1 |
/* crc32.c -- compute the CRC-32 of a data stream |
2 |
* Copyright (C) 1995-2006, 2010, 2011, 2012 Mark Adler |
3 |
* For conditions of distribution and use, see copyright notice in zlib.h |
4 |
* |
5 |
* Thanks to Rodney Brown <rbrown64@csc.com.au> for his contribution of faster |
6 |
* CRC methods: exclusive-oring 32 bits of data at a time, and pre-computing |
7 |
* tables for updating the shift register in one step with three exclusive-ors |
8 |
* instead of four steps with four exclusive-ors. This results in about a |
9 |
* factor of two increase in speed on a Power PC G4 (PPC7455) using gcc -O3. |
10 |
*/ |
11 |
|
12 |
/* @(#) $Id$ */ |
13 |
|
14 |
/* |
15 |
Note on the use of DYNAMIC_CRC_TABLE: there is no mutex or semaphore |
16 |
protection on the static variables used to control the first-use generation |
17 |
of the crc tables. Therefore, if you #define DYNAMIC_CRC_TABLE, you should |
18 |
first call get_crc_table() to initialize the tables before allowing more than |
19 |
one thread to use crc32(). |
20 |
|
21 |
DYNAMIC_CRC_TABLE and MAKECRCH can be #defined to write out crc32.h. |
22 |
*/ |
23 |
|
24 |
#ifdef MAKECRCH |
25 |
# include <stdio.h> |
26 |
# ifndef DYNAMIC_CRC_TABLE |
27 |
# define DYNAMIC_CRC_TABLE |
28 |
# endif /* !DYNAMIC_CRC_TABLE */ |
29 |
#endif /* MAKECRCH */ |
30 |
|
31 |
#include "zutil.h" /* for STDC and FAR definitions */ |
32 |
|
33 |
#define local static |
34 |
|
35 |
/* Definitions for doing the crc four data bytes at a time. */ |
36 |
#if !defined(NOBYFOUR) && defined(Z_U4) |
37 |
# define BYFOUR |
38 |
#endif |
39 |
#ifdef BYFOUR |
40 |
local unsigned long crc32_little OF((unsigned long, |
41 |
const unsigned char FAR *, unsigned)); |
42 |
local unsigned long crc32_big OF((unsigned long, |
43 |
const unsigned char FAR *, unsigned)); |
44 |
# define TBLS 8 |
45 |
#else |
46 |
# define TBLS 1 |
47 |
#endif /* BYFOUR */ |
48 |
|
49 |
/* Local functions for crc concatenation */ |
50 |
local unsigned long gf2_matrix_times OF((unsigned long *mat, |
51 |
unsigned long vec)); |
52 |
local void gf2_matrix_square OF((unsigned long *square, unsigned long *mat)); |
53 |
local uLong crc32_combine_ OF((uLong crc1, uLong crc2, z_off64_t len2)); |
54 |
|
55 |
|
56 |
#ifdef DYNAMIC_CRC_TABLE |
57 |
|
58 |
local volatile int crc_table_empty = 1; |
59 |
local z_crc_t FAR crc_table[TBLS][256]; |
60 |
local void make_crc_table OF((void)); |
61 |
#ifdef MAKECRCH |
62 |
local void write_table OF((FILE *, const z_crc_t FAR *)); |
63 |
#endif /* MAKECRCH */ |
64 |
/* |
65 |
Generate tables for a byte-wise 32-bit CRC calculation on the polynomial: |
66 |
x^32+x^26+x^23+x^22+x^16+x^12+x^11+x^10+x^8+x^7+x^5+x^4+x^2+x+1. |
67 |
|
68 |
Polynomials over GF(2) are represented in binary, one bit per coefficient, |
69 |
with the lowest powers in the most significant bit. Then adding polynomials |
70 |
is just exclusive-or, and multiplying a polynomial by x is a right shift by |
71 |
one. If we call the above polynomial p, and represent a byte as the |
72 |
polynomial q, also with the lowest power in the most significant bit (so the |
73 |
byte 0xb1 is the polynomial x^7+x^3+x+1), then the CRC is (q*x^32) mod p, |
74 |
where a mod b means the remainder after dividing a by b. |
75 |
|
76 |
This calculation is done using the shift-register method of multiplying and |
77 |
taking the remainder. The register is initialized to zero, and for each |
78 |
incoming bit, x^32 is added mod p to the register if the bit is a one (where |
79 |
x^32 mod p is p+x^32 = x^26+...+1), and the register is multiplied mod p by |
80 |
x (which is shifting right by one and adding x^32 mod p if the bit shifted |
81 |
out is a one). We start with the highest power (least significant bit) of |
82 |
q and repeat for all eight bits of q. |
83 |
|
84 |
The first table is simply the CRC of all possible eight bit values. This is |
85 |
all the information needed to generate CRCs on data a byte at a time for all |
86 |
combinations of CRC register values and incoming bytes. The remaining tables |
87 |
allow for word-at-a-time CRC calculation for both big-endian and little- |
88 |
endian machines, where a word is four bytes. |
89 |
*/ |
90 |
local void make_crc_table() |
91 |
{ |
92 |
z_crc_t c; |
93 |
int n, k; |
94 |
z_crc_t poly; /* polynomial exclusive-or pattern */ |
95 |
/* terms of polynomial defining this crc (except x^32): */ |
96 |
static volatile int first = 1; /* flag to limit concurrent making */ |
97 |
static const unsigned char p[] = {0,1,2,4,5,7,8,10,11,12,16,22,23,26}; |
98 |
|
99 |
/* See if another task is already doing this (not thread-safe, but better |
100 |
than nothing -- significantly reduces duration of vulnerability in |
101 |
case the advice about DYNAMIC_CRC_TABLE is ignored) */ |
102 |
if (first) { |
103 |
first = 0; |
104 |
|
105 |
/* make exclusive-or pattern from polynomial (0xedb88320UL) */ |
106 |
poly = 0; |
107 |
for (n = 0; n < (int)(sizeof(p)/sizeof(unsigned char)); n++) |
108 |
poly |= (z_crc_t)1 << (31 - p[n]); |
109 |
|
110 |
/* generate a crc for every 8-bit value */ |
111 |
for (n = 0; n < 256; n++) { |
112 |
c = (z_crc_t)n; |
113 |
for (k = 0; k < 8; k++) |
114 |
c = c & 1 ? poly ^ (c >> 1) : c >> 1; |
115 |
crc_table[0][n] = c; |
116 |
} |
117 |
|
118 |
#ifdef BYFOUR |
119 |
/* generate crc for each value followed by one, two, and three zeros, |
120 |
and then the byte reversal of those as well as the first table */ |
121 |
for (n = 0; n < 256; n++) { |
122 |
c = crc_table[0][n]; |
123 |
crc_table[4][n] = ZSWAP32(c); |
124 |
for (k = 1; k < 4; k++) { |
125 |
c = crc_table[0][c & 0xff] ^ (c >> 8); |
126 |
crc_table[k][n] = c; |
127 |
crc_table[k + 4][n] = ZSWAP32(c); |
128 |
} |
129 |
} |
130 |
#endif /* BYFOUR */ |
131 |
|
132 |
crc_table_empty = 0; |
133 |
} |
134 |
else { /* not first */ |
135 |
/* wait for the other guy to finish (not efficient, but rare) */ |
136 |
while (crc_table_empty) |
137 |
; |
138 |
} |
139 |
|
140 |
#ifdef MAKECRCH |
141 |
/* write out CRC tables to crc32.h */ |
142 |
{ |
143 |
FILE *out; |
144 |
|
145 |
out = fopen("crc32.h", "w"); |
146 |
if (out == NULL) return; |
147 |
fprintf(out, "/* crc32.h -- tables for rapid CRC calculation\n"); |
148 |
fprintf(out, " * Generated automatically by crc32.c\n */\n\n"); |
149 |
fprintf(out, "local const z_crc_t FAR "); |
150 |
fprintf(out, "crc_table[TBLS][256] =\n{\n {\n"); |
151 |
write_table(out, crc_table[0]); |
152 |
# ifdef BYFOUR |
153 |
fprintf(out, "#ifdef BYFOUR\n"); |
154 |
for (k = 1; k < 8; k++) { |
155 |
fprintf(out, " },\n {\n"); |
156 |
write_table(out, crc_table[k]); |
157 |
} |
158 |
fprintf(out, "#endif\n"); |
159 |
# endif /* BYFOUR */ |
160 |
fprintf(out, " }\n};\n"); |
161 |
fclose(out); |
162 |
} |
163 |
#endif /* MAKECRCH */ |
164 |
} |
165 |
|
166 |
#ifdef MAKECRCH |
167 |
local void write_table(out, table) |
168 |
FILE *out; |
169 |
const z_crc_t FAR *table; |
170 |
{ |
171 |
int n; |
172 |
|
173 |
for (n = 0; n < 256; n++) |
174 |
fprintf(out, "%s0x%08lxUL%s", n % 5 ? "" : " ", |
175 |
(unsigned long)(table[n]), |
176 |
n == 255 ? "\n" : (n % 5 == 4 ? ",\n" : ", ")); |
177 |
} |
178 |
#endif /* MAKECRCH */ |
179 |
|
180 |
#else /* !DYNAMIC_CRC_TABLE */ |
181 |
/* ======================================================================== |
182 |
* Tables of CRC-32s of all single-byte values, made by make_crc_table(). |
183 |
*/ |
184 |
#include "crc32.h" |
185 |
#endif /* DYNAMIC_CRC_TABLE */ |
186 |
|
187 |
/* ========================================================================= |
188 |
* This function can be used by asm versions of crc32() |
189 |
*/ |
190 |
const z_crc_t FAR * ZEXPORT get_crc_table() |
191 |
{ |
192 |
#ifdef DYNAMIC_CRC_TABLE |
193 |
if (crc_table_empty) |
194 |
make_crc_table(); |
195 |
#endif /* DYNAMIC_CRC_TABLE */ |
196 |
return (const z_crc_t FAR *)crc_table; |
197 |
} |
198 |
|
199 |
/* ========================================================================= */ |
200 |
#define DO1 crc = crc_table[0][((int)crc ^ (*buf++)) & 0xff] ^ (crc >> 8) |
201 |
#define DO8 DO1; DO1; DO1; DO1; DO1; DO1; DO1; DO1 |
202 |
|
203 |
/* ========================================================================= */ |
204 |
unsigned long ZEXPORT crc32(crc, buf, len) |
205 |
unsigned long crc; |
206 |
const unsigned char FAR *buf; |
207 |
uInt len; |
208 |
{ |
209 |
if (buf == Z_NULL) return 0UL; |
210 |
|
211 |
#ifdef DYNAMIC_CRC_TABLE |
212 |
if (crc_table_empty) |
213 |
make_crc_table(); |
214 |
#endif /* DYNAMIC_CRC_TABLE */ |
215 |
|
216 |
#ifdef BYFOUR |
217 |
if (sizeof(void *) == sizeof(ptrdiff_t)) { |
218 |
z_crc_t endian; |
219 |
|
220 |
endian = 1; |
221 |
if (*((unsigned char *)(&endian))) |
222 |
return crc32_little(crc, buf, len); |
223 |
else |
224 |
return crc32_big(crc, buf, len); |
225 |
} |
226 |
#endif /* BYFOUR */ |
227 |
crc = crc ^ 0xffffffffUL; |
228 |
while (len >= 8) { |
229 |
DO8; |
230 |
len -= 8; |
231 |
} |
232 |
if (len) do { |
233 |
DO1; |
234 |
} while (--len); |
235 |
return crc ^ 0xffffffffUL; |
236 |
} |
237 |
|
238 |
#ifdef BYFOUR |
239 |
|
240 |
/* ========================================================================= */ |
241 |
#define DOLIT4 c ^= *buf4++; \ |
242 |
c = crc_table[3][c & 0xff] ^ crc_table[2][(c >> 8) & 0xff] ^ \ |
243 |
crc_table[1][(c >> 16) & 0xff] ^ crc_table[0][c >> 24] |
244 |
#define DOLIT32 DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4 |
245 |
|
246 |
/* ========================================================================= */ |
247 |
local unsigned long crc32_little(crc, buf, len) |
248 |
unsigned long crc; |
249 |
const unsigned char FAR *buf; |
250 |
unsigned len; |
251 |
{ |
252 |
register z_crc_t c; |
253 |
register const z_crc_t FAR *buf4; |
254 |
|
255 |
c = (z_crc_t)crc; |
256 |
c = ~c; |
257 |
while (len && ((ptrdiff_t)buf & 3)) { |
258 |
c = crc_table[0][(c ^ *buf++) & 0xff] ^ (c >> 8); |
259 |
len--; |
260 |
} |
261 |
|
262 |
buf4 = (const z_crc_t FAR *)(const void FAR *)buf; |
263 |
while (len >= 32) { |
264 |
DOLIT32; |
265 |
len -= 32; |
266 |
} |
267 |
while (len >= 4) { |
268 |
DOLIT4; |
269 |
len -= 4; |
270 |
} |
271 |
buf = (const unsigned char FAR *)buf4; |
272 |
|
273 |
if (len) do { |
274 |
c = crc_table[0][(c ^ *buf++) & 0xff] ^ (c >> 8); |
275 |
} while (--len); |
276 |
c = ~c; |
277 |
return (unsigned long)c; |
278 |
} |
279 |
|
280 |
/* ========================================================================= */ |
281 |
#define DOBIG4 c ^= *++buf4; \ |
282 |
c = crc_table[4][c & 0xff] ^ crc_table[5][(c >> 8) & 0xff] ^ \ |
283 |
crc_table[6][(c >> 16) & 0xff] ^ crc_table[7][c >> 24] |
284 |
#define DOBIG32 DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4 |
285 |
|
286 |
/* ========================================================================= */ |
287 |
local unsigned long crc32_big(crc, buf, len) |
288 |
unsigned long crc; |
289 |
const unsigned char FAR *buf; |
290 |
unsigned len; |
291 |
{ |
292 |
register z_crc_t c; |
293 |
register const z_crc_t FAR *buf4; |
294 |
|
295 |
c = ZSWAP32((z_crc_t)crc); |
296 |
c = ~c; |
297 |
while (len && ((ptrdiff_t)buf & 3)) { |
298 |
c = crc_table[4][(c >> 24) ^ *buf++] ^ (c << 8); |
299 |
len--; |
300 |
} |
301 |
|
302 |
buf4 = (const z_crc_t FAR *)(const void FAR *)buf; |
303 |
buf4--; |
304 |
while (len >= 32) { |
305 |
DOBIG32; |
306 |
len -= 32; |
307 |
} |
308 |
while (len >= 4) { |
309 |
DOBIG4; |
310 |
len -= 4; |
311 |
} |
312 |
buf4++; |
313 |
buf = (const unsigned char FAR *)buf4; |
314 |
|
315 |
if (len) do { |
316 |
c = crc_table[4][(c >> 24) ^ *buf++] ^ (c << 8); |
317 |
} while (--len); |
318 |
c = ~c; |
319 |
return (unsigned long)(ZSWAP32(c)); |
320 |
} |
321 |
|
322 |
#endif /* BYFOUR */ |
323 |
|
324 |
#define GF2_DIM 32 /* dimension of GF(2) vectors (length of CRC) */ |
325 |
|
326 |
/* ========================================================================= */ |
327 |
local unsigned long gf2_matrix_times(mat, vec) |
328 |
unsigned long *mat; |
329 |
unsigned long vec; |
330 |
{ |
331 |
unsigned long sum; |
332 |
|
333 |
sum = 0; |
334 |
while (vec) { |
335 |
if (vec & 1) |
336 |
sum ^= *mat; |
337 |
vec >>= 1; |
338 |
mat++; |
339 |
} |
340 |
return sum; |
341 |
} |
342 |
|
343 |
/* ========================================================================= */ |
344 |
local void gf2_matrix_square(square, mat) |
345 |
unsigned long *square; |
346 |
unsigned long *mat; |
347 |
{ |
348 |
int n; |
349 |
|
350 |
for (n = 0; n < GF2_DIM; n++) |
351 |
square[n] = gf2_matrix_times(mat, mat[n]); |
352 |
} |
353 |
|
354 |
/* ========================================================================= */ |
355 |
local uLong crc32_combine_(crc1, crc2, len2) |
356 |
uLong crc1; |
357 |
uLong crc2; |
358 |
z_off64_t len2; |
359 |
{ |
360 |
int n; |
361 |
unsigned long row; |
362 |
unsigned long even[GF2_DIM]; /* even-power-of-two zeros operator */ |
363 |
unsigned long odd[GF2_DIM]; /* odd-power-of-two zeros operator */ |
364 |
|
365 |
/* degenerate case (also disallow negative lengths) */ |
366 |
if (len2 <= 0) |
367 |
return crc1; |
368 |
|
369 |
/* put operator for one zero bit in odd */ |
370 |
odd[0] = 0xedb88320UL; /* CRC-32 polynomial */ |
371 |
row = 1; |
372 |
for (n = 1; n < GF2_DIM; n++) { |
373 |
odd[n] = row; |
374 |
row <<= 1; |
375 |
} |
376 |
|
377 |
/* put operator for two zero bits in even */ |
378 |
gf2_matrix_square(even, odd); |
379 |
|
380 |
/* put operator for four zero bits in odd */ |
381 |
gf2_matrix_square(odd, even); |
382 |
|
383 |
/* apply len2 zeros to crc1 (first square will put the operator for one |
384 |
zero byte, eight zero bits, in even) */ |
385 |
do { |
386 |
/* apply zeros operator for this bit of len2 */ |
387 |
gf2_matrix_square(even, odd); |
388 |
if (len2 & 1) |
389 |
crc1 = gf2_matrix_times(even, crc1); |
390 |
len2 >>= 1; |
391 |
|
392 |
/* if no more bits set, then done */ |
393 |
if (len2 == 0) |
394 |
break; |
395 |
|
396 |
/* another iteration of the loop with odd and even swapped */ |
397 |
gf2_matrix_square(odd, even); |
398 |
if (len2 & 1) |
399 |
crc1 = gf2_matrix_times(odd, crc1); |
400 |
len2 >>= 1; |
401 |
|
402 |
/* if no more bits set, then done */ |
403 |
} while (len2 != 0); |
404 |
|
405 |
/* return combined crc */ |
406 |
crc1 ^= crc2; |
407 |
return crc1; |
408 |
} |
409 |
|
410 |
/* ========================================================================= */ |
411 |
uLong ZEXPORT crc32_combine(crc1, crc2, len2) |
412 |
uLong crc1; |
413 |
uLong crc2; |
414 |
z_off_t len2; |
415 |
{ |
416 |
return crc32_combine_(crc1, crc2, len2); |
417 |
} |
418 |
|
419 |
uLong ZEXPORT crc32_combine64(crc1, crc2, len2) |
420 |
uLong crc1; |
421 |
uLong crc2; |
422 |
z_off64_t len2; |
423 |
{ |
424 |
return crc32_combine_(crc1, crc2, len2); |
425 |
} |