| 1 | /* crc32.c -- compute the CRC-32 of a data stream | 
 
 
 
 
 | 2 | * Copyright (C) 1995-2006, 2010, 2011, 2012 Mark Adler | 
 
 
 
 
 | 3 | * For conditions of distribution and use, see copyright notice in zlib.h | 
 
 
 
 
 | 4 | * | 
 
 
 
 
 | 5 | * Thanks to Rodney Brown <rbrown64@csc.com.au> for his contribution of faster | 
 
 
 
 
 | 6 | * CRC methods: exclusive-oring 32 bits of data at a time, and pre-computing | 
 
 
 
 
 | 7 | * tables for updating the shift register in one step with three exclusive-ors | 
 
 
 
 
 | 8 | * instead of four steps with four exclusive-ors.  This results in about a | 
 
 
 
 
 | 9 | * factor of two increase in speed on a Power PC G4 (PPC7455) using gcc -O3. | 
 
 
 
 
 | 10 | */ | 
 
 
 
 
 | 11 |  | 
 
 
 
 
 | 12 | /* @(#) $Id$ */ | 
 
 
 
 
 | 13 |  | 
 
 
 
 
 | 14 | /* | 
 
 
 
 
 | 15 | Note on the use of DYNAMIC_CRC_TABLE: there is no mutex or semaphore | 
 
 
 
 
 | 16 | protection on the static variables used to control the first-use generation | 
 
 
 
 
 | 17 | of the crc tables.  Therefore, if you #define DYNAMIC_CRC_TABLE, you should | 
 
 
 
 
 | 18 | first call get_crc_table() to initialize the tables before allowing more than | 
 
 
 
 
 | 19 | one thread to use crc32(). | 
 
 
 
 
 | 20 |  | 
 
 
 
 
 | 21 | DYNAMIC_CRC_TABLE and MAKECRCH can be #defined to write out crc32.h. | 
 
 
 
 
 | 22 | */ | 
 
 
 
 
 | 23 |  | 
 
 
 
 
 | 24 | #ifdef MAKECRCH | 
 
 
 
 
 | 25 | #  include <stdio.h> | 
 
 
 
 
 | 26 | #  ifndef DYNAMIC_CRC_TABLE | 
 
 
 
 
 | 27 | #    define DYNAMIC_CRC_TABLE | 
 
 
 
 
 | 28 | #  endif /* !DYNAMIC_CRC_TABLE */ | 
 
 
 
 
 | 29 | #endif /* MAKECRCH */ | 
 
 
 
 
 | 30 |  | 
 
 
 
 
 | 31 | #include "zutil.h"      /* for STDC and FAR definitions */ | 
 
 
 
 
 | 32 |  | 
 
 
 
 
 | 33 | #define local static | 
 
 
 
 
 | 34 |  | 
 
 
 
 
 | 35 | /* Definitions for doing the crc four data bytes at a time. */ | 
 
 
 
 
 | 36 | #if !defined(NOBYFOUR) && defined(Z_U4) | 
 
 
 
 
 | 37 | #  define BYFOUR | 
 
 
 
 
 | 38 | #endif | 
 
 
 
 
 | 39 | #ifdef BYFOUR | 
 
 
 
 
 | 40 | local unsigned long crc32_little OF((unsigned long, | 
 
 
 
 
 | 41 | const unsigned char FAR *, unsigned)); | 
 
 
 
 
 | 42 | local unsigned long crc32_big OF((unsigned long, | 
 
 
 
 
 | 43 | const unsigned char FAR *, unsigned)); | 
 
 
 
 
 | 44 | #  define TBLS 8 | 
 
 
 
 
 | 45 | #else | 
 
 
 
 
 | 46 | #  define TBLS 1 | 
 
 
 
 
 | 47 | #endif /* BYFOUR */ | 
 
 
 
 
 | 48 |  | 
 
 
 
 
 | 49 | /* Local functions for crc concatenation */ | 
 
 
 
 
 | 50 | local unsigned long gf2_matrix_times OF((unsigned long *mat, | 
 
 
 
 
 | 51 | unsigned long vec)); | 
 
 
 
 
 | 52 | local void gf2_matrix_square OF((unsigned long *square, unsigned long *mat)); | 
 
 
 
 
 | 53 | local uLong crc32_combine_ OF((uLong crc1, uLong crc2, z_off64_t len2)); | 
 
 
 
 
 | 54 |  | 
 
 
 
 
 | 55 |  | 
 
 
 
 
 | 56 | #ifdef DYNAMIC_CRC_TABLE | 
 
 
 
 
 | 57 |  | 
 
 
 
 
 | 58 | local volatile int crc_table_empty = 1; | 
 
 
 
 
 | 59 | local z_crc_t FAR crc_table[TBLS][256]; | 
 
 
 
 
 | 60 | local void make_crc_table OF((void)); | 
 
 
 
 
 | 61 | #ifdef MAKECRCH | 
 
 
 
 
 | 62 | local void write_table OF((FILE *, const z_crc_t FAR *)); | 
 
 
 
 
 | 63 | #endif /* MAKECRCH */ | 
 
 
 
 
 | 64 | /* | 
 
 
 
 
 | 65 | Generate tables for a byte-wise 32-bit CRC calculation on the polynomial: | 
 
 
 
 
 | 66 | x^32+x^26+x^23+x^22+x^16+x^12+x^11+x^10+x^8+x^7+x^5+x^4+x^2+x+1. | 
 
 
 
 
 | 67 |  | 
 
 
 
 
 | 68 | Polynomials over GF(2) are represented in binary, one bit per coefficient, | 
 
 
 
 
 | 69 | with the lowest powers in the most significant bit.  Then adding polynomials | 
 
 
 
 
 | 70 | is just exclusive-or, and multiplying a polynomial by x is a right shift by | 
 
 
 
 
 | 71 | one.  If we call the above polynomial p, and represent a byte as the | 
 
 
 
 
 | 72 | polynomial q, also with the lowest power in the most significant bit (so the | 
 
 
 
 
 | 73 | byte 0xb1 is the polynomial x^7+x^3+x+1), then the CRC is (q*x^32) mod p, | 
 
 
 
 
 | 74 | where a mod b means the remainder after dividing a by b. | 
 
 
 
 
 | 75 |  | 
 
 
 
 
 | 76 | This calculation is done using the shift-register method of multiplying and | 
 
 
 
 
 | 77 | taking the remainder.  The register is initialized to zero, and for each | 
 
 
 
 
 | 78 | incoming bit, x^32 is added mod p to the register if the bit is a one (where | 
 
 
 
 
 | 79 | x^32 mod p is p+x^32 = x^26+...+1), and the register is multiplied mod p by | 
 
 
 
 
 | 80 | x (which is shifting right by one and adding x^32 mod p if the bit shifted | 
 
 
 
 
 | 81 | out is a one).  We start with the highest power (least significant bit) of | 
 
 
 
 
 | 82 | q and repeat for all eight bits of q. | 
 
 
 
 
 | 83 |  | 
 
 
 
 
 | 84 | The first table is simply the CRC of all possible eight bit values.  This is | 
 
 
 
 
 | 85 | all the information needed to generate CRCs on data a byte at a time for all | 
 
 
 
 
 | 86 | combinations of CRC register values and incoming bytes.  The remaining tables | 
 
 
 
 
 | 87 | allow for word-at-a-time CRC calculation for both big-endian and little- | 
 
 
 
 
 | 88 | endian machines, where a word is four bytes. | 
 
 
 
 
 | 89 | */ | 
 
 
 
 
 | 90 | local void make_crc_table() | 
 
 
 
 
 | 91 | { | 
 
 
 
 
 | 92 | z_crc_t c; | 
 
 
 
 
 | 93 | int n, k; | 
 
 
 
 
 | 94 | z_crc_t poly;                       /* polynomial exclusive-or pattern */ | 
 
 
 
 
 | 95 | /* terms of polynomial defining this crc (except x^32): */ | 
 
 
 
 
 | 96 | static volatile int first = 1;      /* flag to limit concurrent making */ | 
 
 
 
 
 | 97 | static const unsigned char p[] = {0,1,2,4,5,7,8,10,11,12,16,22,23,26}; | 
 
 
 
 
 | 98 |  | 
 
 
 
 
 | 99 | /* See if another task is already doing this (not thread-safe, but better | 
 
 
 
 
 | 100 | than nothing -- significantly reduces duration of vulnerability in | 
 
 
 
 
 | 101 | case the advice about DYNAMIC_CRC_TABLE is ignored) */ | 
 
 
 
 
 | 102 | if (first) { | 
 
 
 
 
 | 103 | first = 0; | 
 
 
 
 
 | 104 |  | 
 
 
 
 
 | 105 | /* make exclusive-or pattern from polynomial (0xedb88320UL) */ | 
 
 
 
 
 | 106 | poly = 0; | 
 
 
 
 
 | 107 | for (n = 0; n < (int)(sizeof(p)/sizeof(unsigned char)); n++) | 
 
 
 
 
 | 108 | poly |= (z_crc_t)1 << (31 - p[n]); | 
 
 
 
 
 | 109 |  | 
 
 
 
 
 | 110 | /* generate a crc for every 8-bit value */ | 
 
 
 
 
 | 111 | for (n = 0; n < 256; n++) { | 
 
 
 
 
 | 112 | c = (z_crc_t)n; | 
 
 
 
 
 | 113 | for (k = 0; k < 8; k++) | 
 
 
 
 
 | 114 | c = c & 1 ? poly ^ (c >> 1) : c >> 1; | 
 
 
 
 
 | 115 | crc_table[0][n] = c; | 
 
 
 
 
 | 116 | } | 
 
 
 
 
 | 117 |  | 
 
 
 
 
 | 118 | #ifdef BYFOUR | 
 
 
 
 
 | 119 | /* generate crc for each value followed by one, two, and three zeros, | 
 
 
 
 
 | 120 | and then the byte reversal of those as well as the first table */ | 
 
 
 
 
 | 121 | for (n = 0; n < 256; n++) { | 
 
 
 
 
 | 122 | c = crc_table[0][n]; | 
 
 
 
 
 | 123 | crc_table[4][n] = ZSWAP32(c); | 
 
 
 
 
 | 124 | for (k = 1; k < 4; k++) { | 
 
 
 
 
 | 125 | c = crc_table[0][c & 0xff] ^ (c >> 8); | 
 
 
 
 
 | 126 | crc_table[k][n] = c; | 
 
 
 
 
 | 127 | crc_table[k + 4][n] = ZSWAP32(c); | 
 
 
 
 
 | 128 | } | 
 
 
 
 
 | 129 | } | 
 
 
 
 
 | 130 | #endif /* BYFOUR */ | 
 
 
 
 
 | 131 |  | 
 
 
 
 
 | 132 | crc_table_empty = 0; | 
 
 
 
 
 | 133 | } | 
 
 
 
 
 | 134 | else {      /* not first */ | 
 
 
 
 
 | 135 | /* wait for the other guy to finish (not efficient, but rare) */ | 
 
 
 
 
 | 136 | while (crc_table_empty) | 
 
 
 
 
 | 137 | ; | 
 
 
 
 
 | 138 | } | 
 
 
 
 
 | 139 |  | 
 
 
 
 
 | 140 | #ifdef MAKECRCH | 
 
 
 
 
 | 141 | /* write out CRC tables to crc32.h */ | 
 
 
 
 
 | 142 | { | 
 
 
 
 
 | 143 | FILE *out; | 
 
 
 
 
 | 144 |  | 
 
 
 
 
 | 145 | out = fopen("crc32.h", "w"); | 
 
 
 
 
 | 146 | if (out == NULL) return; | 
 
 
 
 
 | 147 | fprintf(out, "/* crc32.h -- tables for rapid CRC calculation\n"); | 
 
 
 
 
 | 148 | fprintf(out, " * Generated automatically by crc32.c\n */\n\n"); | 
 
 
 
 
 | 149 | fprintf(out, "local const z_crc_t FAR "); | 
 
 
 
 
 | 150 | fprintf(out, "crc_table[TBLS][256] =\n{\n  {\n"); | 
 
 
 
 
 | 151 | write_table(out, crc_table[0]); | 
 
 
 
 
 | 152 | #  ifdef BYFOUR | 
 
 
 
 
 | 153 | fprintf(out, "#ifdef BYFOUR\n"); | 
 
 
 
 
 | 154 | for (k = 1; k < 8; k++) { | 
 
 
 
 
 | 155 | fprintf(out, "  },\n  {\n"); | 
 
 
 
 
 | 156 | write_table(out, crc_table[k]); | 
 
 
 
 
 | 157 | } | 
 
 
 
 
 | 158 | fprintf(out, "#endif\n"); | 
 
 
 
 
 | 159 | #  endif /* BYFOUR */ | 
 
 
 
 
 | 160 | fprintf(out, "  }\n};\n"); | 
 
 
 
 
 | 161 | fclose(out); | 
 
 
 
 
 | 162 | } | 
 
 
 
 
 | 163 | #endif /* MAKECRCH */ | 
 
 
 
 
 | 164 | } | 
 
 
 
 
 | 165 |  | 
 
 
 
 
 | 166 | #ifdef MAKECRCH | 
 
 
 
 
 | 167 | local void write_table(out, table) | 
 
 
 
 
 | 168 | FILE *out; | 
 
 
 
 
 | 169 | const z_crc_t FAR *table; | 
 
 
 
 
 | 170 | { | 
 
 
 
 
 | 171 | int n; | 
 
 
 
 
 | 172 |  | 
 
 
 
 
 | 173 | for (n = 0; n < 256; n++) | 
 
 
 
 
 | 174 | fprintf(out, "%s0x%08lxUL%s", n % 5 ? "" : "    ", | 
 
 
 
 
 | 175 | (unsigned long)(table[n]), | 
 
 
 
 
 | 176 | n == 255 ? "\n" : (n % 5 == 4 ? ",\n" : ", ")); | 
 
 
 
 
 | 177 | } | 
 
 
 
 
 | 178 | #endif /* MAKECRCH */ | 
 
 
 
 
 | 179 |  | 
 
 
 
 
 | 180 | #else /* !DYNAMIC_CRC_TABLE */ | 
 
 
 
 
 | 181 | /* ======================================================================== | 
 
 
 
 
 | 182 | * Tables of CRC-32s of all single-byte values, made by make_crc_table(). | 
 
 
 
 
 | 183 | */ | 
 
 
 
 
 | 184 | #include "crc32.h" | 
 
 
 
 
 | 185 | #endif /* DYNAMIC_CRC_TABLE */ | 
 
 
 
 
 | 186 |  | 
 
 
 
 
 | 187 | /* ========================================================================= | 
 
 
 
 
 | 188 | * This function can be used by asm versions of crc32() | 
 
 
 
 
 | 189 | */ | 
 
 
 
 
 | 190 | const z_crc_t FAR * ZEXPORT get_crc_table() | 
 
 
 
 
 | 191 | { | 
 
 
 
 
 | 192 | #ifdef DYNAMIC_CRC_TABLE | 
 
 
 
 
 | 193 | if (crc_table_empty) | 
 
 
 
 
 | 194 | make_crc_table(); | 
 
 
 
 
 | 195 | #endif /* DYNAMIC_CRC_TABLE */ | 
 
 
 
 
 | 196 | return (const z_crc_t FAR *)crc_table; | 
 
 
 
 
 | 197 | } | 
 
 
 
 
 | 198 |  | 
 
 
 
 
 | 199 | /* ========================================================================= */ | 
 
 
 
 
 | 200 | #define DO1 crc = crc_table[0][((int)crc ^ (*buf++)) & 0xff] ^ (crc >> 8) | 
 
 
 
 
 | 201 | #define DO8 DO1; DO1; DO1; DO1; DO1; DO1; DO1; DO1 | 
 
 
 
 
 | 202 |  | 
 
 
 
 
 | 203 | /* ========================================================================= */ | 
 
 
 
 
 | 204 | unsigned long ZEXPORT crc32(crc, buf, len) | 
 
 
 
 
 | 205 | unsigned long crc; | 
 
 
 
 
 | 206 | const unsigned char FAR *buf; | 
 
 
 
 
 | 207 | uInt len; | 
 
 
 
 
 | 208 | { | 
 
 
 
 
 | 209 | if (buf == Z_NULL) return 0UL; | 
 
 
 
 
 | 210 |  | 
 
 
 
 
 | 211 | #ifdef DYNAMIC_CRC_TABLE | 
 
 
 
 
 | 212 | if (crc_table_empty) | 
 
 
 
 
 | 213 | make_crc_table(); | 
 
 
 
 
 | 214 | #endif /* DYNAMIC_CRC_TABLE */ | 
 
 
 
 
 | 215 |  | 
 
 
 
 
 | 216 | #ifdef BYFOUR | 
 
 
 
 
 | 217 | if (sizeof(void *) == sizeof(ptrdiff_t)) { | 
 
 
 
 
 | 218 | z_crc_t endian; | 
 
 
 
 
 | 219 |  | 
 
 
 
 
 | 220 | endian = 1; | 
 
 
 
 
 | 221 | if (*((unsigned char *)(&endian))) | 
 
 
 
 
 | 222 | return crc32_little(crc, buf, len); | 
 
 
 
 
 | 223 | else | 
 
 
 
 
 | 224 | return crc32_big(crc, buf, len); | 
 
 
 
 
 | 225 | } | 
 
 
 
 
 | 226 | #endif /* BYFOUR */ | 
 
 
 
 
 | 227 | crc = crc ^ 0xffffffffUL; | 
 
 
 
 
 | 228 | while (len >= 8) { | 
 
 
 
 
 | 229 | DO8; | 
 
 
 
 
 | 230 | len -= 8; | 
 
 
 
 
 | 231 | } | 
 
 
 
 
 | 232 | if (len) do { | 
 
 
 
 
 | 233 | DO1; | 
 
 
 
 
 | 234 | } while (--len); | 
 
 
 
 
 | 235 | return crc ^ 0xffffffffUL; | 
 
 
 
 
 | 236 | } | 
 
 
 
 
 | 237 |  | 
 
 
 
 
 | 238 | #ifdef BYFOUR | 
 
 
 
 
 | 239 |  | 
 
 
 
 
 | 240 | /* ========================================================================= */ | 
 
 
 
 
 | 241 | #define DOLIT4 c ^= *buf4++; \ | 
 
 
 
 
 | 242 | c = crc_table[3][c & 0xff] ^ crc_table[2][(c >> 8) & 0xff] ^ \ | 
 
 
 
 
 | 243 | crc_table[1][(c >> 16) & 0xff] ^ crc_table[0][c >> 24] | 
 
 
 
 
 | 244 | #define DOLIT32 DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4 | 
 
 
 
 
 | 245 |  | 
 
 
 
 
 | 246 | /* ========================================================================= */ | 
 
 
 
 
 | 247 | local unsigned long crc32_little(crc, buf, len) | 
 
 
 
 
 | 248 | unsigned long crc; | 
 
 
 
 
 | 249 | const unsigned char FAR *buf; | 
 
 
 
 
 | 250 | unsigned len; | 
 
 
 
 
 | 251 | { | 
 
 
 
 
 | 252 | register z_crc_t c; | 
 
 
 
 
 | 253 | register const z_crc_t FAR *buf4; | 
 
 
 
 
 | 254 |  | 
 
 
 
 
 | 255 | c = (z_crc_t)crc; | 
 
 
 
 
 | 256 | c = ~c; | 
 
 
 
 
 | 257 | while (len && ((ptrdiff_t)buf & 3)) { | 
 
 
 
 
 | 258 | c = crc_table[0][(c ^ *buf++) & 0xff] ^ (c >> 8); | 
 
 
 
 
 | 259 | len--; | 
 
 
 
 
 | 260 | } | 
 
 
 
 
 | 261 |  | 
 
 
 
 
 | 262 | buf4 = (const z_crc_t FAR *)(const void FAR *)buf; | 
 
 
 
 
 | 263 | while (len >= 32) { | 
 
 
 
 
 | 264 | DOLIT32; | 
 
 
 
 
 | 265 | len -= 32; | 
 
 
 
 
 | 266 | } | 
 
 
 
 
 | 267 | while (len >= 4) { | 
 
 
 
 
 | 268 | DOLIT4; | 
 
 
 
 
 | 269 | len -= 4; | 
 
 
 
 
 | 270 | } | 
 
 
 
 
 | 271 | buf = (const unsigned char FAR *)buf4; | 
 
 
 
 
 | 272 |  | 
 
 
 
 
 | 273 | if (len) do { | 
 
 
 
 
 | 274 | c = crc_table[0][(c ^ *buf++) & 0xff] ^ (c >> 8); | 
 
 
 
 
 | 275 | } while (--len); | 
 
 
 
 
 | 276 | c = ~c; | 
 
 
 
 
 | 277 | return (unsigned long)c; | 
 
 
 
 
 | 278 | } | 
 
 
 
 
 | 279 |  | 
 
 
 
 
 | 280 | /* ========================================================================= */ | 
 
 
 
 
 | 281 | #define DOBIG4 c ^= *++buf4; \ | 
 
 
 
 
 | 282 | c = crc_table[4][c & 0xff] ^ crc_table[5][(c >> 8) & 0xff] ^ \ | 
 
 
 
 
 | 283 | crc_table[6][(c >> 16) & 0xff] ^ crc_table[7][c >> 24] | 
 
 
 
 
 | 284 | #define DOBIG32 DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4 | 
 
 
 
 
 | 285 |  | 
 
 
 
 
 | 286 | /* ========================================================================= */ | 
 
 
 
 
 | 287 | local unsigned long crc32_big(crc, buf, len) | 
 
 
 
 
 | 288 | unsigned long crc; | 
 
 
 
 
 | 289 | const unsigned char FAR *buf; | 
 
 
 
 
 | 290 | unsigned len; | 
 
 
 
 
 | 291 | { | 
 
 
 
 
 | 292 | register z_crc_t c; | 
 
 
 
 
 | 293 | register const z_crc_t FAR *buf4; | 
 
 
 
 
 | 294 |  | 
 
 
 
 
 | 295 | c = ZSWAP32((z_crc_t)crc); | 
 
 
 
 
 | 296 | c = ~c; | 
 
 
 
 
 | 297 | while (len && ((ptrdiff_t)buf & 3)) { | 
 
 
 
 
 | 298 | c = crc_table[4][(c >> 24) ^ *buf++] ^ (c << 8); | 
 
 
 
 
 | 299 | len--; | 
 
 
 
 
 | 300 | } | 
 
 
 
 
 | 301 |  | 
 
 
 
 
 | 302 | buf4 = (const z_crc_t FAR *)(const void FAR *)buf; | 
 
 
 
 
 | 303 | buf4--; | 
 
 
 
 
 | 304 | while (len >= 32) { | 
 
 
 
 
 | 305 | DOBIG32; | 
 
 
 
 
 | 306 | len -= 32; | 
 
 
 
 
 | 307 | } | 
 
 
 
 
 | 308 | while (len >= 4) { | 
 
 
 
 
 | 309 | DOBIG4; | 
 
 
 
 
 | 310 | len -= 4; | 
 
 
 
 
 | 311 | } | 
 
 
 
 
 | 312 | buf4++; | 
 
 
 
 
 | 313 | buf = (const unsigned char FAR *)buf4; | 
 
 
 
 
 | 314 |  | 
 
 
 
 
 | 315 | if (len) do { | 
 
 
 
 
 | 316 | c = crc_table[4][(c >> 24) ^ *buf++] ^ (c << 8); | 
 
 
 
 
 | 317 | } while (--len); | 
 
 
 
 
 | 318 | c = ~c; | 
 
 
 
 
 | 319 | return (unsigned long)(ZSWAP32(c)); | 
 
 
 
 
 | 320 | } | 
 
 
 
 
 | 321 |  | 
 
 
 
 
 | 322 | #endif /* BYFOUR */ | 
 
 
 
 
 | 323 |  | 
 
 
 
 
 | 324 | #define GF2_DIM 32      /* dimension of GF(2) vectors (length of CRC) */ | 
 
 
 
 
 | 325 |  | 
 
 
 
 
 | 326 | /* ========================================================================= */ | 
 
 
 
 
 | 327 | local unsigned long gf2_matrix_times(mat, vec) | 
 
 
 
 
 | 328 | unsigned long *mat; | 
 
 
 
 
 | 329 | unsigned long vec; | 
 
 
 
 
 | 330 | { | 
 
 
 
 
 | 331 | unsigned long sum; | 
 
 
 
 
 | 332 |  | 
 
 
 
 
 | 333 | sum = 0; | 
 
 
 
 
 | 334 | while (vec) { | 
 
 
 
 
 | 335 | if (vec & 1) | 
 
 
 
 
 | 336 | sum ^= *mat; | 
 
 
 
 
 | 337 | vec >>= 1; | 
 
 
 
 
 | 338 | mat++; | 
 
 
 
 
 | 339 | } | 
 
 
 
 
 | 340 | return sum; | 
 
 
 
 
 | 341 | } | 
 
 
 
 
 | 342 |  | 
 
 
 
 
 | 343 | /* ========================================================================= */ | 
 
 
 
 
 | 344 | local void gf2_matrix_square(square, mat) | 
 
 
 
 
 | 345 | unsigned long *square; | 
 
 
 
 
 | 346 | unsigned long *mat; | 
 
 
 
 
 | 347 | { | 
 
 
 
 
 | 348 | int n; | 
 
 
 
 
 | 349 |  | 
 
 
 
 
 | 350 | for (n = 0; n < GF2_DIM; n++) | 
 
 
 
 
 | 351 | square[n] = gf2_matrix_times(mat, mat[n]); | 
 
 
 
 
 | 352 | } | 
 
 
 
 
 | 353 |  | 
 
 
 
 
 | 354 | /* ========================================================================= */ | 
 
 
 
 
 | 355 | local uLong crc32_combine_(crc1, crc2, len2) | 
 
 
 
 
 | 356 | uLong crc1; | 
 
 
 
 
 | 357 | uLong crc2; | 
 
 
 
 
 | 358 | z_off64_t len2; | 
 
 
 
 
 | 359 | { | 
 
 
 
 
 | 360 | int n; | 
 
 
 
 
 | 361 | unsigned long row; | 
 
 
 
 
 | 362 | unsigned long even[GF2_DIM];    /* even-power-of-two zeros operator */ | 
 
 
 
 
 | 363 | unsigned long odd[GF2_DIM];     /* odd-power-of-two zeros operator */ | 
 
 
 
 
 | 364 |  | 
 
 
 
 
 | 365 | /* degenerate case (also disallow negative lengths) */ | 
 
 
 
 
 | 366 | if (len2 <= 0) | 
 
 
 
 
 | 367 | return crc1; | 
 
 
 
 
 | 368 |  | 
 
 
 
 
 | 369 | /* put operator for one zero bit in odd */ | 
 
 
 
 
 | 370 | odd[0] = 0xedb88320UL;          /* CRC-32 polynomial */ | 
 
 
 
 
 | 371 | row = 1; | 
 
 
 
 
 | 372 | for (n = 1; n < GF2_DIM; n++) { | 
 
 
 
 
 | 373 | odd[n] = row; | 
 
 
 
 
 | 374 | row <<= 1; | 
 
 
 
 
 | 375 | } | 
 
 
 
 
 | 376 |  | 
 
 
 
 
 | 377 | /* put operator for two zero bits in even */ | 
 
 
 
 
 | 378 | gf2_matrix_square(even, odd); | 
 
 
 
 
 | 379 |  | 
 
 
 
 
 | 380 | /* put operator for four zero bits in odd */ | 
 
 
 
 
 | 381 | gf2_matrix_square(odd, even); | 
 
 
 
 
 | 382 |  | 
 
 
 
 
 | 383 | /* apply len2 zeros to crc1 (first square will put the operator for one | 
 
 
 
 
 | 384 | zero byte, eight zero bits, in even) */ | 
 
 
 
 
 | 385 | do { | 
 
 
 
 
 | 386 | /* apply zeros operator for this bit of len2 */ | 
 
 
 
 
 | 387 | gf2_matrix_square(even, odd); | 
 
 
 
 
 | 388 | if (len2 & 1) | 
 
 
 
 
 | 389 | crc1 = gf2_matrix_times(even, crc1); | 
 
 
 
 
 | 390 | len2 >>= 1; | 
 
 
 
 
 | 391 |  | 
 
 
 
 
 | 392 | /* if no more bits set, then done */ | 
 
 
 
 
 | 393 | if (len2 == 0) | 
 
 
 
 
 | 394 | break; | 
 
 
 
 
 | 395 |  | 
 
 
 
 
 | 396 | /* another iteration of the loop with odd and even swapped */ | 
 
 
 
 
 | 397 | gf2_matrix_square(odd, even); | 
 
 
 
 
 | 398 | if (len2 & 1) | 
 
 
 
 
 | 399 | crc1 = gf2_matrix_times(odd, crc1); | 
 
 
 
 
 | 400 | len2 >>= 1; | 
 
 
 
 
 | 401 |  | 
 
 
 
 
 | 402 | /* if no more bits set, then done */ | 
 
 
 
 
 | 403 | } while (len2 != 0); | 
 
 
 
 
 | 404 |  | 
 
 
 
 
 | 405 | /* return combined crc */ | 
 
 
 
 
 | 406 | crc1 ^= crc2; | 
 
 
 
 
 | 407 | return crc1; | 
 
 
 
 
 | 408 | } | 
 
 
 
 
 | 409 |  | 
 
 
 
 
 | 410 | /* ========================================================================= */ | 
 
 
 
 
 | 411 | uLong ZEXPORT crc32_combine(crc1, crc2, len2) | 
 
 
 
 
 | 412 | uLong crc1; | 
 
 
 
 
 | 413 | uLong crc2; | 
 
 
 
 
 | 414 | z_off_t len2; | 
 
 
 
 
 | 415 | { | 
 
 
 
 
 | 416 | return crc32_combine_(crc1, crc2, len2); | 
 
 
 
 
 | 417 | } | 
 
 
 
 
 | 418 |  | 
 
 
 
 
 | 419 | uLong ZEXPORT crc32_combine64(crc1, crc2, len2) | 
 
 
 
 
 | 420 | uLong crc1; | 
 
 
 
 
 | 421 | uLong crc2; | 
 
 
 
 
 | 422 | z_off64_t len2; | 
 
 
 
 
 | 423 | { | 
 
 
 
 
 | 424 | return crc32_combine_(crc1, crc2, len2); | 
 
 
 
 
 | 425 | } |