| 1 | 
 /* adler32.c -- compute the Adler-32 checksum of a data stream | 
 
 
 
 
 
 | 2 | 
  * Copyright (C) 1995-2011 Mark Adler | 
 
 
 
 
 
 | 3 | 
  * For conditions of distribution and use, see copyright notice in zlib.h | 
 
 
 
 
 
 | 4 | 
  */ | 
 
 
 
 
 
 | 5 | 
  | 
 
 
 
 
 
 | 6 | 
 /* @(#) $Id$ */ | 
 
 
 
 
 
 | 7 | 
  | 
 
 
 
 
 
 | 8 | 
 #include "zutil.h" | 
 
 
 
 
 
 | 9 | 
  | 
 
 
 
 
 
 | 10 | 
 #define local static | 
 
 
 
 
 
 | 11 | 
  | 
 
 
 
 
 
 | 12 | 
 local uLong adler32_combine_ OF((uLong adler1, uLong adler2, z_off64_t len2)); | 
 
 
 
 
 
 | 13 | 
  | 
 
 
 
 
 
 | 14 | 
 #define BASE 65521      /* largest prime smaller than 65536 */ | 
 
 
 
 
 
 | 15 | 
 #define NMAX 5552 | 
 
 
 
 
 
 | 16 | 
 /* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */ | 
 
 
 
 
 
 | 17 | 
  | 
 
 
 
 
 
 | 18 | 
 #define DO1(buf,i)  {adler += (buf)[i]; sum2 += adler;} | 
 
 
 
 
 
 | 19 | 
 #define DO2(buf,i)  DO1(buf,i); DO1(buf,i+1); | 
 
 
 
 
 
 | 20 | 
 #define DO4(buf,i)  DO2(buf,i); DO2(buf,i+2); | 
 
 
 
 
 
 | 21 | 
 #define DO8(buf,i)  DO4(buf,i); DO4(buf,i+4); | 
 
 
 
 
 
 | 22 | 
 #define DO16(buf)   DO8(buf,0); DO8(buf,8); | 
 
 
 
 
 
 | 23 | 
  | 
 
 
 
 
 
 | 24 | 
 /* use NO_DIVIDE if your processor does not do division in hardware -- | 
 
 
 
 
 
 | 25 | 
    try it both ways to see which is faster */ | 
 
 
 
 
 
 | 26 | 
 #ifdef NO_DIVIDE | 
 
 
 
 
 
 | 27 | 
 /* note that this assumes BASE is 65521, where 65536 % 65521 == 15 | 
 
 
 
 
 
 | 28 | 
    (thank you to John Reiser for pointing this out) */ | 
 
 
 
 
 
 | 29 | 
 #  define CHOP(a) \ | 
 
 
 
 
 
 | 30 | 
     do { \ | 
 
 
 
 
 
 | 31 | 
         unsigned long tmp = a >> 16; \ | 
 
 
 
 
 
 | 32 | 
         a &= 0xffffUL; \ | 
 
 
 
 
 
 | 33 | 
         a += (tmp << 4) - tmp; \ | 
 
 
 
 
 
 | 34 | 
     } while (0) | 
 
 
 
 
 
 | 35 | 
 #  define MOD28(a) \ | 
 
 
 
 
 
 | 36 | 
     do { \ | 
 
 
 
 
 
 | 37 | 
         CHOP(a); \ | 
 
 
 
 
 
 | 38 | 
         if (a >= BASE) a -= BASE; \ | 
 
 
 
 
 
 | 39 | 
     } while (0) | 
 
 
 
 
 
 | 40 | 
 #  define MOD(a) \ | 
 
 
 
 
 
 | 41 | 
     do { \ | 
 
 
 
 
 
 | 42 | 
         CHOP(a); \ | 
 
 
 
 
 
 | 43 | 
         MOD28(a); \ | 
 
 
 
 
 
 | 44 | 
     } while (0) | 
 
 
 
 
 
 | 45 | 
 #  define MOD63(a) \ | 
 
 
 
 
 
 | 46 | 
     do { /* this assumes a is not negative */ \ | 
 
 
 
 
 
 | 47 | 
         z_off64_t tmp = a >> 32; \ | 
 
 
 
 
 
 | 48 | 
         a &= 0xffffffffL; \ | 
 
 
 
 
 
 | 49 | 
         a += (tmp << 8) - (tmp << 5) + tmp; \ | 
 
 
 
 
 
 | 50 | 
         tmp = a >> 16; \ | 
 
 
 
 
 
 | 51 | 
         a &= 0xffffL; \ | 
 
 
 
 
 
 | 52 | 
         a += (tmp << 4) - tmp; \ | 
 
 
 
 
 
 | 53 | 
         tmp = a >> 16; \ | 
 
 
 
 
 
 | 54 | 
         a &= 0xffffL; \ | 
 
 
 
 
 
 | 55 | 
         a += (tmp << 4) - tmp; \ | 
 
 
 
 
 
 | 56 | 
         if (a >= BASE) a -= BASE; \ | 
 
 
 
 
 
 | 57 | 
     } while (0) | 
 
 
 
 
 
 | 58 | 
 #else | 
 
 
 
 
 
 | 59 | 
 #  define MOD(a) a %= BASE | 
 
 
 
 
 
 | 60 | 
 #  define MOD28(a) a %= BASE | 
 
 
 
 
 
 | 61 | 
 #  define MOD63(a) a %= BASE | 
 
 
 
 
 
 | 62 | 
 #endif | 
 
 
 
 
 
 | 63 | 
  | 
 
 
 
 
 
 | 64 | 
 /* ========================================================================= */ | 
 
 
 
 
 
 | 65 | 
 uLong ZEXPORT adler32(adler, buf, len) | 
 
 
 
 
 
 | 66 | 
     uLong adler; | 
 
 
 
 
 
 | 67 | 
     const Bytef *buf; | 
 
 
 
 
 
 | 68 | 
     uInt len; | 
 
 
 
 
 
 | 69 | 
 { | 
 
 
 
 
 
 | 70 | 
     unsigned long sum2; | 
 
 
 
 
 
 | 71 | 
     unsigned n; | 
 
 
 
 
 
 | 72 | 
  | 
 
 
 
 
 
 | 73 | 
     /* split Adler-32 into component sums */ | 
 
 
 
 
 
 | 74 | 
     sum2 = (adler >> 16) & 0xffff; | 
 
 
 
 
 
 | 75 | 
     adler &= 0xffff; | 
 
 
 
 
 
 | 76 | 
  | 
 
 
 
 
 
 | 77 | 
     /* in case user likes doing a byte at a time, keep it fast */ | 
 
 
 
 
 
 | 78 | 
     if (len == 1) { | 
 
 
 
 
 
 | 79 | 
         adler += buf[0]; | 
 
 
 
 
 
 | 80 | 
         if (adler >= BASE) | 
 
 
 
 
 
 | 81 | 
             adler -= BASE; | 
 
 
 
 
 
 | 82 | 
         sum2 += adler; | 
 
 
 
 
 
 | 83 | 
         if (sum2 >= BASE) | 
 
 
 
 
 
 | 84 | 
             sum2 -= BASE; | 
 
 
 
 
 
 | 85 | 
         return adler | (sum2 << 16); | 
 
 
 
 
 
 | 86 | 
     } | 
 
 
 
 
 
 | 87 | 
  | 
 
 
 
 
 
 | 88 | 
     /* initial Adler-32 value (deferred check for len == 1 speed) */ | 
 
 
 
 
 
 | 89 | 
     if (buf == Z_NULL) | 
 
 
 
 
 
 | 90 | 
         return 1L; | 
 
 
 
 
 
 | 91 | 
  | 
 
 
 
 
 
 | 92 | 
     /* in case short lengths are provided, keep it somewhat fast */ | 
 
 
 
 
 
 | 93 | 
     if (len < 16) { | 
 
 
 
 
 
 | 94 | 
         while (len--) { | 
 
 
 
 
 
 | 95 | 
             adler += *buf++; | 
 
 
 
 
 
 | 96 | 
             sum2 += adler; | 
 
 
 
 
 
 | 97 | 
         } | 
 
 
 
 
 
 | 98 | 
         if (adler >= BASE) | 
 
 
 
 
 
 | 99 | 
             adler -= BASE; | 
 
 
 
 
 
 | 100 | 
         MOD28(sum2);            /* only added so many BASE's */ | 
 
 
 
 
 
 | 101 | 
         return adler | (sum2 << 16); | 
 
 
 
 
 
 | 102 | 
     } | 
 
 
 
 
 
 | 103 | 
  | 
 
 
 
 
 
 | 104 | 
     /* do length NMAX blocks -- requires just one modulo operation */ | 
 
 
 
 
 
 | 105 | 
     while (len >= NMAX) { | 
 
 
 
 
 
 | 106 | 
         len -= NMAX; | 
 
 
 
 
 
 | 107 | 
         n = NMAX / 16;          /* NMAX is divisible by 16 */ | 
 
 
 
 
 
 | 108 | 
         do { | 
 
 
 
 
 
 | 109 | 
             DO16(buf);          /* 16 sums unrolled */ | 
 
 
 
 
 
 | 110 | 
             buf += 16; | 
 
 
 
 
 
 | 111 | 
         } while (--n); | 
 
 
 
 
 
 | 112 | 
         MOD(adler); | 
 
 
 
 
 
 | 113 | 
         MOD(sum2); | 
 
 
 
 
 
 | 114 | 
     } | 
 
 
 
 
 
 | 115 | 
  | 
 
 
 
 
 
 | 116 | 
     /* do remaining bytes (less than NMAX, still just one modulo) */ | 
 
 
 
 
 
 | 117 | 
     if (len) {                  /* avoid modulos if none remaining */ | 
 
 
 
 
 
 | 118 | 
         while (len >= 16) { | 
 
 
 
 
 
 | 119 | 
             len -= 16; | 
 
 
 
 
 
 | 120 | 
             DO16(buf); | 
 
 
 
 
 
 | 121 | 
             buf += 16; | 
 
 
 
 
 
 | 122 | 
         } | 
 
 
 
 
 
 | 123 | 
         while (len--) { | 
 
 
 
 
 
 | 124 | 
             adler += *buf++; | 
 
 
 
 
 
 | 125 | 
             sum2 += adler; | 
 
 
 
 
 
 | 126 | 
         } | 
 
 
 
 
 
 | 127 | 
         MOD(adler); | 
 
 
 
 
 
 | 128 | 
         MOD(sum2); | 
 
 
 
 
 
 | 129 | 
     } | 
 
 
 
 
 
 | 130 | 
  | 
 
 
 
 
 
 | 131 | 
     /* return recombined sums */ | 
 
 
 
 
 
 | 132 | 
     return adler | (sum2 << 16); | 
 
 
 
 
 
 | 133 | 
 } | 
 
 
 
 
 
 | 134 | 
  | 
 
 
 
 
 
 | 135 | 
 /* ========================================================================= */ | 
 
 
 
 
 
 | 136 | 
 local uLong adler32_combine_(adler1, adler2, len2) | 
 
 
 
 
 
 | 137 | 
     uLong adler1; | 
 
 
 
 
 
 | 138 | 
     uLong adler2; | 
 
 
 
 
 
 | 139 | 
     z_off64_t len2; | 
 
 
 
 
 
 | 140 | 
 { | 
 
 
 
 
 
 | 141 | 
     unsigned long sum1; | 
 
 
 
 
 
 | 142 | 
     unsigned long sum2; | 
 
 
 
 
 
 | 143 | 
     unsigned rem; | 
 
 
 
 
 
 | 144 | 
  | 
 
 
 
 
 
 | 145 | 
     /* for negative len, return invalid adler32 as a clue for debugging */ | 
 
 
 
 
 
 | 146 | 
     if (len2 < 0) | 
 
 
 
 
 
 | 147 | 
         return 0xffffffffUL; | 
 
 
 
 
 
 | 148 | 
  | 
 
 
 
 
 
 | 149 | 
     /* the derivation of this formula is left as an exercise for the reader */ | 
 
 
 
 
 
 | 150 | 
     MOD63(len2);                /* assumes len2 >= 0 */ | 
 
 
 
 
 
 | 151 | 
     rem = (unsigned)len2; | 
 
 
 
 
 
 | 152 | 
     sum1 = adler1 & 0xffff; | 
 
 
 
 
 
 | 153 | 
     sum2 = rem * sum1; | 
 
 
 
 
 
 | 154 | 
     MOD(sum2); | 
 
 
 
 
 
 | 155 | 
     sum1 += (adler2 & 0xffff) + BASE - 1; | 
 
 
 
 
 
 | 156 | 
     sum2 += ((adler1 >> 16) & 0xffff) + ((adler2 >> 16) & 0xffff) + BASE - rem; | 
 
 
 
 
 
 | 157 | 
     if (sum1 >= BASE) sum1 -= BASE; | 
 
 
 
 
 
 | 158 | 
     if (sum1 >= BASE) sum1 -= BASE; | 
 
 
 
 
 
 | 159 | 
     if (sum2 >= (BASE << 1)) sum2 -= (BASE << 1); | 
 
 
 
 
 
 | 160 | 
     if (sum2 >= BASE) sum2 -= BASE; | 
 
 
 
 
 
 | 161 | 
     return sum1 | (sum2 << 16); | 
 
 
 
 
 
 | 162 | 
 } | 
 
 
 
 
 
 | 163 | 
  | 
 
 
 
 
 
 | 164 | 
 /* ========================================================================= */ | 
 
 
 
 
 
 | 165 | 
 uLong ZEXPORT adler32_combine(adler1, adler2, len2) | 
 
 
 
 
 
 | 166 | 
     uLong adler1; | 
 
 
 
 
 
 | 167 | 
     uLong adler2; | 
 
 
 
 
 
 | 168 | 
     z_off_t len2; | 
 
 
 
 
 
 | 169 | 
 { | 
 
 
 
 
 
 | 170 | 
     return adler32_combine_(adler1, adler2, len2); | 
 
 
 
 
 
 | 171 | 
 } | 
 
 
 
 
 
 | 172 | 
  | 
 
 
 
 
 
 | 173 | 
 uLong ZEXPORT adler32_combine64(adler1, adler2, len2) | 
 
 
 
 
 
 | 174 | 
     uLong adler1; | 
 
 
 
 
 
 | 175 | 
     uLong adler2; | 
 
 
 
 
 
 | 176 | 
     z_off64_t len2; | 
 
 
 
 
 
 | 177 | 
 { | 
 
 
 
 
 
 | 178 | 
     return adler32_combine_(adler1, adler2, len2); | 
 
 
 
 
 
 | 179 | 
 } |