| 1 |
/* crc32.c -- compute the CRC-32 of a data stream |
| 2 |
* Copyright (C) 1995-2006, 2010, 2011, 2012 Mark Adler |
| 3 |
* For conditions of distribution and use, see copyright notice in zlib.h |
| 4 |
* |
| 5 |
* Thanks to Rodney Brown <rbrown64@csc.com.au> for his contribution of faster |
| 6 |
* CRC methods: exclusive-oring 32 bits of data at a time, and pre-computing |
| 7 |
* tables for updating the shift register in one step with three exclusive-ors |
| 8 |
* instead of four steps with four exclusive-ors. This results in about a |
| 9 |
* factor of two increase in speed on a Power PC G4 (PPC7455) using gcc -O3. |
| 10 |
*/ |
| 11 |
|
| 12 |
/* @(#) $Id$ */ |
| 13 |
|
| 14 |
/* |
| 15 |
Note on the use of DYNAMIC_CRC_TABLE: there is no mutex or semaphore |
| 16 |
protection on the static variables used to control the first-use generation |
| 17 |
of the crc tables. Therefore, if you #define DYNAMIC_CRC_TABLE, you should |
| 18 |
first call get_crc_table() to initialize the tables before allowing more than |
| 19 |
one thread to use crc32(). |
| 20 |
|
| 21 |
DYNAMIC_CRC_TABLE and MAKECRCH can be #defined to write out crc32.h. |
| 22 |
*/ |
| 23 |
|
| 24 |
#ifdef MAKECRCH |
| 25 |
# include <stdio.h> |
| 26 |
# ifndef DYNAMIC_CRC_TABLE |
| 27 |
# define DYNAMIC_CRC_TABLE |
| 28 |
# endif /* !DYNAMIC_CRC_TABLE */ |
| 29 |
#endif /* MAKECRCH */ |
| 30 |
|
| 31 |
#include "zutil.h" /* for STDC and FAR definitions */ |
| 32 |
|
| 33 |
#define local static |
| 34 |
|
| 35 |
/* Definitions for doing the crc four data bytes at a time. */ |
| 36 |
#if !defined(NOBYFOUR) && defined(Z_U4) |
| 37 |
# define BYFOUR |
| 38 |
#endif |
| 39 |
#ifdef BYFOUR |
| 40 |
local unsigned long crc32_little OF((unsigned long, |
| 41 |
const unsigned char FAR *, unsigned)); |
| 42 |
local unsigned long crc32_big OF((unsigned long, |
| 43 |
const unsigned char FAR *, unsigned)); |
| 44 |
# define TBLS 8 |
| 45 |
#else |
| 46 |
# define TBLS 1 |
| 47 |
#endif /* BYFOUR */ |
| 48 |
|
| 49 |
/* Local functions for crc concatenation */ |
| 50 |
local unsigned long gf2_matrix_times OF((unsigned long *mat, |
| 51 |
unsigned long vec)); |
| 52 |
local void gf2_matrix_square OF((unsigned long *square, unsigned long *mat)); |
| 53 |
local uLong crc32_combine_ OF((uLong crc1, uLong crc2, z_off64_t len2)); |
| 54 |
|
| 55 |
|
| 56 |
#ifdef DYNAMIC_CRC_TABLE |
| 57 |
|
| 58 |
local volatile int crc_table_empty = 1; |
| 59 |
local z_crc_t FAR crc_table[TBLS][256]; |
| 60 |
local void make_crc_table OF((void)); |
| 61 |
#ifdef MAKECRCH |
| 62 |
local void write_table OF((FILE *, const z_crc_t FAR *)); |
| 63 |
#endif /* MAKECRCH */ |
| 64 |
/* |
| 65 |
Generate tables for a byte-wise 32-bit CRC calculation on the polynomial: |
| 66 |
x^32+x^26+x^23+x^22+x^16+x^12+x^11+x^10+x^8+x^7+x^5+x^4+x^2+x+1. |
| 67 |
|
| 68 |
Polynomials over GF(2) are represented in binary, one bit per coefficient, |
| 69 |
with the lowest powers in the most significant bit. Then adding polynomials |
| 70 |
is just exclusive-or, and multiplying a polynomial by x is a right shift by |
| 71 |
one. If we call the above polynomial p, and represent a byte as the |
| 72 |
polynomial q, also with the lowest power in the most significant bit (so the |
| 73 |
byte 0xb1 is the polynomial x^7+x^3+x+1), then the CRC is (q*x^32) mod p, |
| 74 |
where a mod b means the remainder after dividing a by b. |
| 75 |
|
| 76 |
This calculation is done using the shift-register method of multiplying and |
| 77 |
taking the remainder. The register is initialized to zero, and for each |
| 78 |
incoming bit, x^32 is added mod p to the register if the bit is a one (where |
| 79 |
x^32 mod p is p+x^32 = x^26+...+1), and the register is multiplied mod p by |
| 80 |
x (which is shifting right by one and adding x^32 mod p if the bit shifted |
| 81 |
out is a one). We start with the highest power (least significant bit) of |
| 82 |
q and repeat for all eight bits of q. |
| 83 |
|
| 84 |
The first table is simply the CRC of all possible eight bit values. This is |
| 85 |
all the information needed to generate CRCs on data a byte at a time for all |
| 86 |
combinations of CRC register values and incoming bytes. The remaining tables |
| 87 |
allow for word-at-a-time CRC calculation for both big-endian and little- |
| 88 |
endian machines, where a word is four bytes. |
| 89 |
*/ |
| 90 |
local void make_crc_table() |
| 91 |
{ |
| 92 |
z_crc_t c; |
| 93 |
int n, k; |
| 94 |
z_crc_t poly; /* polynomial exclusive-or pattern */ |
| 95 |
/* terms of polynomial defining this crc (except x^32): */ |
| 96 |
static volatile int first = 1; /* flag to limit concurrent making */ |
| 97 |
static const unsigned char p[] = {0,1,2,4,5,7,8,10,11,12,16,22,23,26}; |
| 98 |
|
| 99 |
/* See if another task is already doing this (not thread-safe, but better |
| 100 |
than nothing -- significantly reduces duration of vulnerability in |
| 101 |
case the advice about DYNAMIC_CRC_TABLE is ignored) */ |
| 102 |
if (first) { |
| 103 |
first = 0; |
| 104 |
|
| 105 |
/* make exclusive-or pattern from polynomial (0xedb88320UL) */ |
| 106 |
poly = 0; |
| 107 |
for (n = 0; n < (int)(sizeof(p)/sizeof(unsigned char)); n++) |
| 108 |
poly |= (z_crc_t)1 << (31 - p[n]); |
| 109 |
|
| 110 |
/* generate a crc for every 8-bit value */ |
| 111 |
for (n = 0; n < 256; n++) { |
| 112 |
c = (z_crc_t)n; |
| 113 |
for (k = 0; k < 8; k++) |
| 114 |
c = c & 1 ? poly ^ (c >> 1) : c >> 1; |
| 115 |
crc_table[0][n] = c; |
| 116 |
} |
| 117 |
|
| 118 |
#ifdef BYFOUR |
| 119 |
/* generate crc for each value followed by one, two, and three zeros, |
| 120 |
and then the byte reversal of those as well as the first table */ |
| 121 |
for (n = 0; n < 256; n++) { |
| 122 |
c = crc_table[0][n]; |
| 123 |
crc_table[4][n] = ZSWAP32(c); |
| 124 |
for (k = 1; k < 4; k++) { |
| 125 |
c = crc_table[0][c & 0xff] ^ (c >> 8); |
| 126 |
crc_table[k][n] = c; |
| 127 |
crc_table[k + 4][n] = ZSWAP32(c); |
| 128 |
} |
| 129 |
} |
| 130 |
#endif /* BYFOUR */ |
| 131 |
|
| 132 |
crc_table_empty = 0; |
| 133 |
} |
| 134 |
else { /* not first */ |
| 135 |
/* wait for the other guy to finish (not efficient, but rare) */ |
| 136 |
while (crc_table_empty) |
| 137 |
; |
| 138 |
} |
| 139 |
|
| 140 |
#ifdef MAKECRCH |
| 141 |
/* write out CRC tables to crc32.h */ |
| 142 |
{ |
| 143 |
FILE *out; |
| 144 |
|
| 145 |
out = fopen("crc32.h", "w"); |
| 146 |
if (out == NULL) return; |
| 147 |
fprintf(out, "/* crc32.h -- tables for rapid CRC calculation\n"); |
| 148 |
fprintf(out, " * Generated automatically by crc32.c\n */\n\n"); |
| 149 |
fprintf(out, "local const z_crc_t FAR "); |
| 150 |
fprintf(out, "crc_table[TBLS][256] =\n{\n {\n"); |
| 151 |
write_table(out, crc_table[0]); |
| 152 |
# ifdef BYFOUR |
| 153 |
fprintf(out, "#ifdef BYFOUR\n"); |
| 154 |
for (k = 1; k < 8; k++) { |
| 155 |
fprintf(out, " },\n {\n"); |
| 156 |
write_table(out, crc_table[k]); |
| 157 |
} |
| 158 |
fprintf(out, "#endif\n"); |
| 159 |
# endif /* BYFOUR */ |
| 160 |
fprintf(out, " }\n};\n"); |
| 161 |
fclose(out); |
| 162 |
} |
| 163 |
#endif /* MAKECRCH */ |
| 164 |
} |
| 165 |
|
| 166 |
#ifdef MAKECRCH |
| 167 |
local void write_table(out, table) |
| 168 |
FILE *out; |
| 169 |
const z_crc_t FAR *table; |
| 170 |
{ |
| 171 |
int n; |
| 172 |
|
| 173 |
for (n = 0; n < 256; n++) |
| 174 |
fprintf(out, "%s0x%08lxUL%s", n % 5 ? "" : " ", |
| 175 |
(unsigned long)(table[n]), |
| 176 |
n == 255 ? "\n" : (n % 5 == 4 ? ",\n" : ", ")); |
| 177 |
} |
| 178 |
#endif /* MAKECRCH */ |
| 179 |
|
| 180 |
#else /* !DYNAMIC_CRC_TABLE */ |
| 181 |
/* ======================================================================== |
| 182 |
* Tables of CRC-32s of all single-byte values, made by make_crc_table(). |
| 183 |
*/ |
| 184 |
#include "crc32.h" |
| 185 |
#endif /* DYNAMIC_CRC_TABLE */ |
| 186 |
|
| 187 |
/* ========================================================================= |
| 188 |
* This function can be used by asm versions of crc32() |
| 189 |
*/ |
| 190 |
const z_crc_t FAR * ZEXPORT get_crc_table() |
| 191 |
{ |
| 192 |
#ifdef DYNAMIC_CRC_TABLE |
| 193 |
if (crc_table_empty) |
| 194 |
make_crc_table(); |
| 195 |
#endif /* DYNAMIC_CRC_TABLE */ |
| 196 |
return (const z_crc_t FAR *)crc_table; |
| 197 |
} |
| 198 |
|
| 199 |
/* ========================================================================= */ |
| 200 |
#define DO1 crc = crc_table[0][((int)crc ^ (*buf++)) & 0xff] ^ (crc >> 8) |
| 201 |
#define DO8 DO1; DO1; DO1; DO1; DO1; DO1; DO1; DO1 |
| 202 |
|
| 203 |
/* ========================================================================= */ |
| 204 |
unsigned long ZEXPORT crc32(crc, buf, len) |
| 205 |
unsigned long crc; |
| 206 |
const unsigned char FAR *buf; |
| 207 |
uInt len; |
| 208 |
{ |
| 209 |
if (buf == Z_NULL) return 0UL; |
| 210 |
|
| 211 |
#ifdef DYNAMIC_CRC_TABLE |
| 212 |
if (crc_table_empty) |
| 213 |
make_crc_table(); |
| 214 |
#endif /* DYNAMIC_CRC_TABLE */ |
| 215 |
|
| 216 |
#ifdef BYFOUR |
| 217 |
if (sizeof(void *) == sizeof(ptrdiff_t)) { |
| 218 |
z_crc_t endian; |
| 219 |
|
| 220 |
endian = 1; |
| 221 |
if (*((unsigned char *)(&endian))) |
| 222 |
return crc32_little(crc, buf, len); |
| 223 |
else |
| 224 |
return crc32_big(crc, buf, len); |
| 225 |
} |
| 226 |
#endif /* BYFOUR */ |
| 227 |
crc = crc ^ 0xffffffffUL; |
| 228 |
while (len >= 8) { |
| 229 |
DO8; |
| 230 |
len -= 8; |
| 231 |
} |
| 232 |
if (len) do { |
| 233 |
DO1; |
| 234 |
} while (--len); |
| 235 |
return crc ^ 0xffffffffUL; |
| 236 |
} |
| 237 |
|
| 238 |
#ifdef BYFOUR |
| 239 |
|
| 240 |
/* ========================================================================= */ |
| 241 |
#define DOLIT4 c ^= *buf4++; \ |
| 242 |
c = crc_table[3][c & 0xff] ^ crc_table[2][(c >> 8) & 0xff] ^ \ |
| 243 |
crc_table[1][(c >> 16) & 0xff] ^ crc_table[0][c >> 24] |
| 244 |
#define DOLIT32 DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4 |
| 245 |
|
| 246 |
/* ========================================================================= */ |
| 247 |
local unsigned long crc32_little(crc, buf, len) |
| 248 |
unsigned long crc; |
| 249 |
const unsigned char FAR *buf; |
| 250 |
unsigned len; |
| 251 |
{ |
| 252 |
register z_crc_t c; |
| 253 |
register const z_crc_t FAR *buf4; |
| 254 |
|
| 255 |
c = (z_crc_t)crc; |
| 256 |
c = ~c; |
| 257 |
while (len && ((ptrdiff_t)buf & 3)) { |
| 258 |
c = crc_table[0][(c ^ *buf++) & 0xff] ^ (c >> 8); |
| 259 |
len--; |
| 260 |
} |
| 261 |
|
| 262 |
buf4 = (const z_crc_t FAR *)(const void FAR *)buf; |
| 263 |
while (len >= 32) { |
| 264 |
DOLIT32; |
| 265 |
len -= 32; |
| 266 |
} |
| 267 |
while (len >= 4) { |
| 268 |
DOLIT4; |
| 269 |
len -= 4; |
| 270 |
} |
| 271 |
buf = (const unsigned char FAR *)buf4; |
| 272 |
|
| 273 |
if (len) do { |
| 274 |
c = crc_table[0][(c ^ *buf++) & 0xff] ^ (c >> 8); |
| 275 |
} while (--len); |
| 276 |
c = ~c; |
| 277 |
return (unsigned long)c; |
| 278 |
} |
| 279 |
|
| 280 |
/* ========================================================================= */ |
| 281 |
#define DOBIG4 c ^= *++buf4; \ |
| 282 |
c = crc_table[4][c & 0xff] ^ crc_table[5][(c >> 8) & 0xff] ^ \ |
| 283 |
crc_table[6][(c >> 16) & 0xff] ^ crc_table[7][c >> 24] |
| 284 |
#define DOBIG32 DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4 |
| 285 |
|
| 286 |
/* ========================================================================= */ |
| 287 |
local unsigned long crc32_big(crc, buf, len) |
| 288 |
unsigned long crc; |
| 289 |
const unsigned char FAR *buf; |
| 290 |
unsigned len; |
| 291 |
{ |
| 292 |
register z_crc_t c; |
| 293 |
register const z_crc_t FAR *buf4; |
| 294 |
|
| 295 |
c = ZSWAP32((z_crc_t)crc); |
| 296 |
c = ~c; |
| 297 |
while (len && ((ptrdiff_t)buf & 3)) { |
| 298 |
c = crc_table[4][(c >> 24) ^ *buf++] ^ (c << 8); |
| 299 |
len--; |
| 300 |
} |
| 301 |
|
| 302 |
buf4 = (const z_crc_t FAR *)(const void FAR *)buf; |
| 303 |
buf4--; |
| 304 |
while (len >= 32) { |
| 305 |
DOBIG32; |
| 306 |
len -= 32; |
| 307 |
} |
| 308 |
while (len >= 4) { |
| 309 |
DOBIG4; |
| 310 |
len -= 4; |
| 311 |
} |
| 312 |
buf4++; |
| 313 |
buf = (const unsigned char FAR *)buf4; |
| 314 |
|
| 315 |
if (len) do { |
| 316 |
c = crc_table[4][(c >> 24) ^ *buf++] ^ (c << 8); |
| 317 |
} while (--len); |
| 318 |
c = ~c; |
| 319 |
return (unsigned long)(ZSWAP32(c)); |
| 320 |
} |
| 321 |
|
| 322 |
#endif /* BYFOUR */ |
| 323 |
|
| 324 |
#define GF2_DIM 32 /* dimension of GF(2) vectors (length of CRC) */ |
| 325 |
|
| 326 |
/* ========================================================================= */ |
| 327 |
local unsigned long gf2_matrix_times(mat, vec) |
| 328 |
unsigned long *mat; |
| 329 |
unsigned long vec; |
| 330 |
{ |
| 331 |
unsigned long sum; |
| 332 |
|
| 333 |
sum = 0; |
| 334 |
while (vec) { |
| 335 |
if (vec & 1) |
| 336 |
sum ^= *mat; |
| 337 |
vec >>= 1; |
| 338 |
mat++; |
| 339 |
} |
| 340 |
return sum; |
| 341 |
} |
| 342 |
|
| 343 |
/* ========================================================================= */ |
| 344 |
local void gf2_matrix_square(square, mat) |
| 345 |
unsigned long *square; |
| 346 |
unsigned long *mat; |
| 347 |
{ |
| 348 |
int n; |
| 349 |
|
| 350 |
for (n = 0; n < GF2_DIM; n++) |
| 351 |
square[n] = gf2_matrix_times(mat, mat[n]); |
| 352 |
} |
| 353 |
|
| 354 |
/* ========================================================================= */ |
| 355 |
local uLong crc32_combine_(crc1, crc2, len2) |
| 356 |
uLong crc1; |
| 357 |
uLong crc2; |
| 358 |
z_off64_t len2; |
| 359 |
{ |
| 360 |
int n; |
| 361 |
unsigned long row; |
| 362 |
unsigned long even[GF2_DIM]; /* even-power-of-two zeros operator */ |
| 363 |
unsigned long odd[GF2_DIM]; /* odd-power-of-two zeros operator */ |
| 364 |
|
| 365 |
/* degenerate case (also disallow negative lengths) */ |
| 366 |
if (len2 <= 0) |
| 367 |
return crc1; |
| 368 |
|
| 369 |
/* put operator for one zero bit in odd */ |
| 370 |
odd[0] = 0xedb88320UL; /* CRC-32 polynomial */ |
| 371 |
row = 1; |
| 372 |
for (n = 1; n < GF2_DIM; n++) { |
| 373 |
odd[n] = row; |
| 374 |
row <<= 1; |
| 375 |
} |
| 376 |
|
| 377 |
/* put operator for two zero bits in even */ |
| 378 |
gf2_matrix_square(even, odd); |
| 379 |
|
| 380 |
/* put operator for four zero bits in odd */ |
| 381 |
gf2_matrix_square(odd, even); |
| 382 |
|
| 383 |
/* apply len2 zeros to crc1 (first square will put the operator for one |
| 384 |
zero byte, eight zero bits, in even) */ |
| 385 |
do { |
| 386 |
/* apply zeros operator for this bit of len2 */ |
| 387 |
gf2_matrix_square(even, odd); |
| 388 |
if (len2 & 1) |
| 389 |
crc1 = gf2_matrix_times(even, crc1); |
| 390 |
len2 >>= 1; |
| 391 |
|
| 392 |
/* if no more bits set, then done */ |
| 393 |
if (len2 == 0) |
| 394 |
break; |
| 395 |
|
| 396 |
/* another iteration of the loop with odd and even swapped */ |
| 397 |
gf2_matrix_square(odd, even); |
| 398 |
if (len2 & 1) |
| 399 |
crc1 = gf2_matrix_times(odd, crc1); |
| 400 |
len2 >>= 1; |
| 401 |
|
| 402 |
/* if no more bits set, then done */ |
| 403 |
} while (len2 != 0); |
| 404 |
|
| 405 |
/* return combined crc */ |
| 406 |
crc1 ^= crc2; |
| 407 |
return crc1; |
| 408 |
} |
| 409 |
|
| 410 |
/* ========================================================================= */ |
| 411 |
uLong ZEXPORT crc32_combine(crc1, crc2, len2) |
| 412 |
uLong crc1; |
| 413 |
uLong crc2; |
| 414 |
z_off_t len2; |
| 415 |
{ |
| 416 |
return crc32_combine_(crc1, crc2, len2); |
| 417 |
} |
| 418 |
|
| 419 |
uLong ZEXPORT crc32_combine64(crc1, crc2, len2) |
| 420 |
uLong crc1; |
| 421 |
uLong crc2; |
| 422 |
z_off64_t len2; |
| 423 |
{ |
| 424 |
return crc32_combine_(crc1, crc2, len2); |
| 425 |
} |