 |
|
| 402 |
strm->total_in = strm->total_out = 0; |
| 403 |
strm->msg = Z_NULL; /* use zfree if we ever allocate msg dynamically */ |
| 404 |
strm->data_type = Z_UNKNOWN; |
| 405 |
|
| 406 |
s = (deflate_state *)strm->state; |
| 407 |
s->pending = 0; |
| 408 |
s->pending_out = s->pending_buf; |
| 409 |
|
| 410 |
if (s->wrap < 0) { |
| 411 |
s->wrap = -s->wrap; /* was made negative by deflate(..., Z_FINISH); */ |
| 412 |
} |
| 413 |
s->status = s->wrap ? INIT_STATE : BUSY_STATE; |
| 414 |
strm->adler = |
| 415 |
#ifdef GZIP |
| 416 |
s->wrap == 2 ? crc32(0L, Z_NULL, 0) : |
| 417 |
#endif |
| 418 |
adler32(0L, Z_NULL, 0); |
| 419 |
s->last_flush = Z_NO_FLUSH; |
| 420 |
|
| 421 |
_tr_init(s); |
| 422 |
|
| 423 |
return Z_OK; |
| 424 |
} |
| 425 |
|
| 426 |
/* ========================================================================= */ |
| 427 |
int ZEXPORT deflateReset (strm) |
| 428 |
z_streamp strm; |
| 429 |
{ |
| 430 |
int ret; |
| 431 |
|
| 432 |
ret = deflateResetKeep(strm); |
| 433 |
if (ret == Z_OK) |
| 434 |
lm_init(strm->state); |
| 435 |
return ret; |
| 436 |
} |
| 437 |
|
| 438 |
/* ========================================================================= */ |
| 439 |
int ZEXPORT deflateSetHeader (strm, head) |
| 440 |
z_streamp strm; |
| 441 |
gz_headerp head; |
| 442 |
{ |
| 443 |
if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; |
| 444 |
if (strm->state->wrap != 2) return Z_STREAM_ERROR; |
| 445 |
strm->state->gzhead = head; |
| 446 |
return Z_OK; |
| 447 |
} |
| 448 |
|
| 449 |
/* ========================================================================= */ |
| 450 |
int ZEXPORT deflatePending (strm, pending, bits) |
| 451 |
unsigned *pending; |
| 452 |
int *bits; |
| 453 |
z_streamp strm; |
| 454 |
{ |
| 455 |
if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; |
| 456 |
if (pending != Z_NULL) |
| 457 |
*pending = strm->state->pending; |
| 458 |
if (bits != Z_NULL) |
| 459 |
*bits = strm->state->bi_valid; |
| 460 |
return Z_OK; |
| 461 |
} |
| 462 |
|
| 463 |
/* ========================================================================= */ |
| 464 |
int ZEXPORT deflatePrime (strm, bits, value) |
| 465 |
z_streamp strm; |
| 466 |
int bits; |
| 467 |
int value; |
| 468 |
{ |
| 469 |
deflate_state *s; |
| 470 |
int put; |
| 471 |
|
| 472 |
if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; |
| 473 |
s = strm->state; |
| 474 |
if ((Bytef *)(s->d_buf) < s->pending_out + ((Buf_size + 7) >> 3)) |
| 475 |
return Z_BUF_ERROR; |
| 476 |
do { |
| 477 |
put = Buf_size - s->bi_valid; |
| 478 |
if (put > bits) |
| 479 |
put = bits; |
| 480 |
s->bi_buf |= (ush)((value & ((1 << put) - 1)) << s->bi_valid); |
| 481 |
s->bi_valid += put; |
| 482 |
_tr_flush_bits(s); |
| 483 |
value >>= put; |
| 484 |
bits -= put; |
| 485 |
} while (bits); |
| 486 |
return Z_OK; |
| 487 |
} |
| 488 |
|
| 489 |
/* ========================================================================= */ |
| 490 |
int ZEXPORT deflateParams(strm, level, strategy) |
| 491 |
z_streamp strm; |
| 492 |
int level; |
| 493 |
int strategy; |
| 494 |
{ |
| 495 |
deflate_state *s; |
| 496 |
compress_func func; |
| 497 |
int err = Z_OK; |
| 498 |
|
| 499 |
if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; |
| 500 |
s = strm->state; |
| 501 |
|
| 502 |
#ifdef FASTEST |
| 503 |
if (level != 0) level = 1; |
| 504 |
#else |
| 505 |
if (level == Z_DEFAULT_COMPRESSION) level = 6; |
| 506 |
#endif |
| 507 |
if (level < 0 || level > 9 || strategy < 0 || strategy > Z_FIXED) { |
| 508 |
return Z_STREAM_ERROR; |
| 509 |
} |
| 510 |
func = configuration_table[s->level].func; |
| 511 |
|
| 512 |
if ((strategy != s->strategy || func != configuration_table[level].func) && |
| 513 |
strm->total_in != 0) { |
| 514 |
/* Flush the last buffer: */ |
| 515 |
err = deflate(strm, Z_BLOCK); |
| 516 |
if (err == Z_BUF_ERROR && s->pending == 0) |
| 517 |
err = Z_OK; |
| 518 |
} |
| 519 |
if (s->level != level) { |
| 520 |
s->level = level; |
| 521 |
s->max_lazy_match = configuration_table[level].max_lazy; |
| 522 |
s->good_match = configuration_table[level].good_length; |
| 523 |
s->nice_match = configuration_table[level].nice_length; |
| 524 |
s->max_chain_length = configuration_table[level].max_chain; |
| 525 |
} |
| 526 |
s->strategy = strategy; |
| 527 |
return err; |
| 528 |
} |
| 529 |
|
| 530 |
/* ========================================================================= */ |
| 531 |
int ZEXPORT deflateTune(strm, good_length, max_lazy, nice_length, max_chain) |
| 532 |
z_streamp strm; |
| 533 |
int good_length; |
| 534 |
int max_lazy; |
| 535 |
int nice_length; |
| 536 |
int max_chain; |
| 537 |
{ |
| 538 |
deflate_state *s; |
| 539 |
|
| 540 |
if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; |
| 541 |
s = strm->state; |
| 542 |
s->good_match = good_length; |
| 543 |
s->max_lazy_match = max_lazy; |
| 544 |
s->nice_match = nice_length; |
| 545 |
s->max_chain_length = max_chain; |
| 546 |
return Z_OK; |
| 547 |
} |
| 548 |
|
| 549 |
/* ========================================================================= |
| 550 |
* For the default windowBits of 15 and memLevel of 8, this function returns |
| 551 |
* a close to exact, as well as small, upper bound on the compressed size. |
| 552 |
* They are coded as constants here for a reason--if the #define's are |
| 553 |
* changed, then this function needs to be changed as well. The return |
| 554 |
* value for 15 and 8 only works for those exact settings. |
| 555 |
* |
| 556 |
* For any setting other than those defaults for windowBits and memLevel, |
| 557 |
* the value returned is a conservative worst case for the maximum expansion |
| 558 |
* resulting from using fixed blocks instead of stored blocks, which deflate |
| 559 |
* can emit on compressed data for some combinations of the parameters. |
| 560 |
* |
| 561 |
* This function could be more sophisticated to provide closer upper bounds for |
| 562 |
* every combination of windowBits and memLevel. But even the conservative |
| 563 |
* upper bound of about 14% expansion does not seem onerous for output buffer |
| 564 |
* allocation. |
| 565 |
*/ |
| 566 |
uLong ZEXPORT deflateBound(strm, sourceLen) |
| 567 |
z_streamp strm; |
| 568 |
uLong sourceLen; |
| 569 |
{ |
| 570 |
deflate_state *s; |
| 571 |
uLong complen, wraplen; |
| 572 |
Bytef *str; |
| 573 |
|
| 574 |
/* conservative upper bound for compressed data */ |
| 575 |
complen = sourceLen + |
| 576 |
((sourceLen + 7) >> 3) + ((sourceLen + 63) >> 6) + 5; |
| 577 |
|
| 578 |
/* if can't get parameters, return conservative bound plus zlib wrapper */ |
| 579 |
if (strm == Z_NULL || strm->state == Z_NULL) |
| 580 |
return complen + 6; |
| 581 |
|
| 582 |
/* compute wrapper length */ |
| 583 |
s = strm->state; |
| 584 |
switch (s->wrap) { |
| 585 |
case 0: /* raw deflate */ |
| 586 |
wraplen = 0; |
| 587 |
break; |
| 588 |
case 1: /* zlib wrapper */ |
| 589 |
wraplen = 6 + (s->strstart ? 4 : 0); |
| 590 |
break; |
| 591 |
case 2: /* gzip wrapper */ |
| 592 |
wraplen = 18; |
| 593 |
if (s->gzhead != Z_NULL) { /* user-supplied gzip header */ |
| 594 |
if (s->gzhead->extra != Z_NULL) |
| 595 |
wraplen += 2 + s->gzhead->extra_len; |
| 596 |
str = s->gzhead->name; |
| 597 |
if (str != Z_NULL) |
| 598 |
do { |
| 599 |
wraplen++; |
| 600 |
} while (*str++); |
| 601 |
str = s->gzhead->comment; |
| 602 |
if (str != Z_NULL) |
| 603 |
do { |
| 604 |
wraplen++; |
| 605 |
} while (*str++); |
| 606 |
if (s->gzhead->hcrc) |
| 607 |
wraplen += 2; |
| 608 |
} |
| 609 |
break; |
| 610 |
default: /* for compiler happiness */ |
| 611 |
wraplen = 6; |
| 612 |
} |
| 613 |
|
| 614 |
/* if not default parameters, return conservative bound */ |
| 615 |
if (s->w_bits != 15 || s->hash_bits != 8 + 7) |
| 616 |
return complen + wraplen; |
| 617 |
|
| 618 |
/* default settings: return tight bound for that case */ |
| 619 |
return sourceLen + (sourceLen >> 12) + (sourceLen >> 14) + |
| 620 |
(sourceLen >> 25) + 13 - 6 + wraplen; |
| 621 |
} |
| 622 |
|
| 623 |
/* ========================================================================= |
| 624 |
* Put a short in the pending buffer. The 16-bit value is put in MSB order. |
| 625 |
* IN assertion: the stream state is correct and there is enough room in |
| 626 |
* pending_buf. |
| 627 |
*/ |
| 628 |
local void putShortMSB (s, b) |
| 629 |
deflate_state *s; |
| 630 |
uInt b; |
| 631 |
{ |
| 632 |
put_byte(s, (Byte)(b >> 8)); |
| 633 |
put_byte(s, (Byte)(b & 0xff)); |
| 634 |
} |
| 635 |
|
| 636 |
/* ========================================================================= |
| 637 |
* Flush as much pending output as possible. All deflate() output goes |
| 638 |
* through this function so some applications may wish to modify it |
| 639 |
* to avoid allocating a large strm->next_out buffer and copying into it. |
| 640 |
* (See also read_buf()). |
| 641 |
*/ |
| 642 |
local void flush_pending(strm) |
| 643 |
z_streamp strm; |
| 644 |
{ |
| 645 |
unsigned len; |
| 646 |
deflate_state *s = strm->state; |
| 647 |
|
| 648 |
_tr_flush_bits(s); |
| 649 |
len = s->pending; |
| 650 |
if (len > strm->avail_out) len = strm->avail_out; |
| 651 |
if (len == 0) return; |
| 652 |
|
| 653 |
zmemcpy(strm->next_out, s->pending_out, len); |
| 654 |
strm->next_out += len; |
| 655 |
s->pending_out += len; |
| 656 |
strm->total_out += len; |
| 657 |
strm->avail_out -= len; |
| 658 |
s->pending -= len; |
| 659 |
if (s->pending == 0) { |
| 660 |
s->pending_out = s->pending_buf; |
| 661 |
} |
| 662 |
} |
| 663 |
|
| 664 |
/* ========================================================================= */ |
| 665 |
int ZEXPORT deflate (strm, flush) |
| 666 |
z_streamp strm; |
| 667 |
int flush; |
| 668 |
{ |
| 669 |
int old_flush; /* value of flush param for previous deflate call */ |
| 670 |
deflate_state *s; |
| 671 |
|
| 672 |
if (strm == Z_NULL || strm->state == Z_NULL || |
| 673 |
flush > Z_BLOCK || flush < 0) { |
| 674 |
return Z_STREAM_ERROR; |
| 675 |
} |
| 676 |
s = strm->state; |
| 677 |
|
| 678 |
if (strm->next_out == Z_NULL || |
| 679 |
(strm->next_in == Z_NULL && strm->avail_in != 0) || |
| 680 |
(s->status == FINISH_STATE && flush != Z_FINISH)) { |
| 681 |
ERR_RETURN(strm, Z_STREAM_ERROR); |
| 682 |
} |
| 683 |
if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR); |
| 684 |
|
| 685 |
s->strm = strm; /* just in case */ |
| 686 |
old_flush = s->last_flush; |
| 687 |
s->last_flush = flush; |
| 688 |
|
| 689 |
/* Write the header */ |
| 690 |
if (s->status == INIT_STATE) { |
| 691 |
#ifdef GZIP |
| 692 |
if (s->wrap == 2) { |
| 693 |
strm->adler = crc32(0L, Z_NULL, 0); |
| 694 |
put_byte(s, 31); |
| 695 |
put_byte(s, 139); |
| 696 |
put_byte(s, 8); |
| 697 |
if (s->gzhead == Z_NULL) { |
| 698 |
put_byte(s, 0); |
| 699 |
put_byte(s, 0); |
| 700 |
put_byte(s, 0); |
| 701 |
put_byte(s, 0); |
| 702 |
put_byte(s, 0); |
| 703 |
put_byte(s, s->level == 9 ? 2 : |
| 704 |
(s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ? |
| 705 |
4 : 0)); |
| 706 |
put_byte(s, OS_CODE); |
| 707 |
s->status = BUSY_STATE; |
| 708 |
} |
| 709 |
else { |
| 710 |
put_byte(s, (s->gzhead->text ? 1 : 0) + |
| 711 |
(s->gzhead->hcrc ? 2 : 0) + |
| 712 |
(s->gzhead->extra == Z_NULL ? 0 : 4) + |
| 713 |
(s->gzhead->name == Z_NULL ? 0 : 8) + |
| 714 |
(s->gzhead->comment == Z_NULL ? 0 : 16) |
| 715 |
); |
| 716 |
put_byte(s, (Byte)(s->gzhead->time & 0xff)); |
| 717 |
put_byte(s, (Byte)((s->gzhead->time >> 8) & 0xff)); |
| 718 |
put_byte(s, (Byte)((s->gzhead->time >> 16) & 0xff)); |
| 719 |
put_byte(s, (Byte)((s->gzhead->time >> 24) & 0xff)); |
| 720 |
put_byte(s, s->level == 9 ? 2 : |
| 721 |
(s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ? |
| 722 |
4 : 0)); |
| 723 |
put_byte(s, s->gzhead->os & 0xff); |
| 724 |
if (s->gzhead->extra != Z_NULL) { |
| 725 |
put_byte(s, s->gzhead->extra_len & 0xff); |
| 726 |
put_byte(s, (s->gzhead->extra_len >> 8) & 0xff); |
| 727 |
} |
| 728 |
if (s->gzhead->hcrc) |
| 729 |
strm->adler = crc32(strm->adler, s->pending_buf, |
| 730 |
s->pending); |
| 731 |
s->gzindex = 0; |
| 732 |
s->status = EXTRA_STATE; |
| 733 |
} |
| 734 |
} |
| 735 |
else |
| 736 |
#endif |
| 737 |
{ |
| 738 |
uInt header = (Z_DEFLATED + ((s->w_bits-8)<<4)) << 8; |
| 739 |
uInt level_flags; |
| 740 |
|
| 741 |
if (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2) |
| 742 |
level_flags = 0; |
| 743 |
else if (s->level < 6) |
| 744 |
level_flags = 1; |
| 745 |
else if (s->level == 6) |
| 746 |
level_flags = 2; |
| 747 |
else |
| 748 |
level_flags = 3; |
| 749 |
header |= (level_flags << 6); |
| 750 |
if (s->strstart != 0) header |= PRESET_DICT; |
| 751 |
header += 31 - (header % 31); |
| 752 |
|
| 753 |
s->status = BUSY_STATE; |
| 754 |
putShortMSB(s, header); |
| 755 |
|
| 756 |
/* Save the adler32 of the preset dictionary: */ |
| 757 |
if (s->strstart != 0) { |
| 758 |
putShortMSB(s, (uInt)(strm->adler >> 16)); |
| 759 |
putShortMSB(s, (uInt)(strm->adler & 0xffff)); |
| 760 |
} |
| 761 |
strm->adler = adler32(0L, Z_NULL, 0); |
| 762 |
} |
| 763 |
} |
| 764 |
#ifdef GZIP |
| 765 |
if (s->status == EXTRA_STATE) { |
| 766 |
if (s->gzhead->extra != Z_NULL) { |
| 767 |
uInt beg = s->pending; /* start of bytes to update crc */ |
| 768 |
|
| 769 |
while (s->gzindex < (s->gzhead->extra_len & 0xffff)) { |
| 770 |
if (s->pending == s->pending_buf_size) { |
| 771 |
if (s->gzhead->hcrc && s->pending > beg) |
| 772 |
strm->adler = crc32(strm->adler, s->pending_buf + beg, |
| 773 |
s->pending - beg); |
| 774 |
flush_pending(strm); |
| 775 |
beg = s->pending; |
| 776 |
if (s->pending == s->pending_buf_size) |
| 777 |
break; |
| 778 |
} |
| 779 |
put_byte(s, s->gzhead->extra[s->gzindex]); |
| 780 |
s->gzindex++; |
| 781 |
} |
| 782 |
if (s->gzhead->hcrc && s->pending > beg) |
| 783 |
strm->adler = crc32(strm->adler, s->pending_buf + beg, |
| 784 |
s->pending - beg); |
| 785 |
if (s->gzindex == s->gzhead->extra_len) { |
| 786 |
s->gzindex = 0; |
| 787 |
s->status = NAME_STATE; |
| 788 |
} |
| 789 |
} |
| 790 |
else |
| 791 |
s->status = NAME_STATE; |
| 792 |
} |
| 793 |
if (s->status == NAME_STATE) { |
| 794 |
if (s->gzhead->name != Z_NULL) { |
| 795 |
uInt beg = s->pending; /* start of bytes to update crc */ |
| 796 |
int val; |
| 797 |
|
| 798 |
do { |
| 799 |
if (s->pending == s->pending_buf_size) { |
| 800 |
if (s->gzhead->hcrc && s->pending > beg) |
| 801 |
strm->adler = crc32(strm->adler, s->pending_buf + beg, |
| 802 |
s->pending - beg); |
| 803 |
flush_pending(strm); |
| 804 |
beg = s->pending; |
| 805 |
if (s->pending == s->pending_buf_size) { |
| 806 |
val = 1; |
| 807 |
break; |
| 808 |
} |
| 809 |
} |
| 810 |
val = s->gzhead->name[s->gzindex++]; |
| 811 |
put_byte(s, val); |
| 812 |
} while (val != 0); |
| 813 |
if (s->gzhead->hcrc && s->pending > beg) |
| 814 |
strm->adler = crc32(strm->adler, s->pending_buf + beg, |
| 815 |
s->pending - beg); |
| 816 |
if (val == 0) { |
| 817 |
s->gzindex = 0; |
| 818 |
s->status = COMMENT_STATE; |
| 819 |
} |
| 820 |
} |
| 821 |
else |
| 822 |
s->status = COMMENT_STATE; |
| 823 |
} |
| 824 |
if (s->status == COMMENT_STATE) { |
| 825 |
if (s->gzhead->comment != Z_NULL) { |
| 826 |
uInt beg = s->pending; /* start of bytes to update crc */ |
| 827 |
int val; |
| 828 |
|
| 829 |
do { |
| 830 |
if (s->pending == s->pending_buf_size) { |
| 831 |
if (s->gzhead->hcrc && s->pending > beg) |
| 832 |
strm->adler = crc32(strm->adler, s->pending_buf + beg, |
| 833 |
s->pending - beg); |
| 834 |
flush_pending(strm); |
| 835 |
beg = s->pending; |
| 836 |
if (s->pending == s->pending_buf_size) { |
| 837 |
val = 1; |
| 838 |
break; |
| 839 |
} |
| 840 |
} |
| 841 |
val = s->gzhead->comment[s->gzindex++]; |
| 842 |
put_byte(s, val); |
| 843 |
} while (val != 0); |
| 844 |
if (s->gzhead->hcrc && s->pending > beg) |
| 845 |
strm->adler = crc32(strm->adler, s->pending_buf + beg, |
| 846 |
s->pending - beg); |
| 847 |
if (val == 0) |
| 848 |
s->status = HCRC_STATE; |
| 849 |
} |
| 850 |
else |
| 851 |
s->status = HCRC_STATE; |
| 852 |
} |
| 853 |
if (s->status == HCRC_STATE) { |
| 854 |
if (s->gzhead->hcrc) { |
| 855 |
if (s->pending + 2 > s->pending_buf_size) |
| 856 |
flush_pending(strm); |
| 857 |
if (s->pending + 2 <= s->pending_buf_size) { |
| 858 |
put_byte(s, (Byte)(strm->adler & 0xff)); |
| 859 |
put_byte(s, (Byte)((strm->adler >> 8) & 0xff)); |
| 860 |
strm->adler = crc32(0L, Z_NULL, 0); |
| 861 |
s->status = BUSY_STATE; |
| 862 |
} |
| 863 |
} |
| 864 |
else |
| 865 |
s->status = BUSY_STATE; |
| 866 |
} |
| 867 |
#endif |
| 868 |
|
| 869 |
/* Flush as much pending output as possible */ |
| 870 |
if (s->pending != 0) { |
| 871 |
flush_pending(strm); |
| 872 |
if (strm->avail_out == 0) { |
| 873 |
/* Since avail_out is 0, deflate will be called again with |
| 874 |
* more output space, but possibly with both pending and |
| 875 |
* avail_in equal to zero. There won't be anything to do, |
| 876 |
* but this is not an error situation so make sure we |
| 877 |
* return OK instead of BUF_ERROR at next call of deflate: |
| 878 |
*/ |
| 879 |
s->last_flush = -1; |
| 880 |
return Z_OK; |
| 881 |
} |
| 882 |
|
| 883 |
/* Make sure there is something to do and avoid duplicate consecutive |
| 884 |
* flushes. For repeated and useless calls with Z_FINISH, we keep |
| 885 |
* returning Z_STREAM_END instead of Z_BUF_ERROR. |
| 886 |
*/ |
| 887 |
} else if (strm->avail_in == 0 && RANK(flush) <= RANK(old_flush) && |
| 888 |
flush != Z_FINISH) { |
| 889 |
ERR_RETURN(strm, Z_BUF_ERROR); |
| 890 |
} |
| 891 |
|
| 892 |
/* User must not provide more input after the first FINISH: */ |
| 893 |
if (s->status == FINISH_STATE && strm->avail_in != 0) { |
| 894 |
ERR_RETURN(strm, Z_BUF_ERROR); |
| 895 |
} |
| 896 |
|
| 897 |
/* Start a new block or continue the current one. |
| 898 |
*/ |
| 899 |
if (strm->avail_in != 0 || s->lookahead != 0 || |
| 900 |
(flush != Z_NO_FLUSH && s->status != FINISH_STATE)) { |
| 901 |
block_state bstate; |
| 902 |
|
| 903 |
bstate = s->strategy == Z_HUFFMAN_ONLY ? deflate_huff(s, flush) : |
| 904 |
(s->strategy == Z_RLE ? deflate_rle(s, flush) : |
| 905 |
(*(configuration_table[s->level].func))(s, flush)); |
| 906 |
|
| 907 |
if (bstate == finish_started || bstate == finish_done) { |
| 908 |
s->status = FINISH_STATE; |
| 909 |
} |
| 910 |
if (bstate == need_more || bstate == finish_started) { |
| 911 |
if (strm->avail_out == 0) { |
| 912 |
s->last_flush = -1; /* avoid BUF_ERROR next call, see above */ |
| 913 |
} |
| 914 |
return Z_OK; |
| 915 |
/* If flush != Z_NO_FLUSH && avail_out == 0, the next call |
| 916 |
* of deflate should use the same flush parameter to make sure |
| 917 |
* that the flush is complete. So we don't have to output an |
| 918 |
* empty block here, this will be done at next call. This also |
| 919 |
* ensures that for a very small output buffer, we emit at most |
| 920 |
* one empty block. |
| 921 |
*/ |
| 922 |
} |
| 923 |
if (bstate == block_done) { |
| 924 |
if (flush == Z_PARTIAL_FLUSH) { |
| 925 |
_tr_align(s); |
| 926 |
} else if (flush != Z_BLOCK) { /* FULL_FLUSH or SYNC_FLUSH */ |
| 927 |
_tr_stored_block(s, (char*)0, 0L, 0); |
| 928 |
/* For a full flush, this empty block will be recognized |
| 929 |
* as a special marker by inflate_sync(). |
| 930 |
*/ |
| 931 |
if (flush == Z_FULL_FLUSH) { |
| 932 |
CLEAR_HASH(s); /* forget history */ |
| 933 |
if (s->lookahead == 0) { |
| 934 |
s->strstart = 0; |
| 935 |
s->block_start = 0L; |
| 936 |
s->insert = 0; |
| 937 |
} |
| 938 |
} |
| 939 |
} |
| 940 |
flush_pending(strm); |
| 941 |
if (strm->avail_out == 0) { |
| 942 |
s->last_flush = -1; /* avoid BUF_ERROR at next call, see above */ |
| 943 |
return Z_OK; |
| 944 |
} |
| 945 |
} |
| 946 |
} |
| 947 |
Assert(strm->avail_out > 0, "bug2"); |
| 948 |
|
| 949 |
if (flush != Z_FINISH) return Z_OK; |
| 950 |
if (s->wrap <= 0) return Z_STREAM_END; |
| 951 |
|
| 952 |
/* Write the trailer */ |
| 953 |
#ifdef GZIP |
| 954 |
if (s->wrap == 2) { |
| 955 |
put_byte(s, (Byte)(strm->adler & 0xff)); |
| 956 |
put_byte(s, (Byte)((strm->adler >> 8) & 0xff)); |
| 957 |
put_byte(s, (Byte)((strm->adler >> 16) & 0xff)); |
| 958 |
put_byte(s, (Byte)((strm->adler >> 24) & 0xff)); |
| 959 |
put_byte(s, (Byte)(strm->total_in & 0xff)); |
| 960 |
put_byte(s, (Byte)((strm->total_in >> 8) & 0xff)); |
| 961 |
put_byte(s, (Byte)((strm->total_in >> 16) & 0xff)); |
| 962 |
put_byte(s, (Byte)((strm->total_in >> 24) & 0xff)); |
| 963 |
} |
| 964 |
else |
| 965 |
#endif |
| 966 |
{ |
| 967 |
putShortMSB(s, (uInt)(strm->adler >> 16)); |
| 968 |
putShortMSB(s, (uInt)(strm->adler & 0xffff)); |
| 969 |
} |
| 970 |
flush_pending(strm); |
| 971 |
/* If avail_out is zero, the application will call deflate again |
| 972 |
* to flush the rest. |
| 973 |
*/ |
| 974 |
if (s->wrap > 0) s->wrap = -s->wrap; /* write the trailer only once! */ |
| 975 |
return s->pending != 0 ? Z_OK : Z_STREAM_END; |
| 976 |
} |
| 977 |
|
| 978 |
/* ========================================================================= */ |
| 979 |
int ZEXPORT deflateEnd (strm) |
| 980 |
z_streamp strm; |
| 981 |
{ |
| 982 |
int status; |
| 983 |
|
| 984 |
if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; |
| 985 |
|
| 986 |
status = strm->state->status; |
| 987 |
if (status != INIT_STATE && |
| 988 |
status != EXTRA_STATE && |
| 989 |
status != NAME_STATE && |
| 990 |
status != COMMENT_STATE && |
| 991 |
status != HCRC_STATE && |
| 992 |
status != BUSY_STATE && |
| 993 |
status != FINISH_STATE) { |
| 994 |
return Z_STREAM_ERROR; |
| 995 |
} |
| 996 |
|
| 997 |
/* Deallocate in reverse order of allocations: */ |
| 998 |
TRY_FREE(strm, strm->state->pending_buf); |
| 999 |
TRY_FREE(strm, strm->state->head); |
| 1000 |
TRY_FREE(strm, strm->state->prev); |
| 1001 |
TRY_FREE(strm, strm->state->window); |
| 1002 |
|
| 1003 |
ZFREE(strm, strm->state); |
| 1004 |
strm->state = Z_NULL; |
| 1005 |
|
| 1006 |
return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK; |
| 1007 |
} |
| 1008 |
|
| 1009 |
/* ========================================================================= |
| 1010 |
* Copy the source state to the destination state. |
| 1011 |
* To simplify the source, this is not supported for 16-bit MSDOS (which |
| 1012 |
* doesn't have enough memory anyway to duplicate compression states). |
| 1013 |
*/ |
| 1014 |
int ZEXPORT deflateCopy (dest, source) |
| 1015 |
z_streamp dest; |
| 1016 |
z_streamp source; |
| 1017 |
{ |
| 1018 |
#ifdef MAXSEG_64K |
| 1019 |
return Z_STREAM_ERROR; |
| 1020 |
#else |
| 1021 |
deflate_state *ds; |
| 1022 |
deflate_state *ss; |
| 1023 |
ushf *overlay; |
| 1024 |
|
| 1025 |
|
| 1026 |
if (source == Z_NULL || dest == Z_NULL || source->state == Z_NULL) { |
| 1027 |
return Z_STREAM_ERROR; |
| 1028 |
} |
| 1029 |
|
| 1030 |
ss = source->state; |
| 1031 |
|
| 1032 |
zmemcpy((voidpf)dest, (voidpf)source, sizeof(z_stream)); |
| 1033 |
|
| 1034 |
ds = (deflate_state *) ZALLOC(dest, 1, sizeof(deflate_state)); |
| 1035 |
if (ds == Z_NULL) return Z_MEM_ERROR; |
| 1036 |
dest->state = (struct internal_state FAR *) ds; |
| 1037 |
zmemcpy((voidpf)ds, (voidpf)ss, sizeof(deflate_state)); |
| 1038 |
ds->strm = dest; |
| 1039 |
|
| 1040 |
ds->window = (Bytef *) ZALLOC(dest, ds->w_size, 2*sizeof(Byte)); |
| 1041 |
ds->prev = (Posf *) ZALLOC(dest, ds->w_size, sizeof(Pos)); |
| 1042 |
ds->head = (Posf *) ZALLOC(dest, ds->hash_size, sizeof(Pos)); |
| 1043 |
overlay = (ushf *) ZALLOC(dest, ds->lit_bufsize, sizeof(ush)+2); |
| 1044 |
ds->pending_buf = (uchf *) overlay; |
| 1045 |
|
| 1046 |
if (ds->window == Z_NULL || ds->prev == Z_NULL || ds->head == Z_NULL || |
| 1047 |
ds->pending_buf == Z_NULL) { |
| 1048 |
deflateEnd (dest); |
| 1049 |
return Z_MEM_ERROR; |
| 1050 |
} |
| 1051 |
/* following zmemcpy do not work for 16-bit MSDOS */ |
| 1052 |
zmemcpy(ds->window, ss->window, ds->w_size * 2 * sizeof(Byte)); |
| 1053 |
zmemcpy((voidpf)ds->prev, (voidpf)ss->prev, ds->w_size * sizeof(Pos)); |
| 1054 |
zmemcpy((voidpf)ds->head, (voidpf)ss->head, ds->hash_size * sizeof(Pos)); |
| 1055 |
zmemcpy(ds->pending_buf, ss->pending_buf, (uInt)ds->pending_buf_size); |
| 1056 |
|
| 1057 |
ds->pending_out = ds->pending_buf + (ss->pending_out - ss->pending_buf); |
| 1058 |
ds->d_buf = overlay + ds->lit_bufsize/sizeof(ush); |
| 1059 |
ds->l_buf = ds->pending_buf + (1+sizeof(ush))*ds->lit_bufsize; |
| 1060 |
|
| 1061 |
ds->l_desc.dyn_tree = ds->dyn_ltree; |
| 1062 |
ds->d_desc.dyn_tree = ds->dyn_dtree; |
| 1063 |
ds->bl_desc.dyn_tree = ds->bl_tree; |
| 1064 |
|
| 1065 |
return Z_OK; |
| 1066 |
#endif /* MAXSEG_64K */ |
| 1067 |
} |
| 1068 |
|
| 1069 |
/* =========================================================================== |
| 1070 |
* Read a new buffer from the current input stream, update the adler32 |
| 1071 |
* and total number of bytes read. All deflate() input goes through |
| 1072 |
* this function so some applications may wish to modify it to avoid |
| 1073 |
* allocating a large strm->next_in buffer and copying from it. |
| 1074 |
* (See also flush_pending()). |
| 1075 |
*/ |
| 1076 |
local int read_buf(strm, buf, size) |
| 1077 |
z_streamp strm; |
| 1078 |
Bytef *buf; |
| 1079 |
unsigned size; |
| 1080 |
{ |
| 1081 |
unsigned len = strm->avail_in; |
| 1082 |
|
| 1083 |
if (len > size) len = size; |
| 1084 |
if (len == 0) return 0; |
| 1085 |
|
| 1086 |
strm->avail_in -= len; |
| 1087 |
|
| 1088 |
zmemcpy(buf, strm->next_in, len); |
| 1089 |
if (strm->state->wrap == 1) { |
| 1090 |
strm->adler = adler32(strm->adler, buf, len); |
| 1091 |
} |
| 1092 |
#ifdef GZIP |
| 1093 |
else if (strm->state->wrap == 2) { |
| 1094 |
strm->adler = crc32(strm->adler, buf, len); |
| 1095 |
} |
| 1096 |
#endif |
| 1097 |
strm->next_in += len; |
| 1098 |
strm->total_in += len; |
| 1099 |
|
| 1100 |
return (int)len; |
| 1101 |
} |
| 1102 |
|
| 1103 |
/* =========================================================================== |
| 1104 |
* Initialize the "longest match" routines for a new zlib stream |
| 1105 |
*/ |
| 1106 |
local void lm_init (s) |
| 1107 |
deflate_state *s; |
| 1108 |
{ |
| 1109 |
s->window_size = (ulg)2L*s->w_size; |
| 1110 |
|
| 1111 |
CLEAR_HASH(s); |
| 1112 |
|
| 1113 |
/* Set the default configuration parameters: |
| 1114 |
*/ |
| 1115 |
s->max_lazy_match = configuration_table[s->level].max_lazy; |
| 1116 |
s->good_match = configuration_table[s->level].good_length; |
| 1117 |
s->nice_match = configuration_table[s->level].nice_length; |
| 1118 |
s->max_chain_length = configuration_table[s->level].max_chain; |
| 1119 |
|
| 1120 |
s->strstart = 0; |
| 1121 |
s->block_start = 0L; |
| 1122 |
s->lookahead = 0; |
| 1123 |
s->insert = 0; |
| 1124 |
s->match_length = s->prev_length = MIN_MATCH-1; |
| 1125 |
s->match_available = 0; |
| 1126 |
s->ins_h = 0; |
| 1127 |
#ifndef FASTEST |
| 1128 |
#ifdef ASMV |
| 1129 |
match_init(); /* initialize the asm code */ |
| 1130 |
#endif |
| 1131 |
#endif |
| 1132 |
} |
| 1133 |
|
| 1134 |
#ifndef FASTEST |
| 1135 |
/* =========================================================================== |
| 1136 |
* Set match_start to the longest match starting at the given string and |
| 1137 |
* return its length. Matches shorter or equal to prev_length are discarded, |
| 1138 |
* in which case the result is equal to prev_length and match_start is |
| 1139 |
* garbage. |
| 1140 |
* IN assertions: cur_match is the head of the hash chain for the current |
| 1141 |
* string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1 |
| 1142 |
* OUT assertion: the match length is not greater than s->lookahead. |
| 1143 |
*/ |
| 1144 |
#ifndef ASMV |
| 1145 |
/* For 80x86 and 680x0, an optimized version will be provided in match.asm or |
| 1146 |
* match.S. The code will be functionally equivalent. |
| 1147 |
*/ |
| 1148 |
local uInt longest_match(s, cur_match) |
| 1149 |
deflate_state *s; |
| 1150 |
IPos cur_match; /* current match */ |
| 1151 |
{ |
| 1152 |
unsigned chain_length = s->max_chain_length;/* max hash chain length */ |
| 1153 |
register Bytef *scan = s->window + s->strstart; /* current string */ |
| 1154 |
register Bytef *match; /* matched string */ |
| 1155 |
register int len; /* length of current match */ |
| 1156 |
int best_len = s->prev_length; /* best match length so far */ |
| 1157 |
int nice_match = s->nice_match; /* stop if match long enough */ |
| 1158 |
IPos limit = s->strstart > (IPos)MAX_DIST(s) ? |
| 1159 |
s->strstart - (IPos)MAX_DIST(s) : NIL; |
| 1160 |
/* Stop when cur_match becomes <= limit. To simplify the code, |
| 1161 |
* we prevent matches with the string of window index 0. |
| 1162 |
*/ |
| 1163 |
Posf *prev = s->prev; |
| 1164 |
uInt wmask = s->w_mask; |
| 1165 |
|
| 1166 |
#ifdef UNALIGNED_OK |
| 1167 |
/* Compare two bytes at a time. Note: this is not always beneficial. |
| 1168 |
* Try with and without -DUNALIGNED_OK to check. |
| 1169 |
*/ |
| 1170 |
register Bytef *strend = s->window + s->strstart + MAX_MATCH - 1; |
| 1171 |
register ush scan_start = *(ushf*)scan; |
| 1172 |
register ush scan_end = *(ushf*)(scan+best_len-1); |
| 1173 |
#else |
| 1174 |
register Bytef *strend = s->window + s->strstart + MAX_MATCH; |
| 1175 |
register Byte scan_end1 = scan[best_len-1]; |
| 1176 |
register Byte scan_end = scan[best_len]; |
| 1177 |
#endif |
| 1178 |
|
| 1179 |
/* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16. |
| 1180 |
* It is easy to get rid of this optimization if necessary. |
| 1181 |
*/ |
| 1182 |
Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever"); |
| 1183 |
|
| 1184 |
/* Do not waste too much time if we already have a good match: */ |
| 1185 |
if (s->prev_length >= s->good_match) { |
| 1186 |
chain_length >>= 2; |
| 1187 |
} |
| 1188 |
/* Do not look for matches beyond the end of the input. This is necessary |
| 1189 |
* to make deflate deterministic. |
| 1190 |
*/ |
| 1191 |
if ((uInt)nice_match > s->lookahead) nice_match = s->lookahead; |
| 1192 |
|
| 1193 |
Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead"); |
| 1194 |
|
| 1195 |
do { |
| 1196 |
Assert(cur_match < s->strstart, "no future"); |
| 1197 |
match = s->window + cur_match; |
| 1198 |
|
| 1199 |
/* Skip to next match if the match length cannot increase |
| 1200 |
* or if the match length is less than 2. Note that the checks below |
| 1201 |
* for insufficient lookahead only occur occasionally for performance |
| 1202 |
* reasons. Therefore uninitialized memory will be accessed, and |
| 1203 |
* conditional jumps will be made that depend on those values. |
| 1204 |
* However the length of the match is limited to the lookahead, so |
| 1205 |
* the output of deflate is not affected by the uninitialized values. |
| 1206 |
*/ |
| 1207 |
#if (defined(UNALIGNED_OK) && MAX_MATCH == 258) |
| 1208 |
/* This code assumes sizeof(unsigned short) == 2. Do not use |
| 1209 |
* UNALIGNED_OK if your compiler uses a different size. |
| 1210 |
*/ |
| 1211 |
if (*(ushf*)(match+best_len-1) != scan_end || |
| 1212 |
*(ushf*)match != scan_start) continue; |
| 1213 |
|
| 1214 |
/* It is not necessary to compare scan[2] and match[2] since they are |
| 1215 |
* always equal when the other bytes match, given that the hash keys |
| 1216 |
* are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at |
| 1217 |
* strstart+3, +5, ... up to strstart+257. We check for insufficient |
| 1218 |
* lookahead only every 4th comparison; the 128th check will be made |
| 1219 |
* at strstart+257. If MAX_MATCH-2 is not a multiple of 8, it is |
| 1220 |
* necessary to put more guard bytes at the end of the window, or |
| 1221 |
* to check more often for insufficient lookahead. |
| 1222 |
*/ |
| 1223 |
Assert(scan[2] == match[2], "scan[2]?"); |
| 1224 |
scan++, match++; |
| 1225 |
do { |
| 1226 |
} while (*(ushf*)(scan+=2) == *(ushf*)(match+=2) && |
| 1227 |
*(ushf*)(scan+=2) == *(ushf*)(match+=2) && |
| 1228 |
*(ushf*)(scan+=2) == *(ushf*)(match+=2) && |
| 1229 |
*(ushf*)(scan+=2) == *(ushf*)(match+=2) && |
| 1230 |
scan < strend); |
| 1231 |
/* The funny "do {}" generates better code on most compilers */ |
| 1232 |
|
| 1233 |
/* Here, scan <= window+strstart+257 */ |
| 1234 |
Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan"); |
| 1235 |
if (*scan == *match) scan++; |
| 1236 |
|
| 1237 |
len = (MAX_MATCH - 1) - (int)(strend-scan); |
| 1238 |
scan = strend - (MAX_MATCH-1); |
| 1239 |
|
| 1240 |
#else /* UNALIGNED_OK */ |
| 1241 |
|
| 1242 |
if (match[best_len] != scan_end || |
| 1243 |
match[best_len-1] != scan_end1 || |
| 1244 |
*match != *scan || |
| 1245 |
*++match != scan[1]) continue; |
| 1246 |
|
| 1247 |
/* The check at best_len-1 can be removed because it will be made |
| 1248 |
* again later. (This heuristic is not always a win.) |
| 1249 |
* It is not necessary to compare scan[2] and match[2] since they |
| 1250 |
* are always equal when the other bytes match, given that |
| 1251 |
* the hash keys are equal and that HASH_BITS >= 8. |
| 1252 |
*/ |
| 1253 |
scan += 2, match++; |
| 1254 |
Assert(*scan == *match, "match[2]?"); |
| 1255 |
|
| 1256 |
/* We check for insufficient lookahead only every 8th comparison; |
| 1257 |
* the 256th check will be made at strstart+258. |
| 1258 |
*/ |
| 1259 |
do { |
| 1260 |
} while (*++scan == *++match && *++scan == *++match && |
| 1261 |
*++scan == *++match && *++scan == *++match && |
| 1262 |
*++scan == *++match && *++scan == *++match && |
| 1263 |
*++scan == *++match && *++scan == *++match && |
| 1264 |
scan < strend); |
| 1265 |
|
| 1266 |
Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan"); |
| 1267 |
|
| 1268 |
len = MAX_MATCH - (int)(strend - scan); |
| 1269 |
scan = strend - MAX_MATCH; |
| 1270 |
|
| 1271 |
#endif /* UNALIGNED_OK */ |
| 1272 |
|
| 1273 |
if (len > best_len) { |
| 1274 |
s->match_start = cur_match; |
| 1275 |
best_len = len; |
| 1276 |
if (len >= nice_match) break; |
| 1277 |
#ifdef UNALIGNED_OK |
| 1278 |
scan_end = *(ushf*)(scan+best_len-1); |
| 1279 |
#else |
| 1280 |
scan_end1 = scan[best_len-1]; |
| 1281 |
scan_end = scan[best_len]; |
| 1282 |
#endif |
| 1283 |
} |
| 1284 |
} while ((cur_match = prev[cur_match & wmask]) > limit |
| 1285 |
&& --chain_length != 0); |
| 1286 |
|
| 1287 |
if ((uInt)best_len <= s->lookahead) return (uInt)best_len; |
| 1288 |
return s->lookahead; |
| 1289 |
} |
| 1290 |
#endif /* ASMV */ |
| 1291 |
|
| 1292 |
#else /* FASTEST */ |
| 1293 |
|
| 1294 |
/* --------------------------------------------------------------------------- |
| 1295 |
* Optimized version for FASTEST only |
| 1296 |
*/ |
| 1297 |
local uInt longest_match(s, cur_match) |
| 1298 |
deflate_state *s; |
| 1299 |
IPos cur_match; /* current match */ |
| 1300 |
{ |
| 1301 |
register Bytef *scan = s->window + s->strstart; /* current string */ |
| 1302 |
register Bytef *match; /* matched string */ |
| 1303 |
register int len; /* length of current match */ |
| 1304 |
register Bytef *strend = s->window + s->strstart + MAX_MATCH; |
| 1305 |
|
| 1306 |
/* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16. |
| 1307 |
* It is easy to get rid of this optimization if necessary. |
| 1308 |
*/ |
| 1309 |
Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever"); |
| 1310 |
|
| 1311 |
Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead"); |
| 1312 |
|
| 1313 |
Assert(cur_match < s->strstart, "no future"); |
| 1314 |
|
| 1315 |
match = s->window + cur_match; |
| 1316 |
|
| 1317 |
/* Return failure if the match length is less than 2: |
| 1318 |
*/ |
| 1319 |
if (match[0] != scan[0] || match[1] != scan[1]) return MIN_MATCH-1; |
| 1320 |
|
| 1321 |
/* The check at best_len-1 can be removed because it will be made |
| 1322 |
* again later. (This heuristic is not always a win.) |
| 1323 |
* It is not necessary to compare scan[2] and match[2] since they |
| 1324 |
* are always equal when the other bytes match, given that |
| 1325 |
* the hash keys are equal and that HASH_BITS >= 8. |
| 1326 |
*/ |
| 1327 |
scan += 2, match += 2; |
| 1328 |
Assert(*scan == *match, "match[2]?"); |
| 1329 |
|
| 1330 |
/* We check for insufficient lookahead only every 8th comparison; |
| 1331 |
* the 256th check will be made at strstart+258. |
| 1332 |
*/ |
| 1333 |
do { |
| 1334 |
} while (*++scan == *++match && *++scan == *++match && |
| 1335 |
*++scan == *++match && *++scan == *++match && |
| 1336 |
*++scan == *++match && *++scan == *++match && |
| 1337 |
*++scan == *++match && *++scan == *++match && |
| 1338 |
scan < strend); |
| 1339 |
|
| 1340 |
Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan"); |
| 1341 |
|
| 1342 |
len = MAX_MATCH - (int)(strend - scan); |
| 1343 |
|
| 1344 |
if (len < MIN_MATCH) return MIN_MATCH - 1; |
| 1345 |
|
| 1346 |
s->match_start = cur_match; |
| 1347 |
return (uInt)len <= s->lookahead ? (uInt)len : s->lookahead; |
| 1348 |
} |
| 1349 |
|
| 1350 |
#endif /* FASTEST */ |
| 1351 |
|
| 1352 |
#ifdef DEBUG |
| 1353 |
/* =========================================================================== |
| 1354 |
* Check that the match at match_start is indeed a match. |
| 1355 |
*/ |
| 1356 |
local void check_match(s, start, match, length) |
| 1357 |
deflate_state *s; |
| 1358 |
IPos start, match; |
| 1359 |
int length; |
| 1360 |
{ |
| 1361 |
/* check that the match is indeed a match */ |
| 1362 |
if (zmemcmp(s->window + match, |
| 1363 |
s->window + start, length) != EQUAL) { |
| 1364 |
fprintf(stderr, " start %u, match %u, length %d\n", |
| 1365 |
start, match, length); |
| 1366 |
do { |
| 1367 |
fprintf(stderr, "%c%c", s->window[match++], s->window[start++]); |
| 1368 |
} while (--length != 0); |
| 1369 |
z_error("invalid match"); |
| 1370 |
} |
| 1371 |
if (z_verbose > 1) { |
| 1372 |
fprintf(stderr,"\\[%d,%d]", start-match, length); |
| 1373 |
do { putc(s->window[start++], stderr); } while (--length != 0); |
| 1374 |
} |
| 1375 |
} |
| 1376 |
#else |
| 1377 |
# define check_match(s, start, match, length) |
| 1378 |
#endif /* DEBUG */ |
| 1379 |
|
| 1380 |
/* =========================================================================== |
| 1381 |
* Fill the window when the lookahead becomes insufficient. |
| 1382 |
* Updates strstart and lookahead. |
| 1383 |
* |
| 1384 |
* IN assertion: lookahead < MIN_LOOKAHEAD |
| 1385 |
* OUT assertions: strstart <= window_size-MIN_LOOKAHEAD |
| 1386 |
* At least one byte has been read, or avail_in == 0; reads are |
| 1387 |
* performed for at least two bytes (required for the zip translate_eol |
| 1388 |
* option -- not supported here). |
| 1389 |
*/ |
| 1390 |
local void fill_window(s) |
| 1391 |
deflate_state *s; |
| 1392 |
{ |
| 1393 |
register unsigned n, m; |
| 1394 |
register Posf *p; |
| 1395 |
unsigned more; /* Amount of free space at the end of the window. */ |
| 1396 |
uInt wsize = s->w_size; |
| 1397 |
|
| 1398 |
Assert(s->lookahead < MIN_LOOKAHEAD, "already enough lookahead"); |
| 1399 |
|
| 1400 |
do { |
| 1401 |
more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart); |
| 1402 |
|
| 1403 |
/* Deal with !@#$% 64K limit: */ |
| 1404 |
if (sizeof(int) <= 2) { |
| 1405 |
if (more == 0 && s->strstart == 0 && s->lookahead == 0) { |
| 1406 |
more = wsize; |
| 1407 |
|
| 1408 |
} else if (more == (unsigned)(-1)) { |
| 1409 |
/* Very unlikely, but possible on 16 bit machine if |
| 1410 |
* strstart == 0 && lookahead == 1 (input done a byte at time) |
| 1411 |
*/ |
| 1412 |
more--; |
| 1413 |
} |
| 1414 |
} |
| 1415 |
|
| 1416 |
/* If the window is almost full and there is insufficient lookahead, |
| 1417 |
* move the upper half to the lower one to make room in the upper half. |
| 1418 |
*/ |
| 1419 |
if (s->strstart >= wsize+MAX_DIST(s)) { |
| 1420 |
|
| 1421 |
zmemcpy(s->window, s->window+wsize, (unsigned)wsize); |
| 1422 |
s->match_start -= wsize; |
| 1423 |
s->strstart -= wsize; /* we now have strstart >= MAX_DIST */ |
| 1424 |
s->block_start -= (long) wsize; |
| 1425 |
|
| 1426 |
/* Slide the hash table (could be avoided with 32 bit values |
| 1427 |
at the expense of memory usage). We slide even when level == 0 |
| 1428 |
to keep the hash table consistent if we switch back to level > 0 |
| 1429 |
later. (Using level 0 permanently is not an optimal usage of |
| 1430 |
zlib, so we don't care about this pathological case.) |
| 1431 |
*/ |
| 1432 |
n = s->hash_size; |
| 1433 |
p = &s->head[n]; |
| 1434 |
do { |
| 1435 |
m = *--p; |
| 1436 |
*p = (Pos)(m >= wsize ? m-wsize : NIL); |
| 1437 |
} while (--n); |
| 1438 |
|
| 1439 |
n = wsize; |
| 1440 |
#ifndef FASTEST |
| 1441 |
p = &s->prev[n]; |
| 1442 |
do { |
| 1443 |
m = *--p; |
| 1444 |
*p = (Pos)(m >= wsize ? m-wsize : NIL); |
| 1445 |
/* If n is not on any hash chain, prev[n] is garbage but |
| 1446 |
* its value will never be used. |
| 1447 |
*/ |
| 1448 |
} while (--n); |
| 1449 |
#endif |
| 1450 |
more += wsize; |
| 1451 |
} |
| 1452 |
if (s->strm->avail_in == 0) break; |
| 1453 |
|
| 1454 |
/* If there was no sliding: |
| 1455 |
* strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 && |
| 1456 |
* more == window_size - lookahead - strstart |
| 1457 |
* => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1) |
| 1458 |
* => more >= window_size - 2*WSIZE + 2 |
| 1459 |
* In the BIG_MEM or MMAP case (not yet supported), |
| 1460 |
* window_size == input_size + MIN_LOOKAHEAD && |
| 1461 |
* strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD. |
| 1462 |
* Otherwise, window_size == 2*WSIZE so more >= 2. |
| 1463 |
* If there was sliding, more >= WSIZE. So in all cases, more >= 2. |
| 1464 |
*/ |
| 1465 |
Assert(more >= 2, "more < 2"); |
| 1466 |
|
| 1467 |
n = read_buf(s->strm, s->window + s->strstart + s->lookahead, more); |
| 1468 |
s->lookahead += n; |
| 1469 |
|
| 1470 |
/* Initialize the hash value now that we have some input: */ |
| 1471 |
if (s->lookahead + s->insert >= MIN_MATCH) { |
| 1472 |
uInt str = s->strstart - s->insert; |
| 1473 |
s->ins_h = s->window[str]; |
| 1474 |
UPDATE_HASH(s, s->ins_h, s->window[str + 1]); |
| 1475 |
#if MIN_MATCH != 3 |
| 1476 |
Call UPDATE_HASH() MIN_MATCH-3 more times |
| 1477 |
#endif |
| 1478 |
while (s->insert) { |
| 1479 |
UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]); |
| 1480 |
#ifndef FASTEST |
| 1481 |
s->prev[str & s->w_mask] = s->head[s->ins_h]; |
| 1482 |
#endif |
| 1483 |
s->head[s->ins_h] = (Pos)str; |
| 1484 |
str++; |
| 1485 |
s->insert--; |
| 1486 |
if (s->lookahead + s->insert < MIN_MATCH) |
| 1487 |
break; |
| 1488 |
} |
| 1489 |
} |
| 1490 |
/* If the whole input has less than MIN_MATCH bytes, ins_h is garbage, |
| 1491 |
* but this is not important since only literal bytes will be emitted. |
| 1492 |
*/ |
| 1493 |
|
| 1494 |
} while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0); |
| 1495 |
|
| 1496 |
/* If the WIN_INIT bytes after the end of the current data have never been |
| 1497 |
* written, then zero those bytes in order to avoid memory check reports of |
| 1498 |
* the use of uninitialized (or uninitialised as Julian writes) bytes by |
| 1499 |
* the longest match routines. Update the high water mark for the next |
| 1500 |
* time through here. WIN_INIT is set to MAX_MATCH since the longest match |
| 1501 |
* routines allow scanning to strstart + MAX_MATCH, ignoring lookahead. |
| 1502 |
*/ |
| 1503 |
if (s->high_water < s->window_size) { |
| 1504 |
ulg curr = s->strstart + (ulg)(s->lookahead); |
| 1505 |
ulg init; |
| 1506 |
|
| 1507 |
if (s->high_water < curr) { |
| 1508 |
/* Previous high water mark below current data -- zero WIN_INIT |
| 1509 |
* bytes or up to end of window, whichever is less. |
| 1510 |
*/ |
| 1511 |
init = s->window_size - curr; |
| 1512 |
if (init > WIN_INIT) |
| 1513 |
init = WIN_INIT; |
| 1514 |
zmemzero(s->window + curr, (unsigned)init); |
| 1515 |
s->high_water = curr + init; |
| 1516 |
} |
| 1517 |
else if (s->high_water < (ulg)curr + WIN_INIT) { |
| 1518 |
/* High water mark at or above current data, but below current data |
| 1519 |
* plus WIN_INIT -- zero out to current data plus WIN_INIT, or up |
| 1520 |
* to end of window, whichever is less. |
| 1521 |
*/ |
| 1522 |
init = (ulg)curr + WIN_INIT - s->high_water; |
| 1523 |
if (init > s->window_size - s->high_water) |
| 1524 |
init = s->window_size - s->high_water; |
| 1525 |
zmemzero(s->window + s->high_water, (unsigned)init); |
| 1526 |
s->high_water += init; |
| 1527 |
} |
| 1528 |
} |
| 1529 |
|
| 1530 |
Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD, |
| 1531 |
"not enough room for search"); |
| 1532 |
} |
| 1533 |
|
| 1534 |
/* =========================================================================== |
| 1535 |
* Flush the current block, with given end-of-file flag. |
| 1536 |
* IN assertion: strstart is set to the end of the current match. |
| 1537 |
*/ |
| 1538 |
#define FLUSH_BLOCK_ONLY(s, last) { \ |
| 1539 |
_tr_flush_block(s, (s->block_start >= 0L ? \ |
| 1540 |
(charf *)&s->window[(unsigned)s->block_start] : \ |
| 1541 |
(charf *)Z_NULL), \ |
| 1542 |
(ulg)((long)s->strstart - s->block_start), \ |
| 1543 |
(last)); \ |
| 1544 |
s->block_start = s->strstart; \ |
| 1545 |
flush_pending(s->strm); \ |
| 1546 |
Tracev((stderr,"[FLUSH]")); \ |
| 1547 |
} |
| 1548 |
|
| 1549 |
/* Same but force premature exit if necessary. */ |
| 1550 |
#define FLUSH_BLOCK(s, last) { \ |
| 1551 |
FLUSH_BLOCK_ONLY(s, last); \ |
| 1552 |
if (s->strm->avail_out == 0) return (last) ? finish_started : need_more; \ |
| 1553 |
} |
| 1554 |
|
| 1555 |
/* =========================================================================== |
| 1556 |
* Copy without compression as much as possible from the input stream, return |
| 1557 |
* the current block state. |
| 1558 |
* This function does not insert new strings in the dictionary since |
| 1559 |
* uncompressible data is probably not useful. This function is used |
| 1560 |
* only for the level=0 compression option. |
| 1561 |
* NOTE: this function should be optimized to avoid extra copying from |
| 1562 |
* window to pending_buf. |
| 1563 |
*/ |
| 1564 |
local block_state deflate_stored(s, flush) |
| 1565 |
deflate_state *s; |
| 1566 |
int flush; |
| 1567 |
{ |
| 1568 |
/* Stored blocks are limited to 0xffff bytes, pending_buf is limited |
| 1569 |
* to pending_buf_size, and each stored block has a 5 byte header: |
| 1570 |
*/ |
| 1571 |
ulg max_block_size = 0xffff; |
| 1572 |
ulg max_start; |
| 1573 |
|
| 1574 |
if (max_block_size > s->pending_buf_size - 5) { |
| 1575 |
max_block_size = s->pending_buf_size - 5; |
| 1576 |
} |
| 1577 |
|
| 1578 |
/* Copy as much as possible from input to output: */ |
| 1579 |
for (;;) { |
| 1580 |
/* Fill the window as much as possible: */ |
| 1581 |
if (s->lookahead <= 1) { |
| 1582 |
|
| 1583 |
Assert(s->strstart < s->w_size+MAX_DIST(s) || |
| 1584 |
s->block_start >= (long)s->w_size, "slide too late"); |
| 1585 |
|
| 1586 |
fill_window(s); |
| 1587 |
if (s->lookahead == 0 && flush == Z_NO_FLUSH) return need_more; |
| 1588 |
|
| 1589 |
if (s->lookahead == 0) break; /* flush the current block */ |
| 1590 |
} |
| 1591 |
Assert(s->block_start >= 0L, "block gone"); |
| 1592 |
|
| 1593 |
s->strstart += s->lookahead; |
| 1594 |
s->lookahead = 0; |
| 1595 |
|
| 1596 |
/* Emit a stored block if pending_buf will be full: */ |
| 1597 |
max_start = s->block_start + max_block_size; |
| 1598 |
if (s->strstart == 0 || (ulg)s->strstart >= max_start) { |
| 1599 |
/* strstart == 0 is possible when wraparound on 16-bit machine */ |
| 1600 |
s->lookahead = (uInt)(s->strstart - max_start); |
| 1601 |
s->strstart = (uInt)max_start; |
| 1602 |
FLUSH_BLOCK(s, 0); |
| 1603 |
} |
| 1604 |
/* Flush if we may have to slide, otherwise block_start may become |
| 1605 |
* negative and the data will be gone: |
| 1606 |
*/ |
| 1607 |
if (s->strstart - (uInt)s->block_start >= MAX_DIST(s)) { |
| 1608 |
FLUSH_BLOCK(s, 0); |
| 1609 |
} |
| 1610 |
} |
| 1611 |
s->insert = 0; |
| 1612 |
if (flush == Z_FINISH) { |
| 1613 |
FLUSH_BLOCK(s, 1); |
| 1614 |
return finish_done; |
| 1615 |
} |
| 1616 |
if ((long)s->strstart > s->block_start) |
| 1617 |
FLUSH_BLOCK(s, 0); |
| 1618 |
return block_done; |
| 1619 |
} |
| 1620 |
|
| 1621 |
/* =========================================================================== |
| 1622 |
* Compress as much as possible from the input stream, return the current |
| 1623 |
* block state. |
| 1624 |
* This function does not perform lazy evaluation of matches and inserts |
| 1625 |
* new strings in the dictionary only for unmatched strings or for short |
| 1626 |
* matches. It is used only for the fast compression options. |
| 1627 |
*/ |
| 1628 |
local block_state deflate_fast(s, flush) |
| 1629 |
deflate_state *s; |
| 1630 |
int flush; |
| 1631 |
{ |
| 1632 |
IPos hash_head; /* head of the hash chain */ |
| 1633 |
int bflush; /* set if current block must be flushed */ |
| 1634 |
|
| 1635 |
for (;;) { |
| 1636 |
/* Make sure that we always have enough lookahead, except |
| 1637 |
* at the end of the input file. We need MAX_MATCH bytes |
| 1638 |
* for the next match, plus MIN_MATCH bytes to insert the |
| 1639 |
* string following the next match. |
| 1640 |
*/ |
| 1641 |
if (s->lookahead < MIN_LOOKAHEAD) { |
| 1642 |
fill_window(s); |
| 1643 |
if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) { |
| 1644 |
return need_more; |
| 1645 |
} |
| 1646 |
if (s->lookahead == 0) break; /* flush the current block */ |
| 1647 |
} |
| 1648 |
|
| 1649 |
/* Insert the string window[strstart .. strstart+2] in the |
| 1650 |
* dictionary, and set hash_head to the head of the hash chain: |
| 1651 |
*/ |
| 1652 |
hash_head = NIL; |
| 1653 |
if (s->lookahead >= MIN_MATCH) { |
| 1654 |
INSERT_STRING(s, s->strstart, hash_head); |
| 1655 |
} |
| 1656 |
|
| 1657 |
/* Find the longest match, discarding those <= prev_length. |
| 1658 |
* At this point we have always match_length < MIN_MATCH |
| 1659 |
*/ |
| 1660 |
if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) { |
| 1661 |
/* To simplify the code, we prevent matches with the string |
| 1662 |
* of window index 0 (in particular we have to avoid a match |
| 1663 |
* of the string with itself at the start of the input file). |
| 1664 |
*/ |
| 1665 |
s->match_length = longest_match (s, hash_head); |
| 1666 |
/* longest_match() sets match_start */ |
| 1667 |
} |
| 1668 |
if (s->match_length >= MIN_MATCH) { |
| 1669 |
check_match(s, s->strstart, s->match_start, s->match_length); |
| 1670 |
|
| 1671 |
_tr_tally_dist(s, s->strstart - s->match_start, |
| 1672 |
s->match_length - MIN_MATCH, bflush); |
| 1673 |
|
| 1674 |
s->lookahead -= s->match_length; |
| 1675 |
|
| 1676 |
/* Insert new strings in the hash table only if the match length |
| 1677 |
* is not too large. This saves time but degrades compression. |
| 1678 |
*/ |
| 1679 |
#ifndef FASTEST |
| 1680 |
if (s->match_length <= s->max_insert_length && |
| 1681 |
s->lookahead >= MIN_MATCH) { |
| 1682 |
s->match_length--; /* string at strstart already in table */ |
| 1683 |
do { |
| 1684 |
s->strstart++; |
| 1685 |
INSERT_STRING(s, s->strstart, hash_head); |
| 1686 |
/* strstart never exceeds WSIZE-MAX_MATCH, so there are |
| 1687 |
* always MIN_MATCH bytes ahead. |
| 1688 |
*/ |
| 1689 |
} while (--s->match_length != 0); |
| 1690 |
s->strstart++; |
| 1691 |
} else |
| 1692 |
#endif |
| 1693 |
{ |
| 1694 |
s->strstart += s->match_length; |
| 1695 |
s->match_length = 0; |
| 1696 |
s->ins_h = s->window[s->strstart]; |
| 1697 |
UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]); |
| 1698 |
#if MIN_MATCH != 3 |
| 1699 |
Call UPDATE_HASH() MIN_MATCH-3 more times |
| 1700 |
#endif |
| 1701 |
/* If lookahead < MIN_MATCH, ins_h is garbage, but it does not |
| 1702 |
* matter since it will be recomputed at next deflate call. |
| 1703 |
*/ |
| 1704 |
} |
| 1705 |
} else { |
| 1706 |
/* No match, output a literal byte */ |
| 1707 |
Tracevv((stderr,"%c", s->window[s->strstart])); |
| 1708 |
_tr_tally_lit (s, s->window[s->strstart], bflush); |
| 1709 |
s->lookahead--; |
| 1710 |
s->strstart++; |
| 1711 |
} |
| 1712 |
if (bflush) FLUSH_BLOCK(s, 0); |
| 1713 |
} |
| 1714 |
s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1; |
| 1715 |
if (flush == Z_FINISH) { |
| 1716 |
FLUSH_BLOCK(s, 1); |
| 1717 |
return finish_done; |
| 1718 |
} |
| 1719 |
if (s->last_lit) |
| 1720 |
FLUSH_BLOCK(s, 0); |
| 1721 |
return block_done; |
| 1722 |
} |
| 1723 |
|
| 1724 |
#ifndef FASTEST |
| 1725 |
/* =========================================================================== |
| 1726 |
* Same as above, but achieves better compression. We use a lazy |
| 1727 |
* evaluation for matches: a match is finally adopted only if there is |
| 1728 |
* no better match at the next window position. |
| 1729 |
*/ |
| 1730 |
local block_state deflate_slow(s, flush) |
| 1731 |
deflate_state *s; |
| 1732 |
int flush; |
| 1733 |
{ |
| 1734 |
IPos hash_head; /* head of hash chain */ |
| 1735 |
int bflush; /* set if current block must be flushed */ |
| 1736 |
|
| 1737 |
/* Process the input block. */ |
| 1738 |
for (;;) { |
| 1739 |
/* Make sure that we always have enough lookahead, except |
| 1740 |
* at the end of the input file. We need MAX_MATCH bytes |
| 1741 |
* for the next match, plus MIN_MATCH bytes to insert the |
| 1742 |
* string following the next match. |
| 1743 |
*/ |
| 1744 |
if (s->lookahead < MIN_LOOKAHEAD) { |
| 1745 |
fill_window(s); |
| 1746 |
if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) { |
| 1747 |
return need_more; |
| 1748 |
} |
| 1749 |
if (s->lookahead == 0) break; /* flush the current block */ |
| 1750 |
} |
| 1751 |
|
| 1752 |
/* Insert the string window[strstart .. strstart+2] in the |
| 1753 |
* dictionary, and set hash_head to the head of the hash chain: |
| 1754 |
*/ |
| 1755 |
hash_head = NIL; |
| 1756 |
if (s->lookahead >= MIN_MATCH) { |
| 1757 |
INSERT_STRING(s, s->strstart, hash_head); |
| 1758 |
} |
| 1759 |
|
| 1760 |
/* Find the longest match, discarding those <= prev_length. |
| 1761 |
*/ |
| 1762 |
s->prev_length = s->match_length, s->prev_match = s->match_start; |
| 1763 |
s->match_length = MIN_MATCH-1; |
| 1764 |
|
| 1765 |
if (hash_head != NIL && s->prev_length < s->max_lazy_match && |
| 1766 |
s->strstart - hash_head <= MAX_DIST(s)) { |
| 1767 |
/* To simplify the code, we prevent matches with the string |
| 1768 |
* of window index 0 (in particular we have to avoid a match |
| 1769 |
* of the string with itself at the start of the input file). |
| 1770 |
*/ |
| 1771 |
s->match_length = longest_match (s, hash_head); |
| 1772 |
/* longest_match() sets match_start */ |
| 1773 |
|
| 1774 |
if (s->match_length <= 5 && (s->strategy == Z_FILTERED |
| 1775 |
#if TOO_FAR <= 32767 |
| 1776 |
|| (s->match_length == MIN_MATCH && |
| 1777 |
s->strstart - s->match_start > TOO_FAR) |
| 1778 |
#endif |
| 1779 |
)) { |
| 1780 |
|
| 1781 |
/* If prev_match is also MIN_MATCH, match_start is garbage |
| 1782 |
* but we will ignore the current match anyway. |
| 1783 |
*/ |
| 1784 |
s->match_length = MIN_MATCH-1; |
| 1785 |
} |
| 1786 |
} |
| 1787 |
/* If there was a match at the previous step and the current |
| 1788 |
* match is not better, output the previous match: |
| 1789 |
*/ |
| 1790 |
if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) { |
| 1791 |
uInt max_insert = s->strstart + s->lookahead - MIN_MATCH; |
| 1792 |
/* Do not insert strings in hash table beyond this. */ |
| 1793 |
|
| 1794 |
check_match(s, s->strstart-1, s->prev_match, s->prev_length); |
| 1795 |
|
| 1796 |
_tr_tally_dist(s, s->strstart -1 - s->prev_match, |
| 1797 |
s->prev_length - MIN_MATCH, bflush); |
| 1798 |
|
| 1799 |
/* Insert in hash table all strings up to the end of the match. |
| 1800 |
* strstart-1 and strstart are already inserted. If there is not |
| 1801 |
* enough lookahead, the last two strings are not inserted in |
| 1802 |
* the hash table. |
| 1803 |
*/ |
| 1804 |
s->lookahead -= s->prev_length-1; |
| 1805 |
s->prev_length -= 2; |
| 1806 |
do { |
| 1807 |
if (++s->strstart <= max_insert) { |
| 1808 |
INSERT_STRING(s, s->strstart, hash_head); |
| 1809 |
} |
| 1810 |
} while (--s->prev_length != 0); |
| 1811 |
s->match_available = 0; |
| 1812 |
s->match_length = MIN_MATCH-1; |
| 1813 |
s->strstart++; |
| 1814 |
|
| 1815 |
if (bflush) FLUSH_BLOCK(s, 0); |
| 1816 |
|
| 1817 |
} else if (s->match_available) { |
| 1818 |
/* If there was no match at the previous position, output a |
| 1819 |
* single literal. If there was a match but the current match |
| 1820 |
* is longer, truncate the previous match to a single literal. |
| 1821 |
*/ |
| 1822 |
Tracevv((stderr,"%c", s->window[s->strstart-1])); |
| 1823 |
_tr_tally_lit(s, s->window[s->strstart-1], bflush); |
| 1824 |
if (bflush) { |
| 1825 |
FLUSH_BLOCK_ONLY(s, 0); |
| 1826 |
} |
| 1827 |
s->strstart++; |
| 1828 |
s->lookahead--; |
| 1829 |
if (s->strm->avail_out == 0) return need_more; |
| 1830 |
} else { |
| 1831 |
/* There is no previous match to compare with, wait for |
| 1832 |
* the next step to decide. |
| 1833 |
*/ |
| 1834 |
s->match_available = 1; |
| 1835 |
s->strstart++; |
| 1836 |
s->lookahead--; |
| 1837 |
} |
| 1838 |
} |
| 1839 |
Assert (flush != Z_NO_FLUSH, "no flush?"); |
| 1840 |
if (s->match_available) { |
| 1841 |
Tracevv((stderr,"%c", s->window[s->strstart-1])); |
| 1842 |
_tr_tally_lit(s, s->window[s->strstart-1], bflush); |
| 1843 |
s->match_available = 0; |
| 1844 |
} |
| 1845 |
s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1; |
| 1846 |
if (flush == Z_FINISH) { |
| 1847 |
FLUSH_BLOCK(s, 1); |
| 1848 |
return finish_done; |
| 1849 |
} |
| 1850 |
if (s->last_lit) |
| 1851 |
FLUSH_BLOCK(s, 0); |
| 1852 |
return block_done; |
| 1853 |
} |
| 1854 |
#endif /* FASTEST */ |
| 1855 |
|
| 1856 |
/* =========================================================================== |
| 1857 |
* For Z_RLE, simply look for runs of bytes, generate matches only of distance |
| 1858 |
* one. Do not maintain a hash table. (It will be regenerated if this run of |
| 1859 |
* deflate switches away from Z_RLE.) |
| 1860 |
*/ |
| 1861 |
local block_state deflate_rle(s, flush) |
| 1862 |
deflate_state *s; |
| 1863 |
int flush; |
| 1864 |
{ |
| 1865 |
int bflush; /* set if current block must be flushed */ |
| 1866 |
uInt prev; /* byte at distance one to match */ |
| 1867 |
Bytef *scan, *strend; /* scan goes up to strend for length of run */ |
| 1868 |
|
| 1869 |
for (;;) { |
| 1870 |
/* Make sure that we always have enough lookahead, except |
| 1871 |
* at the end of the input file. We need MAX_MATCH bytes |
| 1872 |
* for the longest run, plus one for the unrolled loop. |
| 1873 |
*/ |
| 1874 |
if (s->lookahead <= MAX_MATCH) { |
| 1875 |
fill_window(s); |
| 1876 |
if (s->lookahead <= MAX_MATCH && flush == Z_NO_FLUSH) { |
| 1877 |
return need_more; |
| 1878 |
} |
| 1879 |
if (s->lookahead == 0) break; /* flush the current block */ |
| 1880 |
} |
| 1881 |
|
| 1882 |
/* See how many times the previous byte repeats */ |
| 1883 |
s->match_length = 0; |
| 1884 |
if (s->lookahead >= MIN_MATCH && s->strstart > 0) { |
| 1885 |
scan = s->window + s->strstart - 1; |
| 1886 |
prev = *scan; |
| 1887 |
if (prev == *++scan && prev == *++scan && prev == *++scan) { |
| 1888 |
strend = s->window + s->strstart + MAX_MATCH; |
| 1889 |
do { |
| 1890 |
} while (prev == *++scan && prev == *++scan && |
| 1891 |
prev == *++scan && prev == *++scan && |
| 1892 |
prev == *++scan && prev == *++scan && |
| 1893 |
prev == *++scan && prev == *++scan && |
| 1894 |
scan < strend); |
| 1895 |
s->match_length = MAX_MATCH - (int)(strend - scan); |
| 1896 |
if (s->match_length > s->lookahead) |
| 1897 |
s->match_length = s->lookahead; |
| 1898 |
} |
| 1899 |
Assert(scan <= s->window+(uInt)(s->window_size-1), "wild scan"); |
| 1900 |
} |
| 1901 |
|
| 1902 |
/* Emit match if have run of MIN_MATCH or longer, else emit literal */ |
| 1903 |
if (s->match_length >= MIN_MATCH) { |
| 1904 |
check_match(s, s->strstart, s->strstart - 1, s->match_length); |
| 1905 |
|
| 1906 |
_tr_tally_dist(s, 1, s->match_length - MIN_MATCH, bflush); |
| 1907 |
|
| 1908 |
s->lookahead -= s->match_length; |
| 1909 |
s->strstart += s->match_length; |
| 1910 |
s->match_length = 0; |
| 1911 |
} else { |
| 1912 |
/* No match, output a literal byte */ |
| 1913 |
Tracevv((stderr,"%c", s->window[s->strstart])); |
| 1914 |
_tr_tally_lit (s, s->window[s->strstart], bflush); |
| 1915 |
s->lookahead--; |
| 1916 |
s->strstart++; |
| 1917 |
} |
| 1918 |
if (bflush) FLUSH_BLOCK(s, 0); |
| 1919 |
} |
| 1920 |
s->insert = 0; |
| 1921 |
if (flush == Z_FINISH) { |
| 1922 |
FLUSH_BLOCK(s, 1); |
| 1923 |
return finish_done; |
| 1924 |
} |
| 1925 |
if (s->last_lit) |
| 1926 |
FLUSH_BLOCK(s, 0); |
| 1927 |
return block_done; |
| 1928 |
} |
| 1929 |
|
| 1930 |
/* =========================================================================== |
| 1931 |
* For Z_HUFFMAN_ONLY, do not look for matches. Do not maintain a hash table. |
| 1932 |
* (It will be regenerated if this run of deflate switches away from Huffman.) |
| 1933 |
*/ |
| 1934 |
local block_state deflate_huff(s, flush) |
| 1935 |
deflate_state *s; |
| 1936 |
int flush; |
| 1937 |
{ |
| 1938 |
int bflush; /* set if current block must be flushed */ |
| 1939 |
|
| 1940 |
for (;;) { |
| 1941 |
/* Make sure that we have a literal to write. */ |
| 1942 |
if (s->lookahead == 0) { |
| 1943 |
fill_window(s); |
| 1944 |
if (s->lookahead == 0) { |
| 1945 |
if (flush == Z_NO_FLUSH) |
| 1946 |
return need_more; |
| 1947 |
break; /* flush the current block */ |
| 1948 |
} |
| 1949 |
} |
| 1950 |
|
| 1951 |
/* Output a literal byte */ |
| 1952 |
s->match_length = 0; |
| 1953 |
Tracevv((stderr,"%c", s->window[s->strstart])); |
| 1954 |
_tr_tally_lit (s, s->window[s->strstart], bflush); |
| 1955 |
s->lookahead--; |
| 1956 |
s->strstart++; |
| 1957 |
if (bflush) FLUSH_BLOCK(s, 0); |
| 1958 |
} |
| 1959 |
s->insert = 0; |
| 1960 |
if (flush == Z_FINISH) { |
| 1961 |
FLUSH_BLOCK(s, 1); |
| 1962 |
return finish_done; |
| 1963 |
} |
| 1964 |
if (s->last_lit) |
| 1965 |
FLUSH_BLOCK(s, 0); |
| 1966 |
return block_done; |
| 1967 |
} |