1 |
/* adler32.c -- compute the Adler-32 checksum of a data stream |
2 |
* Copyright (C) 1995-2011 Mark Adler |
3 |
* For conditions of distribution and use, see copyright notice in zlib.h |
4 |
*/ |
5 |
|
6 |
/* @(#) $Id$ */ |
7 |
|
8 |
#include "zutil.h" |
9 |
|
10 |
#define local static |
11 |
|
12 |
local uLong adler32_combine_ OF((uLong adler1, uLong adler2, z_off64_t len2)); |
13 |
|
14 |
#define BASE 65521 /* largest prime smaller than 65536 */ |
15 |
#define NMAX 5552 |
16 |
/* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */ |
17 |
|
18 |
#define DO1(buf,i) {adler += (buf)[i]; sum2 += adler;} |
19 |
#define DO2(buf,i) DO1(buf,i); DO1(buf,i+1); |
20 |
#define DO4(buf,i) DO2(buf,i); DO2(buf,i+2); |
21 |
#define DO8(buf,i) DO4(buf,i); DO4(buf,i+4); |
22 |
#define DO16(buf) DO8(buf,0); DO8(buf,8); |
23 |
|
24 |
/* use NO_DIVIDE if your processor does not do division in hardware -- |
25 |
try it both ways to see which is faster */ |
26 |
#ifdef NO_DIVIDE |
27 |
/* note that this assumes BASE is 65521, where 65536 % 65521 == 15 |
28 |
(thank you to John Reiser for pointing this out) */ |
29 |
# define CHOP(a) \ |
30 |
do { \ |
31 |
unsigned long tmp = a >> 16; \ |
32 |
a &= 0xffffUL; \ |
33 |
a += (tmp << 4) - tmp; \ |
34 |
} while (0) |
35 |
# define MOD28(a) \ |
36 |
do { \ |
37 |
CHOP(a); \ |
38 |
if (a >= BASE) a -= BASE; \ |
39 |
} while (0) |
40 |
# define MOD(a) \ |
41 |
do { \ |
42 |
CHOP(a); \ |
43 |
MOD28(a); \ |
44 |
} while (0) |
45 |
# define MOD63(a) \ |
46 |
do { /* this assumes a is not negative */ \ |
47 |
z_off64_t tmp = a >> 32; \ |
48 |
a &= 0xffffffffL; \ |
49 |
a += (tmp << 8) - (tmp << 5) + tmp; \ |
50 |
tmp = a >> 16; \ |
51 |
a &= 0xffffL; \ |
52 |
a += (tmp << 4) - tmp; \ |
53 |
tmp = a >> 16; \ |
54 |
a &= 0xffffL; \ |
55 |
a += (tmp << 4) - tmp; \ |
56 |
if (a >= BASE) a -= BASE; \ |
57 |
} while (0) |
58 |
#else |
59 |
# define MOD(a) a %= BASE |
60 |
# define MOD28(a) a %= BASE |
61 |
# define MOD63(a) a %= BASE |
62 |
#endif |
63 |
|
64 |
/* ========================================================================= */ |
65 |
uLong ZEXPORT adler32(adler, buf, len) |
66 |
uLong adler; |
67 |
const Bytef *buf; |
68 |
uInt len; |
69 |
{ |
70 |
unsigned long sum2; |
71 |
unsigned n; |
72 |
|
73 |
/* split Adler-32 into component sums */ |
74 |
sum2 = (adler >> 16) & 0xffff; |
75 |
adler &= 0xffff; |
76 |
|
77 |
/* in case user likes doing a byte at a time, keep it fast */ |
78 |
if (len == 1) { |
79 |
adler += buf[0]; |
80 |
if (adler >= BASE) |
81 |
adler -= BASE; |
82 |
sum2 += adler; |
83 |
if (sum2 >= BASE) |
84 |
sum2 -= BASE; |
85 |
return adler | (sum2 << 16); |
86 |
} |
87 |
|
88 |
/* initial Adler-32 value (deferred check for len == 1 speed) */ |
89 |
if (buf == Z_NULL) |
90 |
return 1L; |
91 |
|
92 |
/* in case short lengths are provided, keep it somewhat fast */ |
93 |
if (len < 16) { |
94 |
while (len--) { |
95 |
adler += *buf++; |
96 |
sum2 += adler; |
97 |
} |
98 |
if (adler >= BASE) |
99 |
adler -= BASE; |
100 |
MOD28(sum2); /* only added so many BASE's */ |
101 |
return adler | (sum2 << 16); |
102 |
} |
103 |
|
104 |
/* do length NMAX blocks -- requires just one modulo operation */ |
105 |
while (len >= NMAX) { |
106 |
len -= NMAX; |
107 |
n = NMAX / 16; /* NMAX is divisible by 16 */ |
108 |
do { |
109 |
DO16(buf); /* 16 sums unrolled */ |
110 |
buf += 16; |
111 |
} while (--n); |
112 |
MOD(adler); |
113 |
MOD(sum2); |
114 |
} |
115 |
|
116 |
/* do remaining bytes (less than NMAX, still just one modulo) */ |
117 |
if (len) { /* avoid modulos if none remaining */ |
118 |
while (len >= 16) { |
119 |
len -= 16; |
120 |
DO16(buf); |
121 |
buf += 16; |
122 |
} |
123 |
while (len--) { |
124 |
adler += *buf++; |
125 |
sum2 += adler; |
126 |
} |
127 |
MOD(adler); |
128 |
MOD(sum2); |
129 |
} |
130 |
|
131 |
/* return recombined sums */ |
132 |
return adler | (sum2 << 16); |
133 |
} |
134 |
|
135 |
/* ========================================================================= */ |
136 |
local uLong adler32_combine_(adler1, adler2, len2) |
137 |
uLong adler1; |
138 |
uLong adler2; |
139 |
z_off64_t len2; |
140 |
{ |
141 |
unsigned long sum1; |
142 |
unsigned long sum2; |
143 |
unsigned rem; |
144 |
|
145 |
/* for negative len, return invalid adler32 as a clue for debugging */ |
146 |
if (len2 < 0) |
147 |
return 0xffffffffUL; |
148 |
|
149 |
/* the derivation of this formula is left as an exercise for the reader */ |
150 |
MOD63(len2); /* assumes len2 >= 0 */ |
151 |
rem = (unsigned)len2; |
152 |
sum1 = adler1 & 0xffff; |
153 |
sum2 = rem * sum1; |
154 |
MOD(sum2); |
155 |
sum1 += (adler2 & 0xffff) + BASE - 1; |
156 |
sum2 += ((adler1 >> 16) & 0xffff) + ((adler2 >> 16) & 0xffff) + BASE - rem; |
157 |
if (sum1 >= BASE) sum1 -= BASE; |
158 |
if (sum1 >= BASE) sum1 -= BASE; |
159 |
if (sum2 >= (BASE << 1)) sum2 -= (BASE << 1); |
160 |
if (sum2 >= BASE) sum2 -= BASE; |
161 |
return sum1 | (sum2 << 16); |
162 |
} |
163 |
|
164 |
/* ========================================================================= */ |
165 |
uLong ZEXPORT adler32_combine(adler1, adler2, len2) |
166 |
uLong adler1; |
167 |
uLong adler2; |
168 |
z_off_t len2; |
169 |
{ |
170 |
return adler32_combine_(adler1, adler2, len2); |
171 |
} |
172 |
|
173 |
uLong ZEXPORT adler32_combine64(adler1, adler2, len2) |
174 |
uLong adler1; |
175 |
uLong adler2; |
176 |
z_off64_t len2; |
177 |
{ |
178 |
return adler32_combine_(adler1, adler2, len2); |
179 |
} |