| 1 |
#include "vmc.h" |
| 2 |
|
| 3 |
|
| 4 |
// Misc fonctions |
| 5 |
|
| 6 |
//---------------------------------------------------------------------------- |
| 7 |
// Search a direntry corresponding to a path |
| 8 |
//---------------------------------------------------------------------------- |
| 9 |
unsigned int getDirentryFromPath ( struct direntry* retval, const char* path, struct gen_privdata* gendata, int unit ) |
| 10 |
{ |
| 11 |
|
| 12 |
PROF_START ( getDirentryFromPathProf ); |
| 13 |
|
| 14 |
DEBUGPRINT ( 6, "vmcfs: Searching Direntry corresponding to path: %s\n", path ); |
| 15 |
|
| 16 |
// Skip past the first slash if they opened a file such as |
| 17 |
// vmc0: / file.txt ( which means the path passed here will be / file.txt, we |
| 18 |
// want to skip that first slash, to ease comparisons. |
| 19 |
int pathoffset = 0; |
| 20 |
|
| 21 |
if ( path[ 0 ] == '/' ) |
| 22 |
pathoffset = 1; |
| 23 |
|
| 24 |
if ( ( path[ 0 ] == '/' || path[ 0 ] == '.' ) && path[ 1 ] == '\0' ) // rootdirectory |
| 25 |
{ |
| 26 |
|
| 27 |
gendata->dirent_page = 0; |
| 28 |
readPage ( gendata->fd, ( unsigned char* ) retval, gendata->first_allocatable * g_Vmc_Image[ unit ].header.pages_per_cluster ); |
| 29 |
|
| 30 |
PROF_END ( getDirentryFromPathProf ); |
| 31 |
|
| 32 |
return ROOT_CLUSTER; |
| 33 |
|
| 34 |
} |
| 35 |
|
| 36 |
struct direntry dirent; // Our temporary directory entry |
| 37 |
|
| 38 |
int status = 0; // The status of our search, if 0 at the end, we didn't find path |
| 39 |
unsigned int current_cluster = 0; // The cluster we are currently scanning for directory entries |
| 40 |
int length = 1; // The number of items in the current directory |
| 41 |
int i = 0; |
| 42 |
|
| 43 |
// Our main loop that goes through files / folder searching for the right one |
| 44 |
for ( i = 0; i < length; i++ ) |
| 45 |
{ |
| 46 |
|
| 47 |
gendata->dirent_page = i % g_Vmc_Image[ unit ].header.pages_per_cluster; |
| 48 |
|
| 49 |
DEBUGPRINT ( 6, "vmcfs: Reading in allocatable cluster %u / page %u\n", ( current_cluster + gendata->first_allocatable ), ( current_cluster + gendata->first_allocatable ) * g_Vmc_Image[ unit ].header.pages_per_cluster + gendata->dirent_page ); |
| 50 |
|
| 51 |
// Reads either the first or second page of a cluster, depending |
| 52 |
// on the value currently stored in i |
| 53 |
readPage ( gendata->fd, ( unsigned char* ) &dirent, ( current_cluster + gendata->first_allocatable ) * g_Vmc_Image[ unit ].header.pages_per_cluster + gendata->dirent_page ); |
| 54 |
|
| 55 |
// Check if this was the first entry ( aka the rootdirectory ) |
| 56 |
if ( i == 0 && current_cluster == 0 ) |
| 57 |
length = dirent.length; |
| 58 |
|
| 59 |
DEBUGPRINT ( 5, "vmcfs: Direntry Informations\n" ); |
| 60 |
DEBUGPRINT ( 5, "vmcfs: Object Type : %s\n", ( dirent.mode & DF_DIRECTORY ) ?"Folder":"File" ); |
| 61 |
DEBUGPRINT ( 5, "vmcfs: Object Name : %s\n", dirent.name ); |
| 62 |
DEBUGPRINT ( 5, "vmcfs: Object Exists : %s\n", ( dirent.mode & DF_EXISTS ) ?"Yes":"No" ); |
| 63 |
DEBUGPRINT ( 5, "vmcfs: Object Length : %u\n", dirent.length ); |
| 64 |
DEBUGPRINT ( 5, "vmcfs: Object Cluster : %u\n", dirent.cluster ); |
| 65 |
|
| 66 |
// Now that we have a pages worth of data, check if it is the |
| 67 |
// Directory we are searching for. |
| 68 |
|
| 69 |
if ( memcmp ( dirent.name, path + pathoffset, strlen ( dirent.name ) ) == 0 ) |
| 70 |
{ |
| 71 |
|
| 72 |
// Increase the path offset by the length of the directory |
| 73 |
pathoffset += strlen ( dirent.name ); |
| 74 |
|
| 75 |
// If the next item in the pathname is the null terminator, |
| 76 |
// we must be at the end of the path string, and that means |
| 77 |
// we found the correct entry, so we can break. |
| 78 |
if ( path[ pathoffset ] == '\0' || ( path[ pathoffset ] == '/' && path[ pathoffset + 1 ] == '\0' ) ) |
| 79 |
{ |
| 80 |
|
| 81 |
DEBUGPRINT ( 6, "vmcfs: Breaking from function\n" ); |
| 82 |
DEBUGPRINT ( 6, "vmcfs: dir_cluster = %u\n", dirent.cluster ); |
| 83 |
DEBUGPRINT ( 6, "vmcfs: dirent.name = %s\n", dirent.name ); |
| 84 |
DEBUGPRINT ( 6, "vmcfs: dirent.length = %u\n", dirent.length ); |
| 85 |
|
| 86 |
status = 1; |
| 87 |
|
| 88 |
break; |
| 89 |
|
| 90 |
} |
| 91 |
// Otherwise we found the subfolder, but not the |
| 92 |
// requested entry, keep going |
| 93 |
else |
| 94 |
{ |
| 95 |
|
| 96 |
DEBUGPRINT ( 6, "vmcfs: Recursing into subfolder\n" ); |
| 97 |
DEBUGPRINT ( 6, "vmcfs: dir_cluster = %u\n", dirent.cluster ); |
| 98 |
DEBUGPRINT ( 6, "vmcfs: dirent.name = %s\n", dirent.name ); |
| 99 |
DEBUGPRINT ( 6, "vmcfs: dirent.length = %u\n", dirent.length ); |
| 100 |
|
| 101 |
i = -1; // will be 0 when we continue, essentially starting the loop over again |
| 102 |
current_cluster = dirent.cluster; // dirent.cluster refer to fat table and current_cluster to allocatable place |
| 103 |
length = dirent.length; // set length to current directory length |
| 104 |
pathoffset++; // add one to skip past the / in the folder name |
| 105 |
|
| 106 |
continue; |
| 107 |
|
| 108 |
} |
| 109 |
|
| 110 |
} |
| 111 |
|
| 112 |
// If we just read the second half of a cluster, we need to set |
| 113 |
// current_cluster to the next cluster in the chain. |
| 114 |
if ( i % g_Vmc_Image[ unit ].header.pages_per_cluster ) |
| 115 |
{ |
| 116 |
|
| 117 |
current_cluster = getFatEntry ( gendata->fd, current_cluster, gendata->indir_fat_clusters, FAT_VALUE ); |
| 118 |
|
| 119 |
} |
| 120 |
|
| 121 |
} |
| 122 |
|
| 123 |
// When we get here, that means one of two things: |
| 124 |
// 1 ) We found the requested folder / file |
| 125 |
// 2 ) We searched through all files / folders, and could not find it. |
| 126 |
// To determine which one it was, check the status variable. |
| 127 |
if ( status == 0 ) |
| 128 |
{ |
| 129 |
|
| 130 |
PROF_END ( getDirentryFromPathProf ) |
| 131 |
|
| 132 |
return NOFOUND_CLUSTER; |
| 133 |
|
| 134 |
} |
| 135 |
|
| 136 |
// Copy the last directory entry's contents into 'retval' |
| 137 |
memcpy ( retval, &dirent, sizeof ( dirent ) ); |
| 138 |
|
| 139 |
PROF_END ( getDirentryFromPathProf ) |
| 140 |
|
| 141 |
// Return the cluster where the desired directory entry can be found |
| 142 |
return current_cluster; |
| 143 |
|
| 144 |
} |
| 145 |
|
| 146 |
|
| 147 |
//---------------------------------------------------------------------------- |
| 148 |
// Add 2 pseudo entries for a new directory |
| 149 |
//---------------------------------------------------------------------------- |
| 150 |
unsigned int addPseudoEntries ( struct gen_privdata* gendata, struct direntry* parent, int unit ) |
| 151 |
{ |
| 152 |
|
| 153 |
// Get a free cluster we can use to store the entries '.' and '..' |
| 154 |
unsigned int pseudo_entries_cluster = getFreeCluster ( gendata, unit ); |
| 155 |
|
| 156 |
if ( pseudo_entries_cluster == ERROR_CLUSTER ) |
| 157 |
{ |
| 158 |
|
| 159 |
DEBUGPRINT ( 2, "vmcfs: Not enough free space to add pseudo entries. Aborting.\n" ); |
| 160 |
|
| 161 |
return ERROR_CLUSTER; |
| 162 |
|
| 163 |
} |
| 164 |
|
| 165 |
// Create the first 2 psuedo entries for the folder, and write them |
| 166 |
DEBUGPRINT ( 5, "vmcfs: Adding pseudo entries into fat table cluster %u\n", pseudo_entries_cluster ); |
| 167 |
|
| 168 |
struct direntry pseudo_entries; |
| 169 |
|
| 170 |
memset ( &pseudo_entries, 0, sizeof ( pseudo_entries ) ); |
| 171 |
|
| 172 |
// fill pseudo entries |
| 173 |
strcpy ( pseudo_entries.name, "." ); |
| 174 |
pseudo_entries.dir_entry = parent->length; |
| 175 |
pseudo_entries.length = 0; |
| 176 |
pseudo_entries.cluster = parent->cluster; |
| 177 |
pseudo_entries.mode = DF_EXISTS | DF_0400 | DF_DIRECTORY | DF_READ | DF_WRITE | DF_EXECUTE; // 0x8427 |
| 178 |
|
| 179 |
getPs2Time ( &pseudo_entries.created ); |
| 180 |
getPs2Time ( &pseudo_entries.modified ); |
| 181 |
|
| 182 |
// write first pseudo entry |
| 183 |
writePage ( gendata->fd, ( unsigned char* ) &pseudo_entries, ( pseudo_entries_cluster + gendata->first_allocatable ) * g_Vmc_Image[ unit ].header.pages_per_cluster ); |
| 184 |
|
| 185 |
strcpy ( pseudo_entries.name, ".." ); |
| 186 |
pseudo_entries.dir_entry = 0; |
| 187 |
pseudo_entries.cluster = 0; |
| 188 |
|
| 189 |
// write second pseudo entry |
| 190 |
writePage ( gendata->fd, ( unsigned char* ) &pseudo_entries, ( pseudo_entries_cluster + gendata->first_allocatable ) * g_Vmc_Image[ unit ].header.pages_per_cluster + 1 ); |
| 191 |
|
| 192 |
// set cluster as EOF |
| 193 |
setFatEntry ( gendata->fd, pseudo_entries_cluster, EOF_CLUSTER, gendata->indir_fat_clusters, FAT_SET ); |
| 194 |
|
| 195 |
return pseudo_entries_cluster; |
| 196 |
|
| 197 |
} |
| 198 |
|
| 199 |
|
| 200 |
//---------------------------------------------------------------------------- |
| 201 |
// Add an object into vmc image. |
| 202 |
// This fonction get a free cluster where it can insert the object, insert it and return the cluster number. |
| 203 |
// Object can be a file or a folder. |
| 204 |
//---------------------------------------------------------------------------- |
| 205 |
unsigned int addObject ( struct gen_privdata* gendata, unsigned int parent_cluster, struct direntry* parent, struct direntry* dirent, int unit ) |
| 206 |
{ |
| 207 |
|
| 208 |
int i = 0; |
| 209 |
unsigned int retval = ERROR_CLUSTER; |
| 210 |
unsigned int current_cluster = parent->cluster; |
| 211 |
|
| 212 |
// Find to the last cluster in the list of files / folder to add our new object after it |
| 213 |
for ( i = 0; i < parent->length; i += g_Vmc_Image[ unit ].header.pages_per_cluster ) |
| 214 |
{ |
| 215 |
|
| 216 |
DEBUGPRINT ( 6, "vmcfs: Following fat table cluster: %u\n", current_cluster ); |
| 217 |
|
| 218 |
if ( getFatEntry ( gendata->fd, current_cluster, gendata->indir_fat_clusters, FAT_VALUE ) == EOF_CLUSTER ) |
| 219 |
{ |
| 220 |
|
| 221 |
DEBUGPRINT ( 6, "vmcfs: Last used cluster in fat table %u\n", current_cluster ); |
| 222 |
break; |
| 223 |
|
| 224 |
} |
| 225 |
|
| 226 |
current_cluster = getFatEntry ( gendata->fd, current_cluster, gendata->indir_fat_clusters, FAT_VALUE ); |
| 227 |
|
| 228 |
} |
| 229 |
|
| 230 |
// Check if we need a new cluster or if we can add our object at the end of an allocatable cluster |
| 231 |
if ( parent->length % g_Vmc_Image[ unit ].header.pages_per_cluster == 0 ) // if its even, we need a new cluster for our file |
| 232 |
{ |
| 233 |
|
| 234 |
// Get a free cluster because our object require an additional cluster |
| 235 |
unsigned int nextfree_cluster = getFreeCluster ( gendata, unit ); |
| 236 |
|
| 237 |
if ( nextfree_cluster == ERROR_CLUSTER ) |
| 238 |
{ |
| 239 |
|
| 240 |
DEBUGPRINT ( 2, "vmcfs: Not enough free space. Aborting.\n" ); |
| 241 |
|
| 242 |
return ERROR_CLUSTER; |
| 243 |
|
| 244 |
} |
| 245 |
|
| 246 |
DEBUGPRINT ( 6, "vmcfs: Added new object in fat table cluster %u ( Page %u ) \n", current_cluster, current_cluster * g_Vmc_Image[ unit ].header.pages_per_cluster ); |
| 247 |
|
| 248 |
setFatEntry ( gendata->fd, current_cluster, nextfree_cluster, gendata->indir_fat_clusters, FAT_SET ); // update the last cluster in the directory entry list to point to our new cluster |
| 249 |
setFatEntry ( gendata->fd, nextfree_cluster, EOF_CLUSTER, gendata->indir_fat_clusters, FAT_SET ); // set the free cluster we just found to be EOF |
| 250 |
|
| 251 |
// If the object is a folder, we have to add 2 psuedoentries |
| 252 |
if ( dirent->mode & DF_DIRECTORY ) |
| 253 |
{ |
| 254 |
|
| 255 |
// Link the new folder to the entries we just created |
| 256 |
dirent->cluster = addPseudoEntries( gendata, parent, unit ); |
| 257 |
|
| 258 |
if ( dirent->cluster == ERROR_CLUSTER ) |
| 259 |
return ERROR_CLUSTER; |
| 260 |
|
| 261 |
// Set the length of the directory to 2, for the 2 psuedoentries we just added |
| 262 |
dirent->length = 2; |
| 263 |
|
| 264 |
} |
| 265 |
|
| 266 |
// write the page containing our direntry object information |
| 267 |
writePage ( gendata->fd, ( unsigned char* ) dirent, ( nextfree_cluster + gendata->first_allocatable ) * g_Vmc_Image[ unit ].header.pages_per_cluster ); |
| 268 |
|
| 269 |
// now we need to update the length of the parent directory |
| 270 |
parent->length++; |
| 271 |
writePage ( gendata->fd, ( unsigned char* ) parent, ( parent_cluster + gendata->first_allocatable ) * g_Vmc_Image[ unit ].header.pages_per_cluster + gendata->dirent_page ); |
| 272 |
|
| 273 |
gendata->dirent_page = 0; |
| 274 |
retval = nextfree_cluster; |
| 275 |
|
| 276 |
} |
| 277 |
else // otherwise we can just add the directory entry to the end of the last cluster |
| 278 |
{ |
| 279 |
|
| 280 |
DEBUGPRINT ( 5, "vmcfs: Added new object in fat table cluster %u ( Page %u ) \n", current_cluster, current_cluster * g_Vmc_Image[ unit ].header.pages_per_cluster + 1 ); |
| 281 |
|
| 282 |
// If the object is a folder, we have to add 2 psuedoentries |
| 283 |
if ( dirent->mode & DF_DIRECTORY ) |
| 284 |
{ |
| 285 |
|
| 286 |
// Link the new folder to the entries we just created |
| 287 |
dirent->cluster = addPseudoEntries( gendata, parent, unit ); |
| 288 |
|
| 289 |
if ( dirent->cluster == ERROR_CLUSTER ) |
| 290 |
return ERROR_CLUSTER; |
| 291 |
|
| 292 |
// Set the length of the directory to 2, for the 2 psuedoentries we just added |
| 293 |
dirent->length = 2; |
| 294 |
|
| 295 |
} |
| 296 |
|
| 297 |
// write the page containing our direntry object information |
| 298 |
writePage ( gendata->fd, ( unsigned char* ) dirent, ( current_cluster + gendata->first_allocatable ) * g_Vmc_Image[ unit ].header.pages_per_cluster + 1 );// write the page containing our directory information ( + 1 because we are writing the second page in the cluster ) |
| 299 |
|
| 300 |
// now we need to update the length of the parent directory |
| 301 |
parent->length++; |
| 302 |
writePage ( gendata->fd, ( unsigned char* ) parent, ( parent_cluster + gendata->first_allocatable ) * g_Vmc_Image[ unit ].header.pages_per_cluster + gendata->dirent_page ); |
| 303 |
|
| 304 |
gendata->dirent_page = 1; |
| 305 |
retval = current_cluster; |
| 306 |
|
| 307 |
} |
| 308 |
|
| 309 |
return retval; |
| 310 |
|
| 311 |
} |
| 312 |
|
| 313 |
|
| 314 |
//---------------------------------------------------------------------------- |
| 315 |
// Remove an object from vmc image. |
| 316 |
// Object can be a file or a directory. |
| 317 |
// Follow fat table to find the last cluster of the direntry chain cluster. ( EOF_CLUSTER ) |
| 318 |
// Change bit mask of tested cluster if it's not EOF. ( only for files ) |
| 319 |
// Set as free the last cluster of the direntry. |
| 320 |
// Finaly, set deleted flag of the direntry. ( DF_EXISTS flag ) |
| 321 |
//---------------------------------------------------------------------------- |
| 322 |
void removeObject ( struct gen_privdata* gendata, unsigned int dirent_cluster, struct direntry* dirent, int unit ) |
| 323 |
{ |
| 324 |
|
| 325 |
unsigned int current_cluster = 0; |
| 326 |
unsigned int last_cluster = dirent->cluster; |
| 327 |
|
| 328 |
DEBUGPRINT ( 3, "vmcfs: Searching last cluster of direntry\n" ); |
| 329 |
|
| 330 |
while ( 1 ) |
| 331 |
{ |
| 332 |
|
| 333 |
current_cluster = getFatEntry ( gendata->fd, last_cluster, gendata->indir_fat_clusters, FAT_VALUE ); |
| 334 |
|
| 335 |
if ( current_cluster == FREE_CLUSTER ) |
| 336 |
{ |
| 337 |
|
| 338 |
// FREE_CLUSTER mean nothing to remove or error, so return |
| 339 |
DEBUGPRINT ( 10, "vmcfs: Testing cluster %u ... value is FREE_CLUSTER\n", last_cluster ); |
| 340 |
|
| 341 |
return; |
| 342 |
|
| 343 |
} |
| 344 |
else if ( current_cluster == EOF_CLUSTER ) |
| 345 |
{ |
| 346 |
|
| 347 |
// EOF_CLUSTER mean last cluster of the direntry is found |
| 348 |
DEBUGPRINT ( 3, "vmcfs: Last cluster of direntry at %u\n", last_cluster ); |
| 349 |
|
| 350 |
break; |
| 351 |
|
| 352 |
} |
| 353 |
else |
| 354 |
{ |
| 355 |
|
| 356 |
// Otherwise change bit mask of tested cluster |
| 357 |
DEBUGPRINT ( 10, "vmcfs: Testing cluster %u ... value is %u\n", last_cluster, current_cluster ); |
| 358 |
|
| 359 |
setFatEntry ( gendata->fd, last_cluster, current_cluster, gendata->indir_fat_clusters, FAT_RESET ); |
| 360 |
|
| 361 |
} |
| 362 |
|
| 363 |
last_cluster = current_cluster; |
| 364 |
|
| 365 |
} |
| 366 |
|
| 367 |
// Set last cluster of direntry as free. |
| 368 |
setFatEntry ( gendata->fd, last_cluster, FREE_CLUSTER, gendata->indir_fat_clusters, FAT_RESET ); // set the last cluster of the file as free |
| 369 |
|
| 370 |
// Set object as deleted. ( Remove DF_EXISTS flag ) |
| 371 |
dirent->mode = dirent->mode ^ DF_EXISTS; |
| 372 |
writePage ( gendata->fd, ( unsigned char* ) dirent, ( dirent_cluster + gendata->first_allocatable ) * g_Vmc_Image[ unit ].header.pages_per_cluster + gendata->dirent_page ); |
| 373 |
|
| 374 |
} |
| 375 |
|
| 376 |
|
| 377 |
//---------------------------------------------------------------------------- |
| 378 |
// Return a free cluster. |
| 379 |
//---------------------------------------------------------------------------- |
| 380 |
unsigned int getFreeCluster ( struct gen_privdata* gendata, int unit ) |
| 381 |
{ |
| 382 |
|
| 383 |
unsigned int i = 0; |
| 384 |
unsigned int value = 0; |
| 385 |
unsigned int cluster_mask = MASK_CLUSTER; |
| 386 |
|
| 387 |
for ( i = g_Vmc_Image[ unit ].last_free_cluster; i < gendata->last_allocatable; i++ ) |
| 388 |
{ |
| 389 |
|
| 390 |
value = getFatEntry ( gendata->fd, i - gendata->first_allocatable, gendata->indir_fat_clusters, FAT_VALUE ); |
| 391 |
|
| 392 |
if ( value == FREE_CLUSTER ) |
| 393 |
{ |
| 394 |
|
| 395 |
DEBUGPRINT ( 10, "vmcfs: Testing fat table cluster %d ... value is FREE_CLUSTER\n", i - gendata->first_allocatable ); |
| 396 |
|
| 397 |
DEBUGPRINT ( 6, "vmcfs: Free cluster found at %d in fat table\n", i - gendata->first_allocatable ); |
| 398 |
g_Vmc_Image[ unit ].last_free_cluster = i; |
| 399 |
|
| 400 |
return ( i - gendata->first_allocatable ); |
| 401 |
|
| 402 |
} |
| 403 |
else if ( value == EOF_CLUSTER ) |
| 404 |
{ |
| 405 |
|
| 406 |
DEBUGPRINT ( 10, "vmcfs: Testing fat table cluster %d ... value is EOF_CLUSTER\n", i - gendata->first_allocatable ); |
| 407 |
|
| 408 |
} |
| 409 |
else |
| 410 |
{ |
| 411 |
|
| 412 |
DEBUGPRINT ( 10, "vmcfs: Testing fat table cluster %d ... value is %d\n", i - gendata->first_allocatable, value ); |
| 413 |
|
| 414 |
cluster_mask = getFatEntry ( gendata->fd, i - gendata->first_allocatable, gendata->indir_fat_clusters, FAT_MASK ); |
| 415 |
|
| 416 |
if ( cluster_mask != MASK_CLUSTER ) |
| 417 |
{ |
| 418 |
|
| 419 |
DEBUGPRINT ( 6, "vmcfs: Free cluster found at %d in fat table\n", i - gendata->first_allocatable ); |
| 420 |
g_Vmc_Image[ unit ].last_free_cluster = i; |
| 421 |
|
| 422 |
return ( i - gendata->first_allocatable ); |
| 423 |
|
| 424 |
} |
| 425 |
|
| 426 |
} |
| 427 |
|
| 428 |
} |
| 429 |
|
| 430 |
return ERROR_CLUSTER; |
| 431 |
|
| 432 |
} |
| 433 |
|
| 434 |
|
| 435 |
//---------------------------------------------------------------------------- |
| 436 |
// Set default specification to superblock header when card is not formated |
| 437 |
//---------------------------------------------------------------------------- |
| 438 |
int setDefaultSpec ( int unit ) |
| 439 |
{ |
| 440 |
|
| 441 |
DEBUGPRINT ( 4, "vmcfs: SuperBlock set by default\n" ); |
| 442 |
|
| 443 |
memset ( &g_Vmc_Image[ unit ].header, g_Vmc_Image[ unit ].erase_byte, sizeof ( struct superblock ) ); |
| 444 |
|
| 445 |
strcpy ( g_Vmc_Image[ unit ].header.magic, "Sony PS2 Memory Card Format 1.2.0.0" ); |
| 446 |
|
| 447 |
DEBUGPRINT ( 4, "vmcfs: SuperBlock Info: magic[40] : %s\n" , g_Vmc_Image[ unit ].header.magic ); |
| 448 |
|
| 449 |
g_Vmc_Image[ unit ].header.page_size = 0x200; |
| 450 |
g_Vmc_Image[ unit ].header.pages_per_cluster = 0x2; |
| 451 |
g_Vmc_Image[ unit ].header.pages_per_block = 0x10; |
| 452 |
g_Vmc_Image[ unit ].header.unused0 = 0xFF00; |
| 453 |
|
| 454 |
g_Vmc_Image[ unit ].cluster_size = g_Vmc_Image[ unit ].header.page_size * g_Vmc_Image[ unit ].header.pages_per_cluster; |
| 455 |
g_Vmc_Image[ unit ].erase_byte = 0xFF; |
| 456 |
g_Vmc_Image[ unit ].last_idc = EOF_CLUSTER; |
| 457 |
g_Vmc_Image[ unit ].last_cluster = EOF_CLUSTER; |
| 458 |
|
| 459 |
if ( g_Vmc_Image[ unit ].card_size %( g_Vmc_Image[ unit ].header.page_size + 0x10 ) == 0 ) |
| 460 |
{ |
| 461 |
|
| 462 |
g_Vmc_Image[ unit ].ecc_flag = TRUE; |
| 463 |
g_Vmc_Image[ unit ].total_pages = g_Vmc_Image[ unit ].card_size / ( g_Vmc_Image[ unit ].header.page_size + 0x10 ); |
| 464 |
g_Vmc_Image[ unit ].header.clusters_per_card = g_Vmc_Image[ unit ].card_size / ( ( g_Vmc_Image[ unit ].header.page_size + 0x10 ) * g_Vmc_Image[ unit ].header.pages_per_cluster ); |
| 465 |
|
| 466 |
} |
| 467 |
else if ( g_Vmc_Image[ unit ].card_size %g_Vmc_Image[ unit ].header.page_size == 0 ) |
| 468 |
{ |
| 469 |
|
| 470 |
g_Vmc_Image[ unit ].ecc_flag = FALSE; |
| 471 |
g_Vmc_Image[ unit ].total_pages = g_Vmc_Image[ unit ].card_size / g_Vmc_Image[ unit ].header.page_size; |
| 472 |
g_Vmc_Image[ unit ].header.clusters_per_card = g_Vmc_Image[ unit ].card_size / ( g_Vmc_Image[ unit ].header.page_size * g_Vmc_Image[ unit ].header.pages_per_cluster ); |
| 473 |
|
| 474 |
} |
| 475 |
else |
| 476 |
{ |
| 477 |
|
| 478 |
// Size error |
| 479 |
return 0; |
| 480 |
|
| 481 |
} |
| 482 |
|
| 483 |
g_Vmc_Image[ unit ].header.mc_type = 0x2; |
| 484 |
g_Vmc_Image[ unit ].header.mc_flag = 0x2B; |
| 485 |
|
| 486 |
DEBUGPRINT ( 4, "vmcfs: Image file Info: Number of pages : %d\n", g_Vmc_Image[ unit ].total_pages ); |
| 487 |
DEBUGPRINT ( 4, "vmcfs: Image file Info: Size of a cluster : %d bytes\n", g_Vmc_Image[ unit ].cluster_size ); |
| 488 |
DEBUGPRINT ( 4, "vmcfs: Image file Info: ECC shunk found : %s\n", g_Vmc_Image[ unit ].ecc_flag ? "YES" : "NO" ); |
| 489 |
DEBUGPRINT ( 3, "vmcfs: Image file Info: Vmc card type : %s MemoryCard.\n", ( g_Vmc_Image[ unit ].header.mc_type == PSX_MEMORYCARD ? "PSX" : ( g_Vmc_Image[ unit ].header.mc_type == PS2_MEMORYCARD ? "PS2" : "PDA" ) ) ); |
| 490 |
DEBUGPRINT ( 4, "vmcfs: SuperBlock Info: page_size : 0x%02x\n", g_Vmc_Image[ unit ].header.page_size ); |
| 491 |
DEBUGPRINT ( 4, "vmcfs: SuperBlock Info: pages_per_cluster : 0x%02x\n", g_Vmc_Image[ unit ].header.pages_per_cluster ); |
| 492 |
DEBUGPRINT ( 4, "vmcfs: SuperBlock Info: pages_per_block : 0x%02x\n", g_Vmc_Image[ unit ].header.pages_per_block ); |
| 493 |
DEBUGPRINT ( 4, "vmcfs: SuperBlock Info: clusters_per_card : 0x%02x\n", g_Vmc_Image[ unit ].header.clusters_per_card ); |
| 494 |
|
| 495 |
g_Vmc_Image[ unit ].header.first_allocatable = ( ( ( ( g_Vmc_Image[ unit ].total_pages - 1 ) * ( g_Vmc_Image[ unit ].cluster_size / g_Vmc_Image[ unit ].header.page_size ) ) / g_Vmc_Image[ unit ].cluster_size ) + 1 ) + 8 + ( ( g_Vmc_Image[ unit ].total_pages - 1 ) / ( g_Vmc_Image[ unit ].total_pages * g_Vmc_Image[ unit ].header.pages_per_cluster * ( g_Vmc_Image[ unit ].cluster_size / g_Vmc_Image[ unit ].header.page_size ) ) ) + 1; |
| 496 |
g_Vmc_Image[ unit ].header.last_allocatable = ( g_Vmc_Image[ unit ].header.clusters_per_card - g_Vmc_Image[ unit ].header.first_allocatable ) - ( ( g_Vmc_Image[ unit ].header.pages_per_block / g_Vmc_Image[ unit ].header.pages_per_cluster ) * g_Vmc_Image[ unit ].header.pages_per_cluster ); |
| 497 |
g_Vmc_Image[ unit ].header.root_cluster = 0; |
| 498 |
|
| 499 |
g_Vmc_Image[ unit ].header.backup_block1 = ( g_Vmc_Image[ unit ].total_pages / g_Vmc_Image[ unit ].header.pages_per_block ) - 1; |
| 500 |
g_Vmc_Image[ unit ].header.backup_block2 = g_Vmc_Image[ unit ].header.backup_block1 - 1; |
| 501 |
memset ( g_Vmc_Image[ unit ].header.unused1, g_Vmc_Image[ unit ].erase_byte, 8 ); |
| 502 |
|
| 503 |
DEBUGPRINT ( 4, "vmcfs: SuperBlock Info: first_allocatable : 0x%02x\n", g_Vmc_Image[ unit ].header.first_allocatable ); |
| 504 |
DEBUGPRINT ( 4, "vmcfs: SuperBlock Info: last_allocatable : 0x%02x\n", g_Vmc_Image[ unit ].header.last_allocatable ); |
| 505 |
DEBUGPRINT ( 4, "vmcfs: SuperBlock Info: root_cluster : 0x%02x\n", g_Vmc_Image[ unit ].header.root_cluster ); |
| 506 |
DEBUGPRINT ( 4, "vmcfs: SuperBlock Info: backup_block1 : 0x%02x\n", g_Vmc_Image[ unit ].header.backup_block1 ); |
| 507 |
DEBUGPRINT ( 4, "vmcfs: SuperBlock Info: backup_block2 : 0x%02x\n", g_Vmc_Image[ unit ].header.backup_block2 ); |
| 508 |
|
| 509 |
unsigned int last_blk_sector = 8; |
| 510 |
int i = 0; |
| 511 |
|
| 512 |
for ( i = 0; i <= ( ( g_Vmc_Image[ unit ].total_pages - 1 ) / 65536 ); i++ ) |
| 513 |
{ |
| 514 |
if ( ( ( ( last_blk_sector + i ) * ( g_Vmc_Image[ unit ].cluster_size / g_Vmc_Image[ unit ].header.page_size ) ) %g_Vmc_Image[ unit ].header.pages_per_block ) == 0 ) |
| 515 |
{ |
| 516 |
last_blk_sector = last_blk_sector + i; |
| 517 |
} |
| 518 |
g_Vmc_Image[ unit ].header.indir_fat_clusters[ i ]= last_blk_sector + i; |
| 519 |
} |
| 520 |
|
| 521 |
for ( i = 0; g_Vmc_Image[ unit ].header.indir_fat_clusters[ i ]!= 0; i++ ) |
| 522 |
DEBUGPRINT ( 4, "vmcfs: SuperBlock Info: indir_fat_clusters[%d] : 0x%02x\n", i, g_Vmc_Image[ unit ].header.indir_fat_clusters[ i ]); |
| 523 |
|
| 524 |
memset ( g_Vmc_Image[ unit ].header.bad_block_list, g_Vmc_Image[ unit ].erase_byte, sizeof ( unsigned int ) * 32 ); |
| 525 |
|
| 526 |
g_Vmc_Image[ unit ].header.unused2 = 0; |
| 527 |
g_Vmc_Image[ unit ].header.unused3 = 0x100; |
| 528 |
g_Vmc_Image[ unit ].header.size_in_megs = ( g_Vmc_Image[ unit ].total_pages * g_Vmc_Image[ unit ].header.page_size ) / ( g_Vmc_Image[ unit ].cluster_size * g_Vmc_Image[ unit ].cluster_size ); |
| 529 |
g_Vmc_Image[ unit ].header.unused4 = 0xFFFFFFFF; |
| 530 |
memset ( g_Vmc_Image[ unit ].header.unused5, g_Vmc_Image[ unit ].erase_byte, 12 ); |
| 531 |
g_Vmc_Image[ unit ].header.max_used = ( 97 * g_Vmc_Image[ unit ].header.clusters_per_card ) / 100; |
| 532 |
memset ( g_Vmc_Image[ unit ].header.unused6, g_Vmc_Image[ unit ].erase_byte, 8 ); |
| 533 |
g_Vmc_Image[ unit ].header.unused7 = 0xFFFFFFFF; |
| 534 |
|
| 535 |
DEBUGPRINT ( 4, "vmcfs: SuperBlock Info: mc_type : 0x%02x\n", g_Vmc_Image[ unit ].header.mc_type ); |
| 536 |
DEBUGPRINT ( 4, "vmcfs: SuperBlock Info: mc_flag : 0x%02x\n", g_Vmc_Image[ unit ].header.mc_flag ); |
| 537 |
|
| 538 |
g_Vmc_Image[ unit ].last_free_cluster = g_Vmc_Image[ unit ].header.first_allocatable; |
| 539 |
|
| 540 |
return 1; |
| 541 |
|
| 542 |
} |
| 543 |
|
| 544 |
|
| 545 |
//---------------------------------------------------------------------------- |
| 546 |
// Used for timing functions, use this to optimize stuff |
| 547 |
//---------------------------------------------------------------------------- |
| 548 |
#ifdef PROFILING |
| 549 |
|
| 550 |
iop_sys_clock_t iop_clock_finished; // Global clock finished data |
| 551 |
|
| 552 |
void profilerStart ( iop_sys_clock_t* iopclock ) |
| 553 |
{ |
| 554 |
|
| 555 |
GetSystemTime ( iopclock ); |
| 556 |
|
| 557 |
} |
| 558 |
|
| 559 |
void profilerEnd ( const char* function, const char* name, iop_sys_clock_t* iopclock1 ) |
| 560 |
{ |
| 561 |
|
| 562 |
// Make this the first item, so we don't add time that need not be added |
| 563 |
GetSystemTime ( &iop_clock_finished ); |
| 564 |
|
| 565 |
unsigned int sec1, usec1; |
| 566 |
unsigned int sec2, usec2; |
| 567 |
|
| 568 |
SysClock2USec ( &iop_clock_finished, &sec2, &usec2 ); |
| 569 |
SysClock2USec ( iopclock1, &sec1, &usec1 ); |
| 570 |
|
| 571 |
printf ( "vmcfs: Profiler[ %s ]: %s %ld. %ld seconds\n", function, name, sec2 - sec1, ( usec2 - usec1 ) / 1000 ); |
| 572 |
|
| 573 |
} |
| 574 |
|
| 575 |
#endif |
| 576 |
|
| 577 |
|
| 578 |
//---------------------------------------------------------------------------- |
| 579 |
// Get date and time from cdvd fonction and put them into a "vmc_datetime" struct pointer. |
| 580 |
//---------------------------------------------------------------------------- |
| 581 |
int getPs2Time ( vmc_datetime* tm ) |
| 582 |
{ |
| 583 |
|
| 584 |
cd_clock_t cdtime; |
| 585 |
s32 tmp; |
| 586 |
|
| 587 |
static vmc_datetime timeBuf = { |
| 588 |
0, 0x00, 0x00, 0x0A, 0x01, 0x01, 2008 // used if can not get time... |
| 589 |
}; |
| 590 |
|
| 591 |
if ( CdReadClock ( &cdtime ) != 0 && cdtime.stat == 0 ) |
| 592 |
{ |
| 593 |
|
| 594 |
tmp = cdtime.second >> 4; |
| 595 |
timeBuf.sec = ( unsigned int ) ( ( ( tmp << 2 ) + tmp ) << 1 ) + ( cdtime.second & 0x0F ); |
| 596 |
tmp = cdtime.minute >> 4; |
| 597 |
timeBuf.min = ( ( ( tmp << 2 ) + tmp ) << 1 ) + ( cdtime.minute & 0x0F ); |
| 598 |
tmp = cdtime.hour >> 4; |
| 599 |
timeBuf.hour = ( ( ( tmp << 2 ) + tmp ) << 1 ) + ( cdtime.hour & 0x0F ); |
| 600 |
// timeBuf.hour = ( timeBuf.hour + 4 ) %24;// TEMP FIX ( need to deal with timezones? ) ... aparently not! |
| 601 |
tmp = cdtime.day >> 4; |
| 602 |
timeBuf.day = ( ( ( tmp << 2 ) + tmp ) << 1 ) + ( cdtime.day & 0x0F ); |
| 603 |
tmp = cdtime.month >> 4; |
| 604 |
timeBuf.month = ( ( ( tmp << 2 ) + tmp ) << 1 ) + ( cdtime.month & 0x0F ); |
| 605 |
tmp = cdtime.year >> 4; |
| 606 |
timeBuf.year = ( ( ( tmp << 2 ) + tmp ) << 1 ) + ( cdtime.year & 0xF ) + 2000; |
| 607 |
|
| 608 |
} |
| 609 |
|
| 610 |
memcpy ( tm, &timeBuf, sizeof ( vmc_datetime ) ); |
| 611 |
|
| 612 |
return 0; |
| 613 |
|
| 614 |
} |
| 615 |
|
| 616 |
|
| 617 |
//---------------------------------------------------------------------------- |
| 618 |
// XOR table use for Error Correcting Code ( ECC ) calculation. |
| 619 |
//---------------------------------------------------------------------------- |
| 620 |
const unsigned char ECC_XOR_Table[ 256 ]= { |
| 621 |
0x00, 0x87, 0x96, 0x11, 0xA5, 0x22, 0x33, 0xB4, |
| 622 |
0xB4, 0x33, 0x22, 0xA5, 0x11, 0x96, 0x87, 0x00, |
| 623 |
0xC3, 0x44, 0x55, 0xD2, 0x66, 0xE1, 0xF0, 0x77, |
| 624 |
0x77, 0xF0, 0xE1, 0x66, 0xD2, 0x55, 0x44, 0xC3, |
| 625 |
0xD2, 0x55, 0x44, 0xC3, 0x77, 0xF0, 0xE1, 0x66, |
| 626 |
0x66, 0xE1, 0xF0, 0x77, 0xC3, 0x44, 0x55, 0xD2, |
| 627 |
0x11, 0x96, 0x87, 0x00, 0xB4, 0x33, 0x22, 0xA5, |
| 628 |
0xA5, 0x22, 0x33, 0xB4, 0x00, 0x87, 0x96, 0x11, |
| 629 |
0xE1, 0x66, 0x77, 0xF0, 0x44, 0xC3, 0xD2, 0x55, |
| 630 |
0x55, 0xD2, 0xC3, 0x44, 0xF0, 0x77, 0x66, 0xE1, |
| 631 |
0x22, 0xA5, 0xB4, 0x33, 0x87, 0x00, 0x11, 0x96, |
| 632 |
0x96, 0x11, 0x00, 0x87, 0x33, 0xB4, 0xA5, 0x22, |
| 633 |
0x33, 0xB4, 0xA5, 0x22, 0x96, 0x11, 0x00, 0x87, |
| 634 |
0x87, 0x00, 0x11, 0x96, 0x22, 0xA5, 0xB4, 0x33, |
| 635 |
0xF0, 0x77, 0x66, 0xE1, 0x55, 0xD2, 0xC3, 0x44, |
| 636 |
0x44, 0xC3, 0xD2, 0x55, 0xE1, 0x66, 0x77, 0xF0, |
| 637 |
0xF0, 0x77, 0x66, 0xE1, 0x55, 0xD2, 0xC3, 0x44, |
| 638 |
0x44, 0xC3, 0xD2, 0x55, 0xE1, 0x66, 0x77, 0xF0, |
| 639 |
0x33, 0xB4, 0xA5, 0x22, 0x96, 0x11, 0x00, 0x87, |
| 640 |
0x87, 0x00, 0x11, 0x96, 0x22, 0xA5, 0xB4, 0x33, |
| 641 |
0x22, 0xA5, 0xB4, 0x33, 0x87, 0x00, 0x11, 0x96, |
| 642 |
0x96, 0x11, 0x00, 0x87, 0x33, 0xB4, 0xA5, 0x22, |
| 643 |
0xE1, 0x66, 0x77, 0xF0, 0x44, 0xC3, 0xD2, 0x55, |
| 644 |
0x55, 0xD2, 0xC3, 0x44, 0xF0, 0x77, 0x66, 0xE1, |
| 645 |
0x11, 0x96, 0x87, 0x00, 0xB4, 0x33, 0x22, 0xA5, |
| 646 |
0xA5, 0x22, 0x33, 0xB4, 0x00, 0x87, 0x96, 0x11, |
| 647 |
0xD2, 0x55, 0x44, 0xC3, 0x77, 0xF0, 0xE1, 0x66, |
| 648 |
0x66, 0xE1, 0xF0, 0x77, 0xC3, 0x44, 0x55, 0xD2, |
| 649 |
0xC3, 0x44, 0x55, 0xD2, 0x66, 0xE1, 0xF0, 0x77, |
| 650 |
0x77, 0xF0, 0xE1, 0x66, 0xD2, 0x55, 0x44, 0xC3, |
| 651 |
0x00, 0x87, 0x96, 0x11, 0xA5, 0x22, 0x33, 0xB4, |
| 652 |
0xB4, 0x33, 0x22, 0xA5, 0x11, 0x96, 0x87, 0x00, |
| 653 |
}; |
| 654 |
|
| 655 |
|
| 656 |
//---------------------------------------------------------------------------- |
| 657 |
// Calculate ECC for a 128 bytes chunk of data |
| 658 |
//---------------------------------------------------------------------------- |
| 659 |
int calculateECC ( char* ECC_Chunk, const unsigned char* Data_Chunk ) |
| 660 |
{ |
| 661 |
int i, c; |
| 662 |
|
| 663 |
ECC_Chunk[ 0 ]= ECC_Chunk[ 1 ]= ECC_Chunk[ 2 ]= 0; |
| 664 |
|
| 665 |
for ( i = 0; i < 0x80; i++ ) |
| 666 |
{ |
| 667 |
|
| 668 |
c = ECC_XOR_Table[ Data_Chunk[ i ] ]; |
| 669 |
|
| 670 |
ECC_Chunk[ 0 ] ^= c; |
| 671 |
|
| 672 |
if ( c & 0x80 ) |
| 673 |
{ |
| 674 |
|
| 675 |
ECC_Chunk[ 1 ] ^= ~i; |
| 676 |
ECC_Chunk[ 2 ] ^= i; |
| 677 |
|
| 678 |
} |
| 679 |
|
| 680 |
} |
| 681 |
|
| 682 |
ECC_Chunk[ 0 ] = ~ECC_Chunk[ 0 ]; |
| 683 |
ECC_Chunk[ 0 ] &= 0x77; |
| 684 |
ECC_Chunk[ 1 ] = ~ECC_Chunk[ 1 ]; |
| 685 |
ECC_Chunk[ 1 ] &= 0x7f; |
| 686 |
ECC_Chunk[ 2 ] = ~ECC_Chunk[ 2 ]; |
| 687 |
ECC_Chunk[ 2 ] &= 0x7f; |
| 688 |
|
| 689 |
return 1; |
| 690 |
|
| 691 |
} |
| 692 |
|
| 693 |
|
| 694 |
//---------------------------------------------------------------------------- |
| 695 |
// Build ECC from a complet page of data |
| 696 |
//---------------------------------------------------------------------------- |
| 697 |
int buildECC ( int unit, char* Page_Data, char* ECC_Data ) |
| 698 |
{ |
| 699 |
|
| 700 |
char Data_Chunk[ 4 ][ 128 ]; |
| 701 |
char ECC_Chunk[ 4 ][ 3 ]; |
| 702 |
char ECC_Pad[ 4 ]; |
| 703 |
|
| 704 |
// This is to divide the page in 128 bytes chunks |
| 705 |
memcpy ( Data_Chunk[ 0 ], Page_Data + 0, 128 ); |
| 706 |
memcpy ( Data_Chunk[ 1 ], Page_Data + 128, 128 ); |
| 707 |
memcpy ( Data_Chunk[ 2 ], Page_Data + 256, 128 ); |
| 708 |
memcpy ( Data_Chunk[ 3 ], Page_Data + 384, 128 ); |
| 709 |
|
| 710 |
// Ask for 128 bytes chunk ECC calculation, it returns 3 bytes per chunk |
| 711 |
calculateECC ( ECC_Chunk[ 0 ], Data_Chunk[ 0 ]); |
| 712 |
calculateECC ( ECC_Chunk[ 1 ], Data_Chunk[ 1 ]); |
| 713 |
calculateECC ( ECC_Chunk[ 2 ], Data_Chunk[ 2 ]); |
| 714 |
calculateECC ( ECC_Chunk[ 3 ], Data_Chunk[ 3 ]); |
| 715 |
|
| 716 |
// Prepare Padding as ECC took only 12 bytes and stand on 16 bytes |
| 717 |
memset ( ECC_Pad, g_Vmc_Image[ unit ].erase_byte, sizeof ( ECC_Pad ) ); |
| 718 |
|
| 719 |
// "MemCopy" our four 3 bytes ECC chunks into our 16 bytes ECC data buffer |
| 720 |
// Finaly "MemCopy" our 4 bytes PAD chunks into last 4 bytes of our ECC data buffer |
| 721 |
memcpy ( ECC_Data + 0, ECC_Chunk[ 0 ], 3 ); |
| 722 |
memcpy ( ECC_Data + 3, ECC_Chunk[ 1 ], 3 ); |
| 723 |
memcpy ( ECC_Data + 6, ECC_Chunk[ 2 ], 3 ); |
| 724 |
memcpy ( ECC_Data + 9, ECC_Chunk[ 3 ], 3 ); |
| 725 |
memcpy ( ECC_Data + 12, ECC_Pad , 4 ); |
| 726 |
|
| 727 |
return 1; |
| 728 |
|
| 729 |
} |