| 1 | /* blast.c | 
 
 
 
 
 | 2 | * Copyright (C) 2003, 2012 Mark Adler | 
 
 
 
 
 | 3 | * For conditions of distribution and use, see copyright notice in blast.h | 
 
 
 
 
 | 4 | * version 1.2, 24 Oct 2012 | 
 
 
 
 
 | 5 | * | 
 
 
 
 
 | 6 | * blast.c decompresses data compressed by the PKWare Compression Library. | 
 
 
 
 
 | 7 | * This function provides functionality similar to the explode() function of | 
 
 
 
 
 | 8 | * the PKWare library, hence the name "blast". | 
 
 
 
 
 | 9 | * | 
 
 
 
 
 | 10 | * This decompressor is based on the excellent format description provided by | 
 
 
 
 
 | 11 | * Ben Rudiak-Gould in comp.compression on August 13, 2001.  Interestingly, the | 
 
 
 
 
 | 12 | * example Ben provided in the post is incorrect.  The distance 110001 should | 
 
 
 
 
 | 13 | * instead be 111000.  When corrected, the example byte stream becomes: | 
 
 
 
 
 | 14 | * | 
 
 
 
 
 | 15 | *    00 04 82 24 25 8f 80 7f | 
 
 
 
 
 | 16 | * | 
 
 
 
 
 | 17 | * which decompresses to "AIAIAIAIAIAIA" (without the quotes). | 
 
 
 
 
 | 18 | */ | 
 
 
 
 
 | 19 |  | 
 
 
 
 
 | 20 | /* | 
 
 
 
 
 | 21 | * Change history: | 
 
 
 
 
 | 22 | * | 
 
 
 
 
 | 23 | * 1.0  12 Feb 2003     - First version | 
 
 
 
 
 | 24 | * 1.1  16 Feb 2003     - Fixed distance check for > 4 GB uncompressed data | 
 
 
 
 
 | 25 | * 1.2  24 Oct 2012     - Add note about using binary mode in stdio | 
 
 
 
 
 | 26 | *                      - Fix comparisons of differently signed integers | 
 
 
 
 
 | 27 | */ | 
 
 
 
 
 | 28 |  | 
 
 
 
 
 | 29 | #include <setjmp.h>             /* for setjmp(), longjmp(), and jmp_buf */ | 
 
 
 
 
 | 30 | #include "blast.h"              /* prototype for blast() */ | 
 
 
 
 
 | 31 |  | 
 
 
 
 
 | 32 | #define local static            /* for local function definitions */ | 
 
 
 
 
 | 33 | #define MAXBITS 13              /* maximum code length */ | 
 
 
 
 
 | 34 | #define MAXWIN 4096             /* maximum window size */ | 
 
 
 
 
 | 35 |  | 
 
 
 
 
 | 36 | /* input and output state */ | 
 
 
 
 
 | 37 | struct state { | 
 
 
 
 
 | 38 | /* input state */ | 
 
 
 
 
 | 39 | blast_in infun;             /* input function provided by user */ | 
 
 
 
 
 | 40 | void *inhow;                /* opaque information passed to infun() */ | 
 
 
 
 
 | 41 | unsigned char *in;          /* next input location */ | 
 
 
 
 
 | 42 | unsigned left;              /* available input at in */ | 
 
 
 
 
 | 43 | int bitbuf;                 /* bit buffer */ | 
 
 
 
 
 | 44 | int bitcnt;                 /* number of bits in bit buffer */ | 
 
 
 
 
 | 45 |  | 
 
 
 
 
 | 46 | /* input limit error return state for bits() and decode() */ | 
 
 
 
 
 | 47 | jmp_buf env; | 
 
 
 
 
 | 48 |  | 
 
 
 
 
 | 49 | /* output state */ | 
 
 
 
 
 | 50 | blast_out outfun;           /* output function provided by user */ | 
 
 
 
 
 | 51 | void *outhow;               /* opaque information passed to outfun() */ | 
 
 
 
 
 | 52 | unsigned next;              /* index of next write location in out[] */ | 
 
 
 
 
 | 53 | int first;                  /* true to check distances (for first 4K) */ | 
 
 
 
 
 | 54 | unsigned char out[MAXWIN];  /* output buffer and sliding window */ | 
 
 
 
 
 | 55 | }; | 
 
 
 
 
 | 56 |  | 
 
 
 
 
 | 57 | /* | 
 
 
 
 
 | 58 | * Return need bits from the input stream.  This always leaves less than | 
 
 
 
 
 | 59 | * eight bits in the buffer.  bits() works properly for need == 0. | 
 
 
 
 
 | 60 | * | 
 
 
 
 
 | 61 | * Format notes: | 
 
 
 
 
 | 62 | * | 
 
 
 
 
 | 63 | * - Bits are stored in bytes from the least significant bit to the most | 
 
 
 
 
 | 64 | *   significant bit.  Therefore bits are dropped from the bottom of the bit | 
 
 
 
 
 | 65 | *   buffer, using shift right, and new bytes are appended to the top of the | 
 
 
 
 
 | 66 | *   bit buffer, using shift left. | 
 
 
 
 
 | 67 | */ | 
 
 
 
 
 | 68 | local int bits(struct state *s, int need) | 
 
 
 
 
 | 69 | { | 
 
 
 
 
 | 70 | int val;            /* bit accumulator */ | 
 
 
 
 
 | 71 |  | 
 
 
 
 
 | 72 | /* load at least need bits into val */ | 
 
 
 
 
 | 73 | val = s->bitbuf; | 
 
 
 
 
 | 74 | while (s->bitcnt < need) { | 
 
 
 
 
 | 75 | if (s->left == 0) { | 
 
 
 
 
 | 76 | s->left = s->infun(s->inhow, &(s->in)); | 
 
 
 
 
 | 77 | if (s->left == 0) longjmp(s->env, 1);       /* out of input */ | 
 
 
 
 
 | 78 | } | 
 
 
 
 
 | 79 | val |= (int)(*(s->in)++) << s->bitcnt;          /* load eight bits */ | 
 
 
 
 
 | 80 | s->left--; | 
 
 
 
 
 | 81 | s->bitcnt += 8; | 
 
 
 
 
 | 82 | } | 
 
 
 
 
 | 83 |  | 
 
 
 
 
 | 84 | /* drop need bits and update buffer, always zero to seven bits left */ | 
 
 
 
 
 | 85 | s->bitbuf = val >> need; | 
 
 
 
 
 | 86 | s->bitcnt -= need; | 
 
 
 
 
 | 87 |  | 
 
 
 
 
 | 88 | /* return need bits, zeroing the bits above that */ | 
 
 
 
 
 | 89 | return val & ((1 << need) - 1); | 
 
 
 
 
 | 90 | } | 
 
 
 
 
 | 91 |  | 
 
 
 
 
 | 92 | /* | 
 
 
 
 
 | 93 | * Huffman code decoding tables.  count[1..MAXBITS] is the number of symbols of | 
 
 
 
 
 | 94 | * each length, which for a canonical code are stepped through in order. | 
 
 
 
 
 | 95 | * symbol[] are the symbol values in canonical order, where the number of | 
 
 
 
 
 | 96 | * entries is the sum of the counts in count[].  The decoding process can be | 
 
 
 
 
 | 97 | * seen in the function decode() below. | 
 
 
 
 
 | 98 | */ | 
 
 
 
 
 | 99 | struct huffman { | 
 
 
 
 
 | 100 | short *count;       /* number of symbols of each length */ | 
 
 
 
 
 | 101 | short *symbol;      /* canonically ordered symbols */ | 
 
 
 
 
 | 102 | }; | 
 
 
 
 
 | 103 |  | 
 
 
 
 
 | 104 | /* | 
 
 
 
 
 | 105 | * Decode a code from the stream s using huffman table h.  Return the symbol or | 
 
 
 
 
 | 106 | * a negative value if there is an error.  If all of the lengths are zero, i.e. | 
 
 
 
 
 | 107 | * an empty code, or if the code is incomplete and an invalid code is received, | 
 
 
 
 
 | 108 | * then -9 is returned after reading MAXBITS bits. | 
 
 
 
 
 | 109 | * | 
 
 
 
 
 | 110 | * Format notes: | 
 
 
 
 
 | 111 | * | 
 
 
 
 
 | 112 | * - The codes as stored in the compressed data are bit-reversed relative to | 
 
 
 
 
 | 113 | *   a simple integer ordering of codes of the same lengths.  Hence below the | 
 
 
 
 
 | 114 | *   bits are pulled from the compressed data one at a time and used to | 
 
 
 
 
 | 115 | *   build the code value reversed from what is in the stream in order to | 
 
 
 
 
 | 116 | *   permit simple integer comparisons for decoding. | 
 
 
 
 
 | 117 | * | 
 
 
 
 
 | 118 | * - The first code for the shortest length is all ones.  Subsequent codes of | 
 
 
 
 
 | 119 | *   the same length are simply integer decrements of the previous code.  When | 
 
 
 
 
 | 120 | *   moving up a length, a one bit is appended to the code.  For a complete | 
 
 
 
 
 | 121 | *   code, the last code of the longest length will be all zeros.  To support | 
 
 
 
 
 | 122 | *   this ordering, the bits pulled during decoding are inverted to apply the | 
 
 
 
 
 | 123 | *   more "natural" ordering starting with all zeros and incrementing. | 
 
 
 
 
 | 124 | */ | 
 
 
 
 
 | 125 | local int decode(struct state *s, struct huffman *h) | 
 
 
 
 
 | 126 | { | 
 
 
 
 
 | 127 | int len;            /* current number of bits in code */ | 
 
 
 
 
 | 128 | int code;           /* len bits being decoded */ | 
 
 
 
 
 | 129 | int first;          /* first code of length len */ | 
 
 
 
 
 | 130 | int count;          /* number of codes of length len */ | 
 
 
 
 
 | 131 | int index;          /* index of first code of length len in symbol table */ | 
 
 
 
 
 | 132 | int bitbuf;         /* bits from stream */ | 
 
 
 
 
 | 133 | int left;           /* bits left in next or left to process */ | 
 
 
 
 
 | 134 | short *next;        /* next number of codes */ | 
 
 
 
 
 | 135 |  | 
 
 
 
 
 | 136 | bitbuf = s->bitbuf; | 
 
 
 
 
 | 137 | left = s->bitcnt; | 
 
 
 
 
 | 138 | code = first = index = 0; | 
 
 
 
 
 | 139 | len = 1; | 
 
 
 
 
 | 140 | next = h->count + 1; | 
 
 
 
 
 | 141 | while (1) { | 
 
 
 
 
 | 142 | while (left--) { | 
 
 
 
 
 | 143 | code |= (bitbuf & 1) ^ 1;   /* invert code */ | 
 
 
 
 
 | 144 | bitbuf >>= 1; | 
 
 
 
 
 | 145 | count = *next++; | 
 
 
 
 
 | 146 | if (code < first + count) { /* if length len, return symbol */ | 
 
 
 
 
 | 147 | s->bitbuf = bitbuf; | 
 
 
 
 
 | 148 | s->bitcnt = (s->bitcnt - len) & 7; | 
 
 
 
 
 | 149 | return h->symbol[index + (code - first)]; | 
 
 
 
 
 | 150 | } | 
 
 
 
 
 | 151 | index += count;             /* else update for next length */ | 
 
 
 
 
 | 152 | first += count; | 
 
 
 
 
 | 153 | first <<= 1; | 
 
 
 
 
 | 154 | code <<= 1; | 
 
 
 
 
 | 155 | len++; | 
 
 
 
 
 | 156 | } | 
 
 
 
 
 | 157 | left = (MAXBITS+1) - len; | 
 
 
 
 
 | 158 | if (left == 0) break; | 
 
 
 
 
 | 159 | if (s->left == 0) { | 
 
 
 
 
 | 160 | s->left = s->infun(s->inhow, &(s->in)); | 
 
 
 
 
 | 161 | if (s->left == 0) longjmp(s->env, 1);       /* out of input */ | 
 
 
 
 
 | 162 | } | 
 
 
 
 
 | 163 | bitbuf = *(s->in)++; | 
 
 
 
 
 | 164 | s->left--; | 
 
 
 
 
 | 165 | if (left > 8) left = 8; | 
 
 
 
 
 | 166 | } | 
 
 
 
 
 | 167 | return -9;                          /* ran out of codes */ | 
 
 
 
 
 | 168 | } | 
 
 
 
 
 | 169 |  | 
 
 
 
 
 | 170 | /* | 
 
 
 
 
 | 171 | * Given a list of repeated code lengths rep[0..n-1], where each byte is a | 
 
 
 
 
 | 172 | * count (high four bits + 1) and a code length (low four bits), generate the | 
 
 
 
 
 | 173 | * list of code lengths.  This compaction reduces the size of the object code. | 
 
 
 
 
 | 174 | * Then given the list of code lengths length[0..n-1] representing a canonical | 
 
 
 
 
 | 175 | * Huffman code for n symbols, construct the tables required to decode those | 
 
 
 
 
 | 176 | * codes.  Those tables are the number of codes of each length, and the symbols | 
 
 
 
 
 | 177 | * sorted by length, retaining their original order within each length.  The | 
 
 
 
 
 | 178 | * return value is zero for a complete code set, negative for an over- | 
 
 
 
 
 | 179 | * subscribed code set, and positive for an incomplete code set.  The tables | 
 
 
 
 
 | 180 | * can be used if the return value is zero or positive, but they cannot be used | 
 
 
 
 
 | 181 | * if the return value is negative.  If the return value is zero, it is not | 
 
 
 
 
 | 182 | * possible for decode() using that table to return an error--any stream of | 
 
 
 
 
 | 183 | * enough bits will resolve to a symbol.  If the return value is positive, then | 
 
 
 
 
 | 184 | * it is possible for decode() using that table to return an error for received | 
 
 
 
 
 | 185 | * codes past the end of the incomplete lengths. | 
 
 
 
 
 | 186 | */ | 
 
 
 
 
 | 187 | local int construct(struct huffman *h, const unsigned char *rep, int n) | 
 
 
 
 
 | 188 | { | 
 
 
 
 
 | 189 | int symbol;         /* current symbol when stepping through length[] */ | 
 
 
 
 
 | 190 | int len;            /* current length when stepping through h->count[] */ | 
 
 
 
 
 | 191 | int left;           /* number of possible codes left of current length */ | 
 
 
 
 
 | 192 | short offs[MAXBITS+1];      /* offsets in symbol table for each length */ | 
 
 
 
 
 | 193 | short length[256];  /* code lengths */ | 
 
 
 
 
 | 194 |  | 
 
 
 
 
 | 195 | /* convert compact repeat counts into symbol bit length list */ | 
 
 
 
 
 | 196 | symbol = 0; | 
 
 
 
 
 | 197 | do { | 
 
 
 
 
 | 198 | len = *rep++; | 
 
 
 
 
 | 199 | left = (len >> 4) + 1; | 
 
 
 
 
 | 200 | len &= 15; | 
 
 
 
 
 | 201 | do { | 
 
 
 
 
 | 202 | length[symbol++] = len; | 
 
 
 
 
 | 203 | } while (--left); | 
 
 
 
 
 | 204 | } while (--n); | 
 
 
 
 
 | 205 | n = symbol; | 
 
 
 
 
 | 206 |  | 
 
 
 
 
 | 207 | /* count number of codes of each length */ | 
 
 
 
 
 | 208 | for (len = 0; len <= MAXBITS; len++) | 
 
 
 
 
 | 209 | h->count[len] = 0; | 
 
 
 
 
 | 210 | for (symbol = 0; symbol < n; symbol++) | 
 
 
 
 
 | 211 | (h->count[length[symbol]])++;   /* assumes lengths are within bounds */ | 
 
 
 
 
 | 212 | if (h->count[0] == n)               /* no codes! */ | 
 
 
 
 
 | 213 | return 0;                       /* complete, but decode() will fail */ | 
 
 
 
 
 | 214 |  | 
 
 
 
 
 | 215 | /* check for an over-subscribed or incomplete set of lengths */ | 
 
 
 
 
 | 216 | left = 1;                           /* one possible code of zero length */ | 
 
 
 
 
 | 217 | for (len = 1; len <= MAXBITS; len++) { | 
 
 
 
 
 | 218 | left <<= 1;                     /* one more bit, double codes left */ | 
 
 
 
 
 | 219 | left -= h->count[len];          /* deduct count from possible codes */ | 
 
 
 
 
 | 220 | if (left < 0) return left;      /* over-subscribed--return negative */ | 
 
 
 
 
 | 221 | }                                   /* left > 0 means incomplete */ | 
 
 
 
 
 | 222 |  | 
 
 
 
 
 | 223 | /* generate offsets into symbol table for each length for sorting */ | 
 
 
 
 
 | 224 | offs[1] = 0; | 
 
 
 
 
 | 225 | for (len = 1; len < MAXBITS; len++) | 
 
 
 
 
 | 226 | offs[len + 1] = offs[len] + h->count[len]; | 
 
 
 
 
 | 227 |  | 
 
 
 
 
 | 228 | /* | 
 
 
 
 
 | 229 | * put symbols in table sorted by length, by symbol order within each | 
 
 
 
 
 | 230 | * length | 
 
 
 
 
 | 231 | */ | 
 
 
 
 
 | 232 | for (symbol = 0; symbol < n; symbol++) | 
 
 
 
 
 | 233 | if (length[symbol] != 0) | 
 
 
 
 
 | 234 | h->symbol[offs[length[symbol]]++] = symbol; | 
 
 
 
 
 | 235 |  | 
 
 
 
 
 | 236 | /* return zero for complete set, positive for incomplete set */ | 
 
 
 
 
 | 237 | return left; | 
 
 
 
 
 | 238 | } | 
 
 
 
 
 | 239 |  | 
 
 
 
 
 | 240 | /* | 
 
 
 
 
 | 241 | * Decode PKWare Compression Library stream. | 
 
 
 
 
 | 242 | * | 
 
 
 
 
 | 243 | * Format notes: | 
 
 
 
 
 | 244 | * | 
 
 
 
 
 | 245 | * - First byte is 0 if literals are uncoded or 1 if they are coded.  Second | 
 
 
 
 
 | 246 | *   byte is 4, 5, or 6 for the number of extra bits in the distance code. | 
 
 
 
 
 | 247 | *   This is the base-2 logarithm of the dictionary size minus six. | 
 
 
 
 
 | 248 | * | 
 
 
 
 
 | 249 | * - Compressed data is a combination of literals and length/distance pairs | 
 
 
 
 
 | 250 | *   terminated by an end code.  Literals are either Huffman coded or | 
 
 
 
 
 | 251 | *   uncoded bytes.  A length/distance pair is a coded length followed by a | 
 
 
 
 
 | 252 | *   coded distance to represent a string that occurs earlier in the | 
 
 
 
 
 | 253 | *   uncompressed data that occurs again at the current location. | 
 
 
 
 
 | 254 | * | 
 
 
 
 
 | 255 | * - A bit preceding a literal or length/distance pair indicates which comes | 
 
 
 
 
 | 256 | *   next, 0 for literals, 1 for length/distance. | 
 
 
 
 
 | 257 | * | 
 
 
 
 
 | 258 | * - If literals are uncoded, then the next eight bits are the literal, in the | 
 
 
 
 
 | 259 | *   normal bit order in th stream, i.e. no bit-reversal is needed. Similarly, | 
 
 
 
 
 | 260 | *   no bit reversal is needed for either the length extra bits or the distance | 
 
 
 
 
 | 261 | *   extra bits. | 
 
 
 
 
 | 262 | * | 
 
 
 
 
 | 263 | * - Literal bytes are simply written to the output.  A length/distance pair is | 
 
 
 
 
 | 264 | *   an instruction to copy previously uncompressed bytes to the output.  The | 
 
 
 
 
 | 265 | *   copy is from distance bytes back in the output stream, copying for length | 
 
 
 
 
 | 266 | *   bytes. | 
 
 
 
 
 | 267 | * | 
 
 
 
 
 | 268 | * - Distances pointing before the beginning of the output data are not | 
 
 
 
 
 | 269 | *   permitted. | 
 
 
 
 
 | 270 | * | 
 
 
 
 
 | 271 | * - Overlapped copies, where the length is greater than the distance, are | 
 
 
 
 
 | 272 | *   allowed and common.  For example, a distance of one and a length of 518 | 
 
 
 
 
 | 273 | *   simply copies the last byte 518 times.  A distance of four and a length of | 
 
 
 
 
 | 274 | *   twelve copies the last four bytes three times.  A simple forward copy | 
 
 
 
 
 | 275 | *   ignoring whether the length is greater than the distance or not implements | 
 
 
 
 
 | 276 | *   this correctly. | 
 
 
 
 
 | 277 | */ | 
 
 
 
 
 | 278 | local int decomp(struct state *s) | 
 
 
 
 
 | 279 | { | 
 
 
 
 
 | 280 | int lit;            /* true if literals are coded */ | 
 
 
 
 
 | 281 | int dict;           /* log2(dictionary size) - 6 */ | 
 
 
 
 
 | 282 | int symbol;         /* decoded symbol, extra bits for distance */ | 
 
 
 
 
 | 283 | int len;            /* length for copy */ | 
 
 
 
 
 | 284 | unsigned dist;      /* distance for copy */ | 
 
 
 
 
 | 285 | int copy;           /* copy counter */ | 
 
 
 
 
 | 286 | unsigned char *from, *to;   /* copy pointers */ | 
 
 
 
 
 | 287 | static int virgin = 1;                              /* build tables once */ | 
 
 
 
 
 | 288 | static short litcnt[MAXBITS+1], litsym[256];        /* litcode memory */ | 
 
 
 
 
 | 289 | static short lencnt[MAXBITS+1], lensym[16];         /* lencode memory */ | 
 
 
 
 
 | 290 | static short distcnt[MAXBITS+1], distsym[64];       /* distcode memory */ | 
 
 
 
 
 | 291 | static struct huffman litcode = {litcnt, litsym};   /* length code */ | 
 
 
 
 
 | 292 | static struct huffman lencode = {lencnt, lensym};   /* length code */ | 
 
 
 
 
 | 293 | static struct huffman distcode = {distcnt, distsym};/* distance code */ | 
 
 
 
 
 | 294 | /* bit lengths of literal codes */ | 
 
 
 
 
 | 295 | static const unsigned char litlen[] = { | 
 
 
 
 
 | 296 | 11, 124, 8, 7, 28, 7, 188, 13, 76, 4, 10, 8, 12, 10, 12, 10, 8, 23, 8, | 
 
 
 
 
 | 297 | 9, 7, 6, 7, 8, 7, 6, 55, 8, 23, 24, 12, 11, 7, 9, 11, 12, 6, 7, 22, 5, | 
 
 
 
 
 | 298 | 7, 24, 6, 11, 9, 6, 7, 22, 7, 11, 38, 7, 9, 8, 25, 11, 8, 11, 9, 12, | 
 
 
 
 
 | 299 | 8, 12, 5, 38, 5, 38, 5, 11, 7, 5, 6, 21, 6, 10, 53, 8, 7, 24, 10, 27, | 
 
 
 
 
 | 300 | 44, 253, 253, 253, 252, 252, 252, 13, 12, 45, 12, 45, 12, 61, 12, 45, | 
 
 
 
 
 | 301 | 44, 173}; | 
 
 
 
 
 | 302 | /* bit lengths of length codes 0..15 */ | 
 
 
 
 
 | 303 | static const unsigned char lenlen[] = {2, 35, 36, 53, 38, 23}; | 
 
 
 
 
 | 304 | /* bit lengths of distance codes 0..63 */ | 
 
 
 
 
 | 305 | static const unsigned char distlen[] = {2, 20, 53, 230, 247, 151, 248}; | 
 
 
 
 
 | 306 | static const short base[16] = {     /* base for length codes */ | 
 
 
 
 
 | 307 | 3, 2, 4, 5, 6, 7, 8, 9, 10, 12, 16, 24, 40, 72, 136, 264}; | 
 
 
 
 
 | 308 | static const char extra[16] = {     /* extra bits for length codes */ | 
 
 
 
 
 | 309 | 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8}; | 
 
 
 
 
 | 310 |  | 
 
 
 
 
 | 311 | /* set up decoding tables (once--might not be thread-safe) */ | 
 
 
 
 
 | 312 | if (virgin) { | 
 
 
 
 
 | 313 | construct(&litcode, litlen, sizeof(litlen)); | 
 
 
 
 
 | 314 | construct(&lencode, lenlen, sizeof(lenlen)); | 
 
 
 
 
 | 315 | construct(&distcode, distlen, sizeof(distlen)); | 
 
 
 
 
 | 316 | virgin = 0; | 
 
 
 
 
 | 317 | } | 
 
 
 
 
 | 318 |  | 
 
 
 
 
 | 319 | /* read header */ | 
 
 
 
 
 | 320 | lit = bits(s, 8); | 
 
 
 
 
 | 321 | if (lit > 1) return -1; | 
 
 
 
 
 | 322 | dict = bits(s, 8); | 
 
 
 
 
 | 323 | if (dict < 4 || dict > 6) return -2; | 
 
 
 
 
 | 324 |  | 
 
 
 
 
 | 325 | /* decode literals and length/distance pairs */ | 
 
 
 
 
 | 326 | do { | 
 
 
 
 
 | 327 | if (bits(s, 1)) { | 
 
 
 
 
 | 328 | /* get length */ | 
 
 
 
 
 | 329 | symbol = decode(s, &lencode); | 
 
 
 
 
 | 330 | len = base[symbol] + bits(s, extra[symbol]); | 
 
 
 
 
 | 331 | if (len == 519) break;              /* end code */ | 
 
 
 
 
 | 332 |  | 
 
 
 
 
 | 333 | /* get distance */ | 
 
 
 
 
 | 334 | symbol = len == 2 ? 2 : dict; | 
 
 
 
 
 | 335 | dist = decode(s, &distcode) << symbol; | 
 
 
 
 
 | 336 | dist += bits(s, symbol); | 
 
 
 
 
 | 337 | dist++; | 
 
 
 
 
 | 338 | if (s->first && dist > s->next) | 
 
 
 
 
 | 339 | return -3;              /* distance too far back */ | 
 
 
 
 
 | 340 |  | 
 
 
 
 
 | 341 | /* copy length bytes from distance bytes back */ | 
 
 
 
 
 | 342 | do { | 
 
 
 
 
 | 343 | to = s->out + s->next; | 
 
 
 
 
 | 344 | from = to - dist; | 
 
 
 
 
 | 345 | copy = MAXWIN; | 
 
 
 
 
 | 346 | if (s->next < dist) { | 
 
 
 
 
 | 347 | from += copy; | 
 
 
 
 
 | 348 | copy = dist; | 
 
 
 
 
 | 349 | } | 
 
 
 
 
 | 350 | copy -= s->next; | 
 
 
 
 
 | 351 | if (copy > len) copy = len; | 
 
 
 
 
 | 352 | len -= copy; | 
 
 
 
 
 | 353 | s->next += copy; | 
 
 
 
 
 | 354 | do { | 
 
 
 
 
 | 355 | *to++ = *from++; | 
 
 
 
 
 | 356 | } while (--copy); | 
 
 
 
 
 | 357 | if (s->next == MAXWIN) { | 
 
 
 
 
 | 358 | if (s->outfun(s->outhow, s->out, s->next)) return 1; | 
 
 
 
 
 | 359 | s->next = 0; | 
 
 
 
 
 | 360 | s->first = 0; | 
 
 
 
 
 | 361 | } | 
 
 
 
 
 | 362 | } while (len != 0); | 
 
 
 
 
 | 363 | } | 
 
 
 
 
 | 364 | else { | 
 
 
 
 
 | 365 | /* get literal and write it */ | 
 
 
 
 
 | 366 | symbol = lit ? decode(s, &litcode) : bits(s, 8); | 
 
 
 
 
 | 367 | s->out[s->next++] = symbol; | 
 
 
 
 
 | 368 | if (s->next == MAXWIN) { | 
 
 
 
 
 | 369 | if (s->outfun(s->outhow, s->out, s->next)) return 1; | 
 
 
 
 
 | 370 | s->next = 0; | 
 
 
 
 
 | 371 | s->first = 0; | 
 
 
 
 
 | 372 | } | 
 
 
 
 
 | 373 | } | 
 
 
 
 
 | 374 | } while (1); | 
 
 
 
 
 | 375 | return 0; | 
 
 
 
 
 | 376 | } | 
 
 
 
 
 | 377 |  | 
 
 
 
 
 | 378 | /* See comments in blast.h */ | 
 
 
 
 
 | 379 | int blast(blast_in infun, void *inhow, blast_out outfun, void *outhow) | 
 
 
 
 
 | 380 | { | 
 
 
 
 
 | 381 | struct state s;             /* input/output state */ | 
 
 
 
 
 | 382 | int err;                    /* return value */ | 
 
 
 
 
 | 383 |  | 
 
 
 
 
 | 384 | /* initialize input state */ | 
 
 
 
 
 | 385 | s.infun = infun; | 
 
 
 
 
 | 386 | s.inhow = inhow; | 
 
 
 
 
 | 387 | s.left = 0; | 
 
 
 
 
 | 388 | s.bitbuf = 0; | 
 
 
 
 
 | 389 | s.bitcnt = 0; | 
 
 
 
 
 | 390 |  | 
 
 
 
 
 | 391 | /* initialize output state */ | 
 
 
 
 
 | 392 | s.outfun = outfun; | 
 
 
 
 
 | 393 | s.outhow = outhow; | 
 
 
 
 
 | 394 | s.next = 0; | 
 
 
 
 
 | 395 | s.first = 1; | 
 
 
 
 
 | 396 |  | 
 
 
 
 
 | 397 | /* return if bits() or decode() tries to read past available input */ | 
 
 
 
 
 | 398 | if (setjmp(s.env) != 0)             /* if came back here via longjmp(), */ | 
 
 
 
 
 | 399 | err = 2;                        /*  then skip decomp(), return error */ | 
 
 
 
 
 | 400 | else | 
 
 
 
 
 | 401 | err = decomp(&s);               /* decompress */ | 
 
 
 
 
 | 402 |  | 
 
 
 
 
 | 403 | /* write any leftover output and update the error code if needed */ | 
 
 
 
 
 | 404 | if (err != 1 && s.next && s.outfun(s.outhow, s.out, s.next) && err == 0) | 
 
 
 
 
 | 405 | err = 1; | 
 
 
 
 
 | 406 | return err; | 
 
 
 
 
 | 407 | } | 
 
 
 
 
 | 408 |  | 
 
 
 
 
 | 409 | #ifdef TEST | 
 
 
 
 
 | 410 | /* Example of how to use blast() */ | 
 
 
 
 
 | 411 | #include <stdio.h> | 
 
 
 
 
 | 412 | #include <stdlib.h> | 
 
 
 
 
 | 413 |  | 
 
 
 
 
 | 414 | #define CHUNK 16384 | 
 
 
 
 
 | 415 |  | 
 
 
 
 
 | 416 | local unsigned inf(void *how, unsigned char **buf) | 
 
 
 
 
 | 417 | { | 
 
 
 
 
 | 418 | static unsigned char hold[CHUNK]; | 
 
 
 
 
 | 419 |  | 
 
 
 
 
 | 420 | *buf = hold; | 
 
 
 
 
 | 421 | return fread(hold, 1, CHUNK, (FILE *)how); | 
 
 
 
 
 | 422 | } | 
 
 
 
 
 | 423 |  | 
 
 
 
 
 | 424 | local int outf(void *how, unsigned char *buf, unsigned len) | 
 
 
 
 
 | 425 | { | 
 
 
 
 
 | 426 | return fwrite(buf, 1, len, (FILE *)how) != len; | 
 
 
 
 
 | 427 | } | 
 
 
 
 
 | 428 |  | 
 
 
 
 
 | 429 | /* Decompress a PKWare Compression Library stream from stdin to stdout */ | 
 
 
 
 
 | 430 | int main(void) | 
 
 
 
 
 | 431 | { | 
 
 
 
 
 | 432 | int ret, n; | 
 
 
 
 
 | 433 |  | 
 
 
 
 
 | 434 | /* decompress to stdout */ | 
 
 
 
 
 | 435 | ret = blast(inf, stdin, outf, stdout); | 
 
 
 
 
 | 436 | if (ret != 0) fprintf(stderr, "blast error: %d\n", ret); | 
 
 
 
 
 | 437 |  | 
 
 
 
 
 | 438 | /* see if there are any leftover bytes */ | 
 
 
 
 
 | 439 | n = 0; | 
 
 
 
 
 | 440 | while (getchar() != EOF) n++; | 
 
 
 
 
 | 441 | if (n) fprintf(stderr, "blast warning: %d unused bytes of input\n", n); | 
 
 
 
 
 | 442 |  | 
 
 
 
 
 | 443 | /* return blast() error code */ | 
 
 
 
 
 | 444 | return ret; | 
 
 
 
 
 | 445 | } | 
 
 
 
 
 | 446 | #endif |