| 1 |
/* xdelta 3 - delta compression tools and library |
| 2 |
* Copyright (C) 2002, 2006, 2007. Joshua P. MacDonald |
| 3 |
* |
| 4 |
* This program is free software; you can redistribute it and/or modify |
| 5 |
* it under the terms of the GNU General Public License as published by |
| 6 |
* the Free Software Foundation; either version 2 of the License, or |
| 7 |
* (at your option) any later version. |
| 8 |
* |
| 9 |
* This program is distributed in the hope that it will be useful, |
| 10 |
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 11 |
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 12 |
* GNU General Public License for more details. |
| 13 |
* |
| 14 |
* You should have received a copy of the GNU General Public License |
| 15 |
* along with this program; if not, write to the Free Software |
| 16 |
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
| 17 |
*/ |
| 18 |
|
| 19 |
/* For demonstration purposes only. |
| 20 |
*/ |
| 21 |
|
| 22 |
#ifndef _XDELTA3_FGK_h_ |
| 23 |
#define _XDELTA3_FGK_h_ |
| 24 |
|
| 25 |
/* An implementation of the FGK algorithm described by D.E. Knuth in "Dynamic Huffman |
| 26 |
* Coding" in Journal of Algorithms 6. */ |
| 27 |
|
| 28 |
/* A 32bit counter (fgk_weight) is used as the frequency counter for nodes in the huffman |
| 29 |
* tree. @!@ Need to test for overflow and/or reset stats. */ |
| 30 |
|
| 31 |
typedef struct _fgk_stream fgk_stream; |
| 32 |
typedef struct _fgk_node fgk_node; |
| 33 |
typedef struct _fgk_block fgk_block; |
| 34 |
typedef unsigned int fgk_bit; |
| 35 |
typedef uint32_t fgk_weight; |
| 36 |
|
| 37 |
struct _fgk_block { |
| 38 |
union { |
| 39 |
fgk_node *un_leader; |
| 40 |
fgk_block *un_freeptr; |
| 41 |
} un; |
| 42 |
}; |
| 43 |
|
| 44 |
#define block_leader un.un_leader |
| 45 |
#define block_freeptr un.un_freeptr |
| 46 |
|
| 47 |
/* The code can also support fixed huffman encoding/decoding. */ |
| 48 |
#define IS_ADAPTIVE 1 |
| 49 |
|
| 50 |
/* weight is a count of the number of times this element has been seen in the current |
| 51 |
* encoding/decoding. parent, right_child, and left_child are pointers defining the tree |
| 52 |
* structure. right and left point to neighbors in an ordered sequence of |
| 53 |
* weights. The left child of a node is always guaranteed to have weight not greater than |
| 54 |
* its sibling. fgk_blockLeader points to the element with the same weight as itself which is |
| 55 |
* closest to the next increasing weight block. */ |
| 56 |
struct _fgk_node |
| 57 |
{ |
| 58 |
fgk_weight weight; |
| 59 |
fgk_node *parent; |
| 60 |
fgk_node *left_child; |
| 61 |
fgk_node *right_child; |
| 62 |
fgk_node *left; |
| 63 |
fgk_node *right; |
| 64 |
fgk_block *my_block; |
| 65 |
}; |
| 66 |
|
| 67 |
/* alphabet_size is the a count of the number of possible leaves in the huffman tree. The |
| 68 |
* number of total nodes counting internal nodes is ((2 * alphabet_size) - 1). |
| 69 |
* zero_freq_count is the number of elements remaining which have zero frequency. |
| 70 |
* zero_freq_exp and zero_freq_rem satisfy the equation zero_freq_count = 2^zero_freq_exp + |
| 71 |
* zero_freq_rem. root_node is the root of the tree, which is initialized to a node with |
| 72 |
* zero frequency and contains the 0th such element. free_node contains a pointer to the |
| 73 |
* next available fgk_node space. alphabet contains all the elements and is indexed by N. |
| 74 |
* remaining_zeros points to the head of the list of zeros. */ |
| 75 |
struct _fgk_stream |
| 76 |
{ |
| 77 |
int alphabet_size; |
| 78 |
int zero_freq_count; |
| 79 |
int zero_freq_exp; |
| 80 |
int zero_freq_rem; |
| 81 |
int coded_depth; |
| 82 |
|
| 83 |
int total_nodes; |
| 84 |
int total_blocks; |
| 85 |
|
| 86 |
fgk_bit *coded_bits; |
| 87 |
|
| 88 |
fgk_block *block_array; |
| 89 |
fgk_block *free_block; |
| 90 |
|
| 91 |
fgk_node *decode_ptr; |
| 92 |
fgk_node *remaining_zeros; |
| 93 |
fgk_node *alphabet; |
| 94 |
fgk_node *root_node; |
| 95 |
fgk_node *free_node; |
| 96 |
}; |
| 97 |
|
| 98 |
/*********************************************************************/ |
| 99 |
/* Encoder */ |
| 100 |
/*********************************************************************/ |
| 101 |
|
| 102 |
static fgk_stream* fgk_alloc (xd3_stream *stream /*, int alphabet_size */); |
| 103 |
static void fgk_init (fgk_stream *h); |
| 104 |
static int fgk_encode_data (fgk_stream *h, |
| 105 |
int n); |
| 106 |
static INLINE fgk_bit fgk_get_encoded_bit (fgk_stream *h); |
| 107 |
|
| 108 |
static int xd3_encode_fgk (xd3_stream *stream, |
| 109 |
fgk_stream *sec_stream, |
| 110 |
xd3_output *input, |
| 111 |
xd3_output *output, |
| 112 |
xd3_sec_cfg *cfg); |
| 113 |
|
| 114 |
/*********************************************************************/ |
| 115 |
/* Decoder */ |
| 116 |
/*********************************************************************/ |
| 117 |
|
| 118 |
static INLINE int fgk_decode_bit (fgk_stream *h, |
| 119 |
fgk_bit b); |
| 120 |
static int fgk_decode_data (fgk_stream *h); |
| 121 |
static void fgk_destroy (xd3_stream *stream, |
| 122 |
fgk_stream *h); |
| 123 |
|
| 124 |
static int xd3_decode_fgk (xd3_stream *stream, |
| 125 |
fgk_stream *sec_stream, |
| 126 |
const uint8_t **input, |
| 127 |
const uint8_t *const input_end, |
| 128 |
uint8_t **output, |
| 129 |
const uint8_t *const output_end); |
| 130 |
|
| 131 |
/*********************************************************************/ |
| 132 |
/* Private */ |
| 133 |
/*********************************************************************/ |
| 134 |
|
| 135 |
static unsigned int fgk_find_nth_zero (fgk_stream *h, int n); |
| 136 |
static int fgk_nth_zero (fgk_stream *h, int n); |
| 137 |
static void fgk_update_tree (fgk_stream *h, int n); |
| 138 |
static fgk_node* fgk_increase_zero_weight (fgk_stream *h, int n); |
| 139 |
static void fgk_eliminate_zero (fgk_stream* h, fgk_node *node); |
| 140 |
static void fgk_move_right (fgk_stream *h, fgk_node *node); |
| 141 |
static void fgk_promote (fgk_stream *h, fgk_node *node); |
| 142 |
static void fgk_init_node (fgk_node *node, int i, int size); |
| 143 |
static fgk_block* fgk_make_block (fgk_stream *h, fgk_node *l); |
| 144 |
static void fgk_free_block (fgk_stream *h, fgk_block *b); |
| 145 |
static void fgk_factor_remaining (fgk_stream *h); |
| 146 |
static INLINE void fgk_swap_ptrs (fgk_node **one, fgk_node **two); |
| 147 |
|
| 148 |
/*********************************************************************/ |
| 149 |
/* Basic Routines */ |
| 150 |
/*********************************************************************/ |
| 151 |
|
| 152 |
/* returns an initialized huffman encoder for an alphabet with the |
| 153 |
* given size. returns NULL if enough memory cannot be allocated */ |
| 154 |
static fgk_stream* fgk_alloc (xd3_stream *stream /*, int alphabet_size0 */) |
| 155 |
{ |
| 156 |
int alphabet_size0 = ALPHABET_SIZE; |
| 157 |
fgk_stream *h; |
| 158 |
|
| 159 |
if ((h = (fgk_stream*) xd3_alloc (stream, 1, sizeof (fgk_stream))) == NULL) |
| 160 |
{ |
| 161 |
return NULL; |
| 162 |
} |
| 163 |
|
| 164 |
h->total_nodes = (2 * alphabet_size0) - 1; |
| 165 |
h->total_blocks = (2 * h->total_nodes); |
| 166 |
h->alphabet = (fgk_node*) xd3_alloc (stream, h->total_nodes, sizeof (fgk_node)); |
| 167 |
h->block_array = (fgk_block*) xd3_alloc (stream, h->total_blocks, sizeof (fgk_block)); |
| 168 |
h->coded_bits = (fgk_bit*) xd3_alloc (stream, alphabet_size0, sizeof (fgk_bit)); |
| 169 |
|
| 170 |
if (h->coded_bits == NULL || |
| 171 |
h->alphabet == NULL || |
| 172 |
h->block_array == NULL) |
| 173 |
{ |
| 174 |
fgk_destroy (stream, h); |
| 175 |
return NULL; |
| 176 |
} |
| 177 |
|
| 178 |
h->alphabet_size = alphabet_size0; |
| 179 |
|
| 180 |
return h; |
| 181 |
} |
| 182 |
|
| 183 |
static void fgk_init (fgk_stream *h) |
| 184 |
{ |
| 185 |
int i; |
| 186 |
|
| 187 |
h->root_node = h->alphabet; |
| 188 |
h->decode_ptr = h->root_node; |
| 189 |
h->free_node = h->alphabet + h->alphabet_size; |
| 190 |
h->remaining_zeros = h->alphabet; |
| 191 |
h->coded_depth = 0; |
| 192 |
h->zero_freq_count = h->alphabet_size + 2; |
| 193 |
|
| 194 |
/* after two calls to factor_remaining, zero_freq_count == alphabet_size */ |
| 195 |
fgk_factor_remaining(h); /* set ZFE and ZFR */ |
| 196 |
fgk_factor_remaining(h); /* set ZFDB according to prev state */ |
| 197 |
|
| 198 |
IF_DEBUG (memset (h->alphabet, 0, sizeof (h->alphabet[0]) * h->total_nodes)); |
| 199 |
|
| 200 |
for (i = 0; i < h->total_blocks-1; i += 1) |
| 201 |
{ |
| 202 |
h->block_array[i].block_freeptr = &h->block_array[i + 1]; |
| 203 |
} |
| 204 |
|
| 205 |
h->block_array[h->total_blocks - 1].block_freeptr = NULL; |
| 206 |
h->free_block = h->block_array; |
| 207 |
|
| 208 |
/* Zero frequency nodes are inserted in the first alphabet_size |
| 209 |
* positions, with Value, weight, and a pointer to the next zero |
| 210 |
* frequency node. */ |
| 211 |
for (i = h->alphabet_size - 1; i >= 0; i -= 1) |
| 212 |
{ |
| 213 |
fgk_init_node (h->alphabet + i, i, h->alphabet_size); |
| 214 |
} |
| 215 |
} |
| 216 |
|
| 217 |
static void fgk_swap_ptrs(fgk_node **one, fgk_node **two) |
| 218 |
{ |
| 219 |
fgk_node *tmp = *one; |
| 220 |
*one = *two; |
| 221 |
*two = tmp; |
| 222 |
} |
| 223 |
|
| 224 |
/* Takes huffman transmitter h and n, the nth elt in the alphabet, and |
| 225 |
* returns the number of required to encode n. */ |
| 226 |
static int fgk_encode_data (fgk_stream* h, int n) |
| 227 |
{ |
| 228 |
fgk_node *target_ptr = h->alphabet + n; |
| 229 |
|
| 230 |
XD3_ASSERT (n < h->alphabet_size); |
| 231 |
|
| 232 |
h->coded_depth = 0; |
| 233 |
|
| 234 |
/* First encode the binary representation of the nth remaining |
| 235 |
* zero frequency element in reverse such that bit, which will be |
| 236 |
* encoded from h->coded_depth down to 0 will arrive in increasing |
| 237 |
* order following the tree path. If there is only one left, it |
| 238 |
* is not neccesary to encode these bits. */ |
| 239 |
if (IS_ADAPTIVE && target_ptr->weight == 0) |
| 240 |
{ |
| 241 |
unsigned int where, shift; |
| 242 |
int bits; |
| 243 |
|
| 244 |
where = fgk_find_nth_zero(h, n); |
| 245 |
shift = 1; |
| 246 |
|
| 247 |
if (h->zero_freq_rem == 0) |
| 248 |
{ |
| 249 |
bits = h->zero_freq_exp; |
| 250 |
} |
| 251 |
else |
| 252 |
{ |
| 253 |
bits = h->zero_freq_exp + 1; |
| 254 |
} |
| 255 |
|
| 256 |
while (bits > 0) |
| 257 |
{ |
| 258 |
h->coded_bits[h->coded_depth++] = (shift & where) && 1; |
| 259 |
|
| 260 |
bits -= 1; |
| 261 |
shift <<= 1; |
| 262 |
}; |
| 263 |
|
| 264 |
target_ptr = h->remaining_zeros; |
| 265 |
} |
| 266 |
|
| 267 |
/* The path from root to node is filled into coded_bits in reverse so |
| 268 |
* that it is encoded in the right order */ |
| 269 |
while (target_ptr != h->root_node) |
| 270 |
{ |
| 271 |
h->coded_bits[h->coded_depth++] = (target_ptr->parent->right_child == target_ptr); |
| 272 |
|
| 273 |
target_ptr = target_ptr->parent; |
| 274 |
} |
| 275 |
|
| 276 |
if (IS_ADAPTIVE) |
| 277 |
{ |
| 278 |
fgk_update_tree(h, n); |
| 279 |
} |
| 280 |
|
| 281 |
return h->coded_depth; |
| 282 |
} |
| 283 |
|
| 284 |
/* Should be called as many times as fgk_encode_data returns. |
| 285 |
*/ |
| 286 |
static INLINE fgk_bit fgk_get_encoded_bit (fgk_stream *h) |
| 287 |
{ |
| 288 |
XD3_ASSERT (h->coded_depth > 0); |
| 289 |
|
| 290 |
return h->coded_bits[--h->coded_depth]; |
| 291 |
} |
| 292 |
|
| 293 |
/* This procedure updates the tree after alphabet[n] has been encoded |
| 294 |
* or decoded. |
| 295 |
*/ |
| 296 |
static void fgk_update_tree (fgk_stream *h, int n) |
| 297 |
{ |
| 298 |
fgk_node *incr_node; |
| 299 |
|
| 300 |
if (h->alphabet[n].weight == 0) |
| 301 |
{ |
| 302 |
incr_node = fgk_increase_zero_weight (h, n); |
| 303 |
} |
| 304 |
else |
| 305 |
{ |
| 306 |
incr_node = h->alphabet + n; |
| 307 |
} |
| 308 |
|
| 309 |
while (incr_node != h->root_node) |
| 310 |
{ |
| 311 |
fgk_move_right (h, incr_node); |
| 312 |
fgk_promote (h, incr_node); |
| 313 |
incr_node->weight += 1; /* incr the parent */ |
| 314 |
incr_node = incr_node->parent; /* repeat */ |
| 315 |
} |
| 316 |
|
| 317 |
h->root_node->weight += 1; |
| 318 |
} |
| 319 |
|
| 320 |
static void fgk_move_right (fgk_stream *h, fgk_node *move_fwd) |
| 321 |
{ |
| 322 |
fgk_node **fwd_par_ptr, **back_par_ptr; |
| 323 |
fgk_node *move_back, *tmp; |
| 324 |
|
| 325 |
move_back = move_fwd->my_block->block_leader; |
| 326 |
|
| 327 |
if (move_fwd == move_back || |
| 328 |
move_fwd->parent == move_back || |
| 329 |
move_fwd->weight == 0) |
| 330 |
{ |
| 331 |
return; |
| 332 |
} |
| 333 |
|
| 334 |
move_back->right->left = move_fwd; |
| 335 |
|
| 336 |
if (move_fwd->left) |
| 337 |
{ |
| 338 |
move_fwd->left->right = move_back; |
| 339 |
} |
| 340 |
|
| 341 |
tmp = move_fwd->right; |
| 342 |
move_fwd->right = move_back->right; |
| 343 |
|
| 344 |
if (tmp == move_back) |
| 345 |
{ |
| 346 |
move_back->right = move_fwd; |
| 347 |
} |
| 348 |
else |
| 349 |
{ |
| 350 |
tmp->left = move_back; |
| 351 |
move_back->right = tmp; |
| 352 |
} |
| 353 |
|
| 354 |
tmp = move_back->left; |
| 355 |
move_back->left = move_fwd->left; |
| 356 |
|
| 357 |
if (tmp == move_fwd) |
| 358 |
{ |
| 359 |
move_fwd->left = move_back; |
| 360 |
} |
| 361 |
else |
| 362 |
{ |
| 363 |
tmp->right = move_fwd; |
| 364 |
move_fwd->left = tmp; |
| 365 |
} |
| 366 |
|
| 367 |
if (move_fwd->parent->right_child == move_fwd) |
| 368 |
{ |
| 369 |
fwd_par_ptr = &move_fwd->parent->right_child; |
| 370 |
} |
| 371 |
else |
| 372 |
{ |
| 373 |
fwd_par_ptr = &move_fwd->parent->left_child; |
| 374 |
} |
| 375 |
|
| 376 |
if (move_back->parent->right_child == move_back) |
| 377 |
{ |
| 378 |
back_par_ptr = &move_back->parent->right_child; |
| 379 |
} |
| 380 |
else |
| 381 |
{ |
| 382 |
back_par_ptr = &move_back->parent->left_child; |
| 383 |
} |
| 384 |
|
| 385 |
fgk_swap_ptrs (&move_fwd->parent, &move_back->parent); |
| 386 |
fgk_swap_ptrs (fwd_par_ptr, back_par_ptr); |
| 387 |
|
| 388 |
move_fwd->my_block->block_leader = move_fwd; |
| 389 |
} |
| 390 |
|
| 391 |
/* Shifts node, the leader of its block, into the next block. */ |
| 392 |
static void fgk_promote (fgk_stream *h, fgk_node *node) |
| 393 |
{ |
| 394 |
fgk_node *my_left, *my_right; |
| 395 |
fgk_block *cur_block; |
| 396 |
|
| 397 |
my_right = node->right; |
| 398 |
my_left = node->left; |
| 399 |
cur_block = node->my_block; |
| 400 |
|
| 401 |
if (node->weight == 0) |
| 402 |
{ |
| 403 |
return; |
| 404 |
} |
| 405 |
|
| 406 |
/* if left is right child, parent of remaining zeros case (?), means parent |
| 407 |
* has same weight as right child. */ |
| 408 |
if (my_left == node->right_child && |
| 409 |
node->left_child && |
| 410 |
node->left_child->weight == 0) |
| 411 |
{ |
| 412 |
XD3_ASSERT (node->left_child == h->remaining_zeros); |
| 413 |
XD3_ASSERT (node->right_child->weight == (node->weight+1)); /* child weight was already incremented */ |
| 414 |
|
| 415 |
if (node->weight == (my_right->weight - 1) && my_right != h->root_node) |
| 416 |
{ |
| 417 |
fgk_free_block (h, cur_block); |
| 418 |
node->my_block = my_right->my_block; |
| 419 |
my_left->my_block = my_right->my_block; |
| 420 |
} |
| 421 |
|
| 422 |
return; |
| 423 |
} |
| 424 |
|
| 425 |
if (my_left == h->remaining_zeros) |
| 426 |
{ |
| 427 |
return; |
| 428 |
} |
| 429 |
|
| 430 |
/* true if not the leftmost node */ |
| 431 |
if (my_left->my_block == cur_block) |
| 432 |
{ |
| 433 |
my_left->my_block->block_leader = my_left; |
| 434 |
} |
| 435 |
else |
| 436 |
{ |
| 437 |
fgk_free_block (h, cur_block); |
| 438 |
} |
| 439 |
|
| 440 |
/* node->parent != my_right */ |
| 441 |
if ((node->weight == (my_right->weight - 1)) && (my_right != h->root_node)) |
| 442 |
{ |
| 443 |
node->my_block = my_right->my_block; |
| 444 |
} |
| 445 |
else |
| 446 |
{ |
| 447 |
node->my_block = fgk_make_block (h, node); |
| 448 |
} |
| 449 |
} |
| 450 |
|
| 451 |
/* When an element is seen the first time this is called to remove it from the list of |
| 452 |
* zero weight elements and introduce a new internal node to the tree. */ |
| 453 |
static fgk_node* fgk_increase_zero_weight (fgk_stream *h, int n) |
| 454 |
{ |
| 455 |
fgk_node *this_zero, *new_internal, *zero_ptr; |
| 456 |
|
| 457 |
this_zero = h->alphabet + n; |
| 458 |
|
| 459 |
if (h->zero_freq_count == 1) |
| 460 |
{ |
| 461 |
/* this is the last one */ |
| 462 |
this_zero->right_child = NULL; |
| 463 |
|
| 464 |
if (this_zero->right->weight == 1) |
| 465 |
{ |
| 466 |
this_zero->my_block = this_zero->right->my_block; |
| 467 |
} |
| 468 |
else |
| 469 |
{ |
| 470 |
this_zero->my_block = fgk_make_block (h, this_zero); |
| 471 |
} |
| 472 |
|
| 473 |
h->remaining_zeros = NULL; |
| 474 |
|
| 475 |
return this_zero; |
| 476 |
} |
| 477 |
|
| 478 |
zero_ptr = h->remaining_zeros; |
| 479 |
|
| 480 |
new_internal = h->free_node++; |
| 481 |
|
| 482 |
new_internal->parent = zero_ptr->parent; |
| 483 |
new_internal->right = zero_ptr->right; |
| 484 |
new_internal->weight = 0; |
| 485 |
new_internal->right_child = this_zero; |
| 486 |
new_internal->left = this_zero; |
| 487 |
|
| 488 |
if (h->remaining_zeros == h->root_node) |
| 489 |
{ |
| 490 |
/* This is the first element to be coded */ |
| 491 |
h->root_node = new_internal; |
| 492 |
this_zero->my_block = fgk_make_block (h, this_zero); |
| 493 |
new_internal->my_block = fgk_make_block (h, new_internal); |
| 494 |
} |
| 495 |
else |
| 496 |
{ |
| 497 |
new_internal->right->left = new_internal; |
| 498 |
|
| 499 |
if (zero_ptr->parent->right_child == zero_ptr) |
| 500 |
{ |
| 501 |
zero_ptr->parent->right_child = new_internal; |
| 502 |
} |
| 503 |
else |
| 504 |
{ |
| 505 |
zero_ptr->parent->left_child = new_internal; |
| 506 |
} |
| 507 |
|
| 508 |
if (new_internal->right->weight == 1) |
| 509 |
{ |
| 510 |
new_internal->my_block = new_internal->right->my_block; |
| 511 |
} |
| 512 |
else |
| 513 |
{ |
| 514 |
new_internal->my_block = fgk_make_block (h, new_internal); |
| 515 |
} |
| 516 |
|
| 517 |
this_zero->my_block = new_internal->my_block; |
| 518 |
} |
| 519 |
|
| 520 |
fgk_eliminate_zero (h, this_zero); |
| 521 |
|
| 522 |
new_internal->left_child = h->remaining_zeros; |
| 523 |
|
| 524 |
this_zero->right = new_internal; |
| 525 |
this_zero->left = h->remaining_zeros; |
| 526 |
this_zero->parent = new_internal; |
| 527 |
this_zero->left_child = NULL; |
| 528 |
this_zero->right_child = NULL; |
| 529 |
|
| 530 |
h->remaining_zeros->parent = new_internal; |
| 531 |
h->remaining_zeros->right = this_zero; |
| 532 |
|
| 533 |
return this_zero; |
| 534 |
} |
| 535 |
|
| 536 |
/* When a zero frequency element is encoded, it is followed by the binary representation |
| 537 |
* of the index into the remaining elements. Sets a cache to the element before it so |
| 538 |
* that it can be removed without calling this procedure again. */ |
| 539 |
static unsigned int fgk_find_nth_zero (fgk_stream* h, int n) |
| 540 |
{ |
| 541 |
fgk_node *target_ptr = h->alphabet + n; |
| 542 |
fgk_node *head_ptr = h->remaining_zeros; |
| 543 |
unsigned int idx = 0; |
| 544 |
|
| 545 |
while (target_ptr != head_ptr) |
| 546 |
{ |
| 547 |
head_ptr = head_ptr->right_child; |
| 548 |
idx += 1; |
| 549 |
} |
| 550 |
|
| 551 |
return idx; |
| 552 |
} |
| 553 |
|
| 554 |
/* Splices node out of the list of zeros. */ |
| 555 |
static void fgk_eliminate_zero (fgk_stream* h, fgk_node *node) |
| 556 |
{ |
| 557 |
if (h->zero_freq_count == 1) |
| 558 |
{ |
| 559 |
return; |
| 560 |
} |
| 561 |
|
| 562 |
fgk_factor_remaining(h); |
| 563 |
|
| 564 |
if (node->left_child == NULL) |
| 565 |
{ |
| 566 |
h->remaining_zeros = h->remaining_zeros->right_child; |
| 567 |
h->remaining_zeros->left_child = NULL; |
| 568 |
} |
| 569 |
else if (node->right_child == NULL) |
| 570 |
{ |
| 571 |
node->left_child->right_child = NULL; |
| 572 |
} |
| 573 |
else |
| 574 |
{ |
| 575 |
node->right_child->left_child = node->left_child; |
| 576 |
node->left_child->right_child = node->right_child; |
| 577 |
} |
| 578 |
} |
| 579 |
|
| 580 |
static void fgk_init_node (fgk_node *node, int i, int size) |
| 581 |
{ |
| 582 |
if (i < size - 1) |
| 583 |
{ |
| 584 |
node->right_child = node + 1; |
| 585 |
} |
| 586 |
else |
| 587 |
{ |
| 588 |
node->right_child = NULL; |
| 589 |
} |
| 590 |
|
| 591 |
if (i >= 1) |
| 592 |
{ |
| 593 |
node->left_child = node - 1; |
| 594 |
} |
| 595 |
else |
| 596 |
{ |
| 597 |
node->left_child = NULL; |
| 598 |
} |
| 599 |
|
| 600 |
node->weight = 0; |
| 601 |
node->parent = NULL; |
| 602 |
node->right = NULL; |
| 603 |
node->left = NULL; |
| 604 |
node->my_block = NULL; |
| 605 |
} |
| 606 |
|
| 607 |
/* The data structure used is an array of blocks, which are unions of free pointers and |
| 608 |
* huffnode pointers. free blocks are a linked list of free blocks, the front of which is |
| 609 |
* h->free_block. The used blocks are pointers to the head of each block. */ |
| 610 |
static fgk_block* fgk_make_block (fgk_stream *h, fgk_node* lead) |
| 611 |
{ |
| 612 |
fgk_block *ret = h->free_block; |
| 613 |
|
| 614 |
XD3_ASSERT (h->free_block != NULL); |
| 615 |
|
| 616 |
h->free_block = h->free_block->block_freeptr; |
| 617 |
|
| 618 |
ret->block_leader = lead; |
| 619 |
|
| 620 |
return ret; |
| 621 |
} |
| 622 |
|
| 623 |
/* Restores the block to the front of the free list. */ |
| 624 |
static void fgk_free_block (fgk_stream *h, fgk_block *b) |
| 625 |
{ |
| 626 |
b->block_freeptr = h->free_block; |
| 627 |
h->free_block = b; |
| 628 |
} |
| 629 |
|
| 630 |
/* sets zero_freq_count, zero_freq_rem, and zero_freq_exp to satsity the equation given |
| 631 |
* above. */ |
| 632 |
static void fgk_factor_remaining (fgk_stream *h) |
| 633 |
{ |
| 634 |
unsigned int i; |
| 635 |
|
| 636 |
i = (--h->zero_freq_count); |
| 637 |
h->zero_freq_exp = 0; |
| 638 |
|
| 639 |
while (i > 1) |
| 640 |
{ |
| 641 |
h->zero_freq_exp += 1; |
| 642 |
i >>= 1; |
| 643 |
} |
| 644 |
|
| 645 |
i = 1 << h->zero_freq_exp; |
| 646 |
|
| 647 |
h->zero_freq_rem = h->zero_freq_count - i; |
| 648 |
} |
| 649 |
|
| 650 |
/* receives a bit at a time and returns true when a complete code has |
| 651 |
* been received. |
| 652 |
*/ |
| 653 |
static int INLINE fgk_decode_bit (fgk_stream* h, fgk_bit b) |
| 654 |
{ |
| 655 |
XD3_ASSERT (b == 1 || b == 0); |
| 656 |
|
| 657 |
if (IS_ADAPTIVE && h->decode_ptr->weight == 0) |
| 658 |
{ |
| 659 |
int bitsreq; |
| 660 |
|
| 661 |
if (h->zero_freq_rem == 0) |
| 662 |
{ |
| 663 |
bitsreq = h->zero_freq_exp; |
| 664 |
} |
| 665 |
else |
| 666 |
{ |
| 667 |
bitsreq = h->zero_freq_exp + 1; |
| 668 |
} |
| 669 |
|
| 670 |
h->coded_bits[h->coded_depth] = b; |
| 671 |
h->coded_depth += 1; |
| 672 |
|
| 673 |
return h->coded_depth >= bitsreq; |
| 674 |
} |
| 675 |
else |
| 676 |
{ |
| 677 |
if (b) |
| 678 |
{ |
| 679 |
h->decode_ptr = h->decode_ptr->right_child; |
| 680 |
} |
| 681 |
else |
| 682 |
{ |
| 683 |
h->decode_ptr = h->decode_ptr->left_child; |
| 684 |
} |
| 685 |
|
| 686 |
if (h->decode_ptr->left_child == NULL) |
| 687 |
{ |
| 688 |
/* If the weight is non-zero, finished. */ |
| 689 |
if (h->decode_ptr->weight != 0) |
| 690 |
{ |
| 691 |
return 1; |
| 692 |
} |
| 693 |
|
| 694 |
/* zero_freq_count is dropping to 0, finished. */ |
| 695 |
return h->zero_freq_count == 1; |
| 696 |
} |
| 697 |
else |
| 698 |
{ |
| 699 |
return 0; |
| 700 |
} |
| 701 |
} |
| 702 |
} |
| 703 |
|
| 704 |
static int fgk_nth_zero (fgk_stream* h, int n) |
| 705 |
{ |
| 706 |
fgk_node *ret = h->remaining_zeros; |
| 707 |
|
| 708 |
/* ERROR: if during this loop (ret->right_child == NULL) then the encoder's zero count |
| 709 |
* is too high. Could return an error code now, but is probably unnecessary overhead, |
| 710 |
* since the caller should check integrity anyway. */ |
| 711 |
for (; n != 0 && ret->right_child != NULL; n -= 1) |
| 712 |
{ |
| 713 |
ret = ret->right_child; |
| 714 |
} |
| 715 |
|
| 716 |
return ret - h->alphabet; |
| 717 |
} |
| 718 |
|
| 719 |
/* once fgk_decode_bit returns 1, this retrieves an index into the |
| 720 |
* alphabet otherwise this returns 0, indicating more bits are |
| 721 |
* required. |
| 722 |
*/ |
| 723 |
static int fgk_decode_data (fgk_stream* h) |
| 724 |
{ |
| 725 |
unsigned int elt = h->decode_ptr - h->alphabet; |
| 726 |
|
| 727 |
if (IS_ADAPTIVE && h->decode_ptr->weight == 0) { |
| 728 |
int i; |
| 729 |
unsigned int n = 0; |
| 730 |
|
| 731 |
for (i = 0; i < h->coded_depth - 1; i += 1) |
| 732 |
{ |
| 733 |
n |= h->coded_bits[i]; |
| 734 |
n <<= 1; |
| 735 |
} |
| 736 |
|
| 737 |
n |= h->coded_bits[i]; |
| 738 |
elt = fgk_nth_zero(h, n); |
| 739 |
} |
| 740 |
|
| 741 |
h->coded_depth = 0; |
| 742 |
|
| 743 |
if (IS_ADAPTIVE) |
| 744 |
{ |
| 745 |
fgk_update_tree(h, elt); |
| 746 |
} |
| 747 |
|
| 748 |
h->decode_ptr = h->root_node; |
| 749 |
|
| 750 |
return elt; |
| 751 |
} |
| 752 |
|
| 753 |
static void fgk_destroy (xd3_stream *stream, |
| 754 |
fgk_stream *h) |
| 755 |
{ |
| 756 |
if (h != NULL) |
| 757 |
{ |
| 758 |
xd3_free (stream, h->alphabet); |
| 759 |
xd3_free (stream, h->coded_bits); |
| 760 |
xd3_free (stream, h->block_array); |
| 761 |
xd3_free (stream, h); |
| 762 |
} |
| 763 |
} |
| 764 |
|
| 765 |
/*********************************************************************/ |
| 766 |
/* Xdelta */ |
| 767 |
/*********************************************************************/ |
| 768 |
|
| 769 |
static int |
| 770 |
xd3_encode_fgk (xd3_stream *stream, fgk_stream *sec_stream, xd3_output *input, xd3_output *output, xd3_sec_cfg *cfg) |
| 771 |
{ |
| 772 |
bit_state bstate = BIT_STATE_ENCODE_INIT; |
| 773 |
xd3_output *cur_page; |
| 774 |
int ret; |
| 775 |
|
| 776 |
/* OPT: quit compression early if it looks bad */ |
| 777 |
for (cur_page = input; cur_page; cur_page = cur_page->next_page) |
| 778 |
{ |
| 779 |
const uint8_t *inp = cur_page->base; |
| 780 |
const uint8_t *inp_max = inp + cur_page->next; |
| 781 |
|
| 782 |
while (inp < inp_max) |
| 783 |
{ |
| 784 |
usize_t bits = fgk_encode_data (sec_stream, *inp++); |
| 785 |
|
| 786 |
while (bits--) |
| 787 |
{ |
| 788 |
if ((ret = xd3_encode_bit (stream, & output, & bstate, fgk_get_encoded_bit (sec_stream)))) { return ret; } |
| 789 |
} |
| 790 |
} |
| 791 |
} |
| 792 |
|
| 793 |
return xd3_flush_bits (stream, & output, & bstate); |
| 794 |
} |
| 795 |
|
| 796 |
static int |
| 797 |
xd3_decode_fgk (xd3_stream *stream, |
| 798 |
fgk_stream *sec_stream, |
| 799 |
const uint8_t **input_pos, |
| 800 |
const uint8_t *const input_max, |
| 801 |
uint8_t **output_pos, |
| 802 |
const uint8_t *const output_max) |
| 803 |
{ |
| 804 |
bit_state bstate; |
| 805 |
uint8_t *output = *output_pos; |
| 806 |
const uint8_t *input = *input_pos; |
| 807 |
|
| 808 |
for (;;) |
| 809 |
{ |
| 810 |
if (input == input_max) |
| 811 |
{ |
| 812 |
stream->msg = "secondary decoder end of input"; |
| 813 |
return XD3_INTERNAL; |
| 814 |
} |
| 815 |
|
| 816 |
bstate.cur_byte = *input++; |
| 817 |
|
| 818 |
for (bstate.cur_mask = 1; bstate.cur_mask != 0x100; bstate.cur_mask <<= 1) |
| 819 |
{ |
| 820 |
int done = fgk_decode_bit (sec_stream, (bstate.cur_byte & bstate.cur_mask) && 1); |
| 821 |
|
| 822 |
if (! done) { continue; } |
| 823 |
|
| 824 |
*output++ = fgk_decode_data (sec_stream); |
| 825 |
|
| 826 |
if (unlikely (output == output_max)) |
| 827 |
{ |
| 828 |
/* During regression testing: */ |
| 829 |
IF_REGRESSION ({ |
| 830 |
int ret; |
| 831 |
bstate.cur_mask <<= 1; |
| 832 |
if ((ret = xd3_test_clean_bits (stream, & bstate))) { return ret; } |
| 833 |
}); |
| 834 |
|
| 835 |
(*output_pos) = output; |
| 836 |
(*input_pos) = input; |
| 837 |
return 0; |
| 838 |
} |
| 839 |
} |
| 840 |
} |
| 841 |
} |
| 842 |
|
| 843 |
#endif /* _XDELTA3_FGK_ */ |