| 1 | /* xdelta 3 - delta compression tools and library | 
 
 
 
 
 | 2 | * Copyright (C) 2002, 2006, 2007.  Joshua P. MacDonald | 
 
 
 
 
 | 3 | * | 
 
 
 
 
 | 4 | *  This program is free software; you can redistribute it and/or modify | 
 
 
 
 
 | 5 | *  it under the terms of the GNU General Public License as published by | 
 
 
 
 
 | 6 | *  the Free Software Foundation; either version 2 of the License, or | 
 
 
 
 
 | 7 | *  (at your option) any later version. | 
 
 
 
 
 | 8 | * | 
 
 
 
 
 | 9 | *  This program is distributed in the hope that it will be useful, | 
 
 
 
 
 | 10 | *  but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 
 
 
 
 | 11 | *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
 
 
 
 
 | 12 | *  GNU General Public License for more details. | 
 
 
 
 
 | 13 | * | 
 
 
 
 
 | 14 | *  You should have received a copy of the GNU General Public License | 
 
 
 
 
 | 15 | *  along with this program; if not, write to the Free Software | 
 
 
 
 
 | 16 | *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA | 
 
 
 
 
 | 17 | */ | 
 
 
 
 
 | 18 |  | 
 
 
 
 
 | 19 | /* For demonstration purposes only. | 
 
 
 
 
 | 20 | */ | 
 
 
 
 
 | 21 |  | 
 
 
 
 
 | 22 | #ifndef _XDELTA3_FGK_h_ | 
 
 
 
 
 | 23 | #define _XDELTA3_FGK_h_ | 
 
 
 
 
 | 24 |  | 
 
 
 
 
 | 25 | /* An implementation of the FGK algorithm described by D.E. Knuth in "Dynamic Huffman | 
 
 
 
 
 | 26 | * Coding" in Journal of Algorithms 6. */ | 
 
 
 
 
 | 27 |  | 
 
 
 
 
 | 28 | /* A 32bit counter (fgk_weight) is used as the frequency counter for nodes in the huffman | 
 
 
 
 
 | 29 | * tree.  @!@ Need to test for overflow and/or reset stats. */ | 
 
 
 
 
 | 30 |  | 
 
 
 
 
 | 31 | typedef struct _fgk_stream fgk_stream; | 
 
 
 
 
 | 32 | typedef struct _fgk_node   fgk_node; | 
 
 
 
 
 | 33 | typedef struct _fgk_block  fgk_block; | 
 
 
 
 
 | 34 | typedef unsigned int       fgk_bit; | 
 
 
 
 
 | 35 | typedef uint32_t           fgk_weight; | 
 
 
 
 
 | 36 |  | 
 
 
 
 
 | 37 | struct _fgk_block { | 
 
 
 
 
 | 38 | union { | 
 
 
 
 
 | 39 | fgk_node  *un_leader; | 
 
 
 
 
 | 40 | fgk_block *un_freeptr; | 
 
 
 
 
 | 41 | } un; | 
 
 
 
 
 | 42 | }; | 
 
 
 
 
 | 43 |  | 
 
 
 
 
 | 44 | #define block_leader  un.un_leader | 
 
 
 
 
 | 45 | #define block_freeptr un.un_freeptr | 
 
 
 
 
 | 46 |  | 
 
 
 
 
 | 47 | /* The code can also support fixed huffman encoding/decoding. */ | 
 
 
 
 
 | 48 | #define IS_ADAPTIVE 1 | 
 
 
 
 
 | 49 |  | 
 
 
 
 
 | 50 | /* weight is a count of the number of times this element has been seen in the current | 
 
 
 
 
 | 51 | * encoding/decoding.  parent, right_child, and left_child are pointers defining the tree | 
 
 
 
 
 | 52 | * structure.  right and left point to neighbors in an ordered sequence of | 
 
 
 
 
 | 53 | * weights.  The left child of a node is always guaranteed to have weight not greater than | 
 
 
 
 
 | 54 | * its sibling.  fgk_blockLeader points to the element with the same weight as itself which is | 
 
 
 
 
 | 55 | * closest to the next increasing weight block.  */ | 
 
 
 
 
 | 56 | struct _fgk_node | 
 
 
 
 
 | 57 | { | 
 
 
 
 
 | 58 | fgk_weight  weight; | 
 
 
 
 
 | 59 | fgk_node   *parent; | 
 
 
 
 
 | 60 | fgk_node   *left_child; | 
 
 
 
 
 | 61 | fgk_node   *right_child; | 
 
 
 
 
 | 62 | fgk_node   *left; | 
 
 
 
 
 | 63 | fgk_node   *right; | 
 
 
 
 
 | 64 | fgk_block  *my_block; | 
 
 
 
 
 | 65 | }; | 
 
 
 
 
 | 66 |  | 
 
 
 
 
 | 67 | /* alphabet_size is the a count of the number of possible leaves in the huffman tree.  The | 
 
 
 
 
 | 68 | * number of total nodes counting internal nodes is ((2 * alphabet_size) - 1). | 
 
 
 
 
 | 69 | * zero_freq_count is the number of elements remaining which have zero frequency. | 
 
 
 
 
 | 70 | * zero_freq_exp and zero_freq_rem satisfy the equation zero_freq_count = 2^zero_freq_exp + | 
 
 
 
 
 | 71 | * zero_freq_rem.  root_node is the root of the tree, which is initialized to a node with | 
 
 
 
 
 | 72 | * zero frequency and contains the 0th such element.  free_node contains a pointer to the | 
 
 
 
 
 | 73 | * next available fgk_node space.  alphabet contains all the elements and is indexed by N. | 
 
 
 
 
 | 74 | * remaining_zeros points to the head of the list of zeros.  */ | 
 
 
 
 
 | 75 | struct _fgk_stream | 
 
 
 
 
 | 76 | { | 
 
 
 
 
 | 77 | int alphabet_size; | 
 
 
 
 
 | 78 | int zero_freq_count; | 
 
 
 
 
 | 79 | int zero_freq_exp; | 
 
 
 
 
 | 80 | int zero_freq_rem; | 
 
 
 
 
 | 81 | int coded_depth; | 
 
 
 
 
 | 82 |  | 
 
 
 
 
 | 83 | int total_nodes; | 
 
 
 
 
 | 84 | int total_blocks; | 
 
 
 
 
 | 85 |  | 
 
 
 
 
 | 86 | fgk_bit *coded_bits; | 
 
 
 
 
 | 87 |  | 
 
 
 
 
 | 88 | fgk_block *block_array; | 
 
 
 
 
 | 89 | fgk_block *free_block; | 
 
 
 
 
 | 90 |  | 
 
 
 
 
 | 91 | fgk_node *decode_ptr; | 
 
 
 
 
 | 92 | fgk_node *remaining_zeros; | 
 
 
 
 
 | 93 | fgk_node *alphabet; | 
 
 
 
 
 | 94 | fgk_node *root_node; | 
 
 
 
 
 | 95 | fgk_node *free_node; | 
 
 
 
 
 | 96 | }; | 
 
 
 
 
 | 97 |  | 
 
 
 
 
 | 98 | /*********************************************************************/ | 
 
 
 
 
 | 99 | /*                             Encoder                               */ | 
 
 
 
 
 | 100 | /*********************************************************************/ | 
 
 
 
 
 | 101 |  | 
 
 
 
 
 | 102 | static fgk_stream*     fgk_alloc           (xd3_stream *stream /*, int alphabet_size */); | 
 
 
 
 
 | 103 | static void            fgk_init            (fgk_stream *h); | 
 
 
 
 
 | 104 | static int             fgk_encode_data     (fgk_stream *h, | 
 
 
 
 
 | 105 | int         n); | 
 
 
 
 
 | 106 | static INLINE fgk_bit  fgk_get_encoded_bit (fgk_stream *h); | 
 
 
 
 
 | 107 |  | 
 
 
 
 
 | 108 | static int             xd3_encode_fgk      (xd3_stream  *stream, | 
 
 
 
 
 | 109 | fgk_stream  *sec_stream, | 
 
 
 
 
 | 110 | xd3_output  *input, | 
 
 
 
 
 | 111 | xd3_output  *output, | 
 
 
 
 
 | 112 | xd3_sec_cfg *cfg); | 
 
 
 
 
 | 113 |  | 
 
 
 
 
 | 114 | /*********************************************************************/ | 
 
 
 
 
 | 115 | /*                             Decoder                               */ | 
 
 
 
 
 | 116 | /*********************************************************************/ | 
 
 
 
 
 | 117 |  | 
 
 
 
 
 | 118 | static INLINE int      fgk_decode_bit      (fgk_stream *h, | 
 
 
 
 
 | 119 | fgk_bit     b); | 
 
 
 
 
 | 120 | static int             fgk_decode_data     (fgk_stream *h); | 
 
 
 
 
 | 121 | static void            fgk_destroy         (xd3_stream *stream, | 
 
 
 
 
 | 122 | fgk_stream *h); | 
 
 
 
 
 | 123 |  | 
 
 
 
 
 | 124 | static int             xd3_decode_fgk      (xd3_stream     *stream, | 
 
 
 
 
 | 125 | fgk_stream     *sec_stream, | 
 
 
 
 
 | 126 | const uint8_t **input, | 
 
 
 
 
 | 127 | const uint8_t  *const input_end, | 
 
 
 
 
 | 128 | uint8_t       **output, | 
 
 
 
 
 | 129 | const uint8_t  *const output_end); | 
 
 
 
 
 | 130 |  | 
 
 
 
 
 | 131 | /*********************************************************************/ | 
 
 
 
 
 | 132 | /*                             Private                               */ | 
 
 
 
 
 | 133 | /*********************************************************************/ | 
 
 
 
 
 | 134 |  | 
 
 
 
 
 | 135 | static unsigned int fgk_find_nth_zero        (fgk_stream *h, int n); | 
 
 
 
 
 | 136 | static int          fgk_nth_zero             (fgk_stream *h, int n); | 
 
 
 
 
 | 137 | static void         fgk_update_tree          (fgk_stream *h, int n); | 
 
 
 
 
 | 138 | static fgk_node*    fgk_increase_zero_weight (fgk_stream *h, int n); | 
 
 
 
 
 | 139 | static void         fgk_eliminate_zero       (fgk_stream* h, fgk_node *node); | 
 
 
 
 
 | 140 | static void         fgk_move_right           (fgk_stream *h, fgk_node *node); | 
 
 
 
 
 | 141 | static void         fgk_promote              (fgk_stream *h, fgk_node *node); | 
 
 
 
 
 | 142 | static void         fgk_init_node            (fgk_node *node, int i, int size); | 
 
 
 
 
 | 143 | static fgk_block*   fgk_make_block           (fgk_stream *h, fgk_node *l); | 
 
 
 
 
 | 144 | static void         fgk_free_block           (fgk_stream *h, fgk_block *b); | 
 
 
 
 
 | 145 | static void         fgk_factor_remaining     (fgk_stream *h); | 
 
 
 
 
 | 146 | static INLINE void  fgk_swap_ptrs            (fgk_node **one, fgk_node **two); | 
 
 
 
 
 | 147 |  | 
 
 
 
 
 | 148 | /*********************************************************************/ | 
 
 
 
 
 | 149 | /*                          Basic Routines                           */ | 
 
 
 
 
 | 150 | /*********************************************************************/ | 
 
 
 
 
 | 151 |  | 
 
 
 
 
 | 152 | /* returns an initialized huffman encoder for an alphabet with the | 
 
 
 
 
 | 153 | * given size.  returns NULL if enough memory cannot be allocated */ | 
 
 
 
 
 | 154 | static fgk_stream* fgk_alloc (xd3_stream *stream /*, int alphabet_size0 */) | 
 
 
 
 
 | 155 | { | 
 
 
 
 
 | 156 | int alphabet_size0 = ALPHABET_SIZE; | 
 
 
 
 
 | 157 | fgk_stream *h; | 
 
 
 
 
 | 158 |  | 
 
 
 
 
 | 159 | if ((h = (fgk_stream*) xd3_alloc (stream, 1, sizeof (fgk_stream))) == NULL) | 
 
 
 
 
 | 160 | { | 
 
 
 
 
 | 161 | return NULL; | 
 
 
 
 
 | 162 | } | 
 
 
 
 
 | 163 |  | 
 
 
 
 
 | 164 | h->total_nodes  = (2 * alphabet_size0) - 1; | 
 
 
 
 
 | 165 | h->total_blocks = (2 * h->total_nodes); | 
 
 
 
 
 | 166 | h->alphabet     = (fgk_node*)  xd3_alloc (stream, h->total_nodes,    sizeof (fgk_node)); | 
 
 
 
 
 | 167 | h->block_array  = (fgk_block*) xd3_alloc (stream, h->total_blocks,   sizeof (fgk_block)); | 
 
 
 
 
 | 168 | h->coded_bits   = (fgk_bit*)   xd3_alloc (stream, alphabet_size0, sizeof (fgk_bit)); | 
 
 
 
 
 | 169 |  | 
 
 
 
 
 | 170 | if (h->coded_bits  == NULL || | 
 
 
 
 
 | 171 | h->alphabet    == NULL || | 
 
 
 
 
 | 172 | h->block_array == NULL) | 
 
 
 
 
 | 173 | { | 
 
 
 
 
 | 174 | fgk_destroy (stream, h); | 
 
 
 
 
 | 175 | return NULL; | 
 
 
 
 
 | 176 | } | 
 
 
 
 
 | 177 |  | 
 
 
 
 
 | 178 | h->alphabet_size   = alphabet_size0; | 
 
 
 
 
 | 179 |  | 
 
 
 
 
 | 180 | return h; | 
 
 
 
 
 | 181 | } | 
 
 
 
 
 | 182 |  | 
 
 
 
 
 | 183 | static void fgk_init (fgk_stream *h) | 
 
 
 
 
 | 184 | { | 
 
 
 
 
 | 185 | int i; | 
 
 
 
 
 | 186 |  | 
 
 
 
 
 | 187 | h->root_node       = h->alphabet; | 
 
 
 
 
 | 188 | h->decode_ptr      = h->root_node; | 
 
 
 
 
 | 189 | h->free_node       = h->alphabet + h->alphabet_size; | 
 
 
 
 
 | 190 | h->remaining_zeros = h->alphabet; | 
 
 
 
 
 | 191 | h->coded_depth     = 0; | 
 
 
 
 
 | 192 | h->zero_freq_count = h->alphabet_size + 2; | 
 
 
 
 
 | 193 |  | 
 
 
 
 
 | 194 | /* after two calls to factor_remaining, zero_freq_count == alphabet_size */ | 
 
 
 
 
 | 195 | fgk_factor_remaining(h); /* set ZFE and ZFR */ | 
 
 
 
 
 | 196 | fgk_factor_remaining(h); /* set ZFDB according to prev state */ | 
 
 
 
 
 | 197 |  | 
 
 
 
 
 | 198 | IF_DEBUG (memset (h->alphabet, 0, sizeof (h->alphabet[0]) * h->total_nodes)); | 
 
 
 
 
 | 199 |  | 
 
 
 
 
 | 200 | for (i = 0; i < h->total_blocks-1; i += 1) | 
 
 
 
 
 | 201 | { | 
 
 
 
 
 | 202 | h->block_array[i].block_freeptr = &h->block_array[i + 1]; | 
 
 
 
 
 | 203 | } | 
 
 
 
 
 | 204 |  | 
 
 
 
 
 | 205 | h->block_array[h->total_blocks - 1].block_freeptr = NULL; | 
 
 
 
 
 | 206 | h->free_block = h->block_array; | 
 
 
 
 
 | 207 |  | 
 
 
 
 
 | 208 | /* Zero frequency nodes are inserted in the first alphabet_size | 
 
 
 
 
 | 209 | * positions, with Value, weight, and a pointer to the next zero | 
 
 
 
 
 | 210 | * frequency node.  */ | 
 
 
 
 
 | 211 | for (i = h->alphabet_size - 1; i >= 0; i -= 1) | 
 
 
 
 
 | 212 | { | 
 
 
 
 
 | 213 | fgk_init_node (h->alphabet + i, i, h->alphabet_size); | 
 
 
 
 
 | 214 | } | 
 
 
 
 
 | 215 | } | 
 
 
 
 
 | 216 |  | 
 
 
 
 
 | 217 | static void fgk_swap_ptrs(fgk_node **one, fgk_node **two) | 
 
 
 
 
 | 218 | { | 
 
 
 
 
 | 219 | fgk_node *tmp = *one; | 
 
 
 
 
 | 220 | *one = *two; | 
 
 
 
 
 | 221 | *two = tmp; | 
 
 
 
 
 | 222 | } | 
 
 
 
 
 | 223 |  | 
 
 
 
 
 | 224 | /* Takes huffman transmitter h and n, the nth elt in the alphabet, and | 
 
 
 
 
 | 225 | * returns the number of required to encode n. */ | 
 
 
 
 
 | 226 | static int fgk_encode_data (fgk_stream* h, int n) | 
 
 
 
 
 | 227 | { | 
 
 
 
 
 | 228 | fgk_node *target_ptr = h->alphabet + n; | 
 
 
 
 
 | 229 |  | 
 
 
 
 
 | 230 | XD3_ASSERT (n < h->alphabet_size); | 
 
 
 
 
 | 231 |  | 
 
 
 
 
 | 232 | h->coded_depth = 0; | 
 
 
 
 
 | 233 |  | 
 
 
 
 
 | 234 | /* First encode the binary representation of the nth remaining | 
 
 
 
 
 | 235 | * zero frequency element in reverse such that bit, which will be | 
 
 
 
 
 | 236 | * encoded from h->coded_depth down to 0 will arrive in increasing | 
 
 
 
 
 | 237 | * order following the tree path.  If there is only one left, it | 
 
 
 
 
 | 238 | * is not neccesary to encode these bits. */ | 
 
 
 
 
 | 239 | if (IS_ADAPTIVE && target_ptr->weight == 0) | 
 
 
 
 
 | 240 | { | 
 
 
 
 
 | 241 | unsigned int where, shift; | 
 
 
 
 
 | 242 | int bits; | 
 
 
 
 
 | 243 |  | 
 
 
 
 
 | 244 | where = fgk_find_nth_zero(h, n); | 
 
 
 
 
 | 245 | shift = 1; | 
 
 
 
 
 | 246 |  | 
 
 
 
 
 | 247 | if (h->zero_freq_rem == 0) | 
 
 
 
 
 | 248 | { | 
 
 
 
 
 | 249 | bits = h->zero_freq_exp; | 
 
 
 
 
 | 250 | } | 
 
 
 
 
 | 251 | else | 
 
 
 
 
 | 252 | { | 
 
 
 
 
 | 253 | bits = h->zero_freq_exp + 1; | 
 
 
 
 
 | 254 | } | 
 
 
 
 
 | 255 |  | 
 
 
 
 
 | 256 | while (bits > 0) | 
 
 
 
 
 | 257 | { | 
 
 
 
 
 | 258 | h->coded_bits[h->coded_depth++] = (shift & where) && 1; | 
 
 
 
 
 | 259 |  | 
 
 
 
 
 | 260 | bits   -= 1; | 
 
 
 
 
 | 261 | shift <<= 1; | 
 
 
 
 
 | 262 | }; | 
 
 
 
 
 | 263 |  | 
 
 
 
 
 | 264 | target_ptr = h->remaining_zeros; | 
 
 
 
 
 | 265 | } | 
 
 
 
 
 | 266 |  | 
 
 
 
 
 | 267 | /* The path from root to node is filled into coded_bits in reverse so | 
 
 
 
 
 | 268 | * that it is encoded in the right order */ | 
 
 
 
 
 | 269 | while (target_ptr != h->root_node) | 
 
 
 
 
 | 270 | { | 
 
 
 
 
 | 271 | h->coded_bits[h->coded_depth++] = (target_ptr->parent->right_child == target_ptr); | 
 
 
 
 
 | 272 |  | 
 
 
 
 
 | 273 | target_ptr = target_ptr->parent; | 
 
 
 
 
 | 274 | } | 
 
 
 
 
 | 275 |  | 
 
 
 
 
 | 276 | if (IS_ADAPTIVE) | 
 
 
 
 
 | 277 | { | 
 
 
 
 
 | 278 | fgk_update_tree(h, n); | 
 
 
 
 
 | 279 | } | 
 
 
 
 
 | 280 |  | 
 
 
 
 
 | 281 | return h->coded_depth; | 
 
 
 
 
 | 282 | } | 
 
 
 
 
 | 283 |  | 
 
 
 
 
 | 284 | /* Should be called as many times as fgk_encode_data returns. | 
 
 
 
 
 | 285 | */ | 
 
 
 
 
 | 286 | static INLINE fgk_bit fgk_get_encoded_bit (fgk_stream *h) | 
 
 
 
 
 | 287 | { | 
 
 
 
 
 | 288 | XD3_ASSERT (h->coded_depth > 0); | 
 
 
 
 
 | 289 |  | 
 
 
 
 
 | 290 | return h->coded_bits[--h->coded_depth]; | 
 
 
 
 
 | 291 | } | 
 
 
 
 
 | 292 |  | 
 
 
 
 
 | 293 | /* This procedure updates the tree after alphabet[n] has been encoded | 
 
 
 
 
 | 294 | * or decoded. | 
 
 
 
 
 | 295 | */ | 
 
 
 
 
 | 296 | static void fgk_update_tree (fgk_stream *h, int n) | 
 
 
 
 
 | 297 | { | 
 
 
 
 
 | 298 | fgk_node *incr_node; | 
 
 
 
 
 | 299 |  | 
 
 
 
 
 | 300 | if (h->alphabet[n].weight == 0) | 
 
 
 
 
 | 301 | { | 
 
 
 
 
 | 302 | incr_node = fgk_increase_zero_weight (h, n); | 
 
 
 
 
 | 303 | } | 
 
 
 
 
 | 304 | else | 
 
 
 
 
 | 305 | { | 
 
 
 
 
 | 306 | incr_node = h->alphabet + n; | 
 
 
 
 
 | 307 | } | 
 
 
 
 
 | 308 |  | 
 
 
 
 
 | 309 | while (incr_node != h->root_node) | 
 
 
 
 
 | 310 | { | 
 
 
 
 
 | 311 | fgk_move_right (h, incr_node); | 
 
 
 
 
 | 312 | fgk_promote    (h, incr_node); | 
 
 
 
 
 | 313 | incr_node->weight += 1;   /* incr the parent */ | 
 
 
 
 
 | 314 | incr_node = incr_node->parent; /* repeat */ | 
 
 
 
 
 | 315 | } | 
 
 
 
 
 | 316 |  | 
 
 
 
 
 | 317 | h->root_node->weight += 1; | 
 
 
 
 
 | 318 | } | 
 
 
 
 
 | 319 |  | 
 
 
 
 
 | 320 | static void fgk_move_right (fgk_stream *h, fgk_node *move_fwd) | 
 
 
 
 
 | 321 | { | 
 
 
 
 
 | 322 | fgk_node **fwd_par_ptr, **back_par_ptr; | 
 
 
 
 
 | 323 | fgk_node *move_back, *tmp; | 
 
 
 
 
 | 324 |  | 
 
 
 
 
 | 325 | move_back = move_fwd->my_block->block_leader; | 
 
 
 
 
 | 326 |  | 
 
 
 
 
 | 327 | if (move_fwd         == move_back || | 
 
 
 
 
 | 328 | move_fwd->parent == move_back || | 
 
 
 
 
 | 329 | move_fwd->weight == 0) | 
 
 
 
 
 | 330 | { | 
 
 
 
 
 | 331 | return; | 
 
 
 
 
 | 332 | } | 
 
 
 
 
 | 333 |  | 
 
 
 
 
 | 334 | move_back->right->left = move_fwd; | 
 
 
 
 
 | 335 |  | 
 
 
 
 
 | 336 | if (move_fwd->left) | 
 
 
 
 
 | 337 | { | 
 
 
 
 
 | 338 | move_fwd->left->right = move_back; | 
 
 
 
 
 | 339 | } | 
 
 
 
 
 | 340 |  | 
 
 
 
 
 | 341 | tmp = move_fwd->right; | 
 
 
 
 
 | 342 | move_fwd->right = move_back->right; | 
 
 
 
 
 | 343 |  | 
 
 
 
 
 | 344 | if (tmp == move_back) | 
 
 
 
 
 | 345 | { | 
 
 
 
 
 | 346 | move_back->right = move_fwd; | 
 
 
 
 
 | 347 | } | 
 
 
 
 
 | 348 | else | 
 
 
 
 
 | 349 | { | 
 
 
 
 
 | 350 | tmp->left = move_back; | 
 
 
 
 
 | 351 | move_back->right = tmp; | 
 
 
 
 
 | 352 | } | 
 
 
 
 
 | 353 |  | 
 
 
 
 
 | 354 | tmp = move_back->left; | 
 
 
 
 
 | 355 | move_back->left = move_fwd->left; | 
 
 
 
 
 | 356 |  | 
 
 
 
 
 | 357 | if (tmp == move_fwd) | 
 
 
 
 
 | 358 | { | 
 
 
 
 
 | 359 | move_fwd->left = move_back; | 
 
 
 
 
 | 360 | } | 
 
 
 
 
 | 361 | else | 
 
 
 
 
 | 362 | { | 
 
 
 
 
 | 363 | tmp->right = move_fwd; | 
 
 
 
 
 | 364 | move_fwd->left = tmp; | 
 
 
 
 
 | 365 | } | 
 
 
 
 
 | 366 |  | 
 
 
 
 
 | 367 | if (move_fwd->parent->right_child == move_fwd) | 
 
 
 
 
 | 368 | { | 
 
 
 
 
 | 369 | fwd_par_ptr = &move_fwd->parent->right_child; | 
 
 
 
 
 | 370 | } | 
 
 
 
 
 | 371 | else | 
 
 
 
 
 | 372 | { | 
 
 
 
 
 | 373 | fwd_par_ptr = &move_fwd->parent->left_child; | 
 
 
 
 
 | 374 | } | 
 
 
 
 
 | 375 |  | 
 
 
 
 
 | 376 | if (move_back->parent->right_child == move_back) | 
 
 
 
 
 | 377 | { | 
 
 
 
 
 | 378 | back_par_ptr = &move_back->parent->right_child; | 
 
 
 
 
 | 379 | } | 
 
 
 
 
 | 380 | else | 
 
 
 
 
 | 381 | { | 
 
 
 
 
 | 382 | back_par_ptr = &move_back->parent->left_child; | 
 
 
 
 
 | 383 | } | 
 
 
 
 
 | 384 |  | 
 
 
 
 
 | 385 | fgk_swap_ptrs (&move_fwd->parent, &move_back->parent); | 
 
 
 
 
 | 386 | fgk_swap_ptrs (fwd_par_ptr, back_par_ptr); | 
 
 
 
 
 | 387 |  | 
 
 
 
 
 | 388 | move_fwd->my_block->block_leader = move_fwd; | 
 
 
 
 
 | 389 | } | 
 
 
 
 
 | 390 |  | 
 
 
 
 
 | 391 | /* Shifts node, the leader of its block, into the next block. */ | 
 
 
 
 
 | 392 | static void fgk_promote (fgk_stream *h, fgk_node *node) | 
 
 
 
 
 | 393 | { | 
 
 
 
 
 | 394 | fgk_node *my_left, *my_right; | 
 
 
 
 
 | 395 | fgk_block *cur_block; | 
 
 
 
 
 | 396 |  | 
 
 
 
 
 | 397 | my_right  = node->right; | 
 
 
 
 
 | 398 | my_left   = node->left; | 
 
 
 
 
 | 399 | cur_block = node->my_block; | 
 
 
 
 
 | 400 |  | 
 
 
 
 
 | 401 | if (node->weight == 0) | 
 
 
 
 
 | 402 | { | 
 
 
 
 
 | 403 | return; | 
 
 
 
 
 | 404 | } | 
 
 
 
 
 | 405 |  | 
 
 
 
 
 | 406 | /* if left is right child, parent of remaining zeros case (?), means parent | 
 
 
 
 
 | 407 | * has same weight as right child. */ | 
 
 
 
 
 | 408 | if (my_left == node->right_child && | 
 
 
 
 
 | 409 | node->left_child && | 
 
 
 
 
 | 410 | node->left_child->weight == 0) | 
 
 
 
 
 | 411 | { | 
 
 
 
 
 | 412 | XD3_ASSERT (node->left_child == h->remaining_zeros); | 
 
 
 
 
 | 413 | XD3_ASSERT (node->right_child->weight == (node->weight+1)); /* child weight was already incremented */ | 
 
 
 
 
 | 414 |  | 
 
 
 
 
 | 415 | if (node->weight == (my_right->weight - 1) && my_right != h->root_node) | 
 
 
 
 
 | 416 | { | 
 
 
 
 
 | 417 | fgk_free_block (h, cur_block); | 
 
 
 
 
 | 418 | node->my_block    = my_right->my_block; | 
 
 
 
 
 | 419 | my_left->my_block = my_right->my_block; | 
 
 
 
 
 | 420 | } | 
 
 
 
 
 | 421 |  | 
 
 
 
 
 | 422 | return; | 
 
 
 
 
 | 423 | } | 
 
 
 
 
 | 424 |  | 
 
 
 
 
 | 425 | if (my_left == h->remaining_zeros) | 
 
 
 
 
 | 426 | { | 
 
 
 
 
 | 427 | return; | 
 
 
 
 
 | 428 | } | 
 
 
 
 
 | 429 |  | 
 
 
 
 
 | 430 | /* true if not the leftmost node */ | 
 
 
 
 
 | 431 | if (my_left->my_block == cur_block) | 
 
 
 
 
 | 432 | { | 
 
 
 
 
 | 433 | my_left->my_block->block_leader = my_left; | 
 
 
 
 
 | 434 | } | 
 
 
 
 
 | 435 | else | 
 
 
 
 
 | 436 | { | 
 
 
 
 
 | 437 | fgk_free_block (h, cur_block); | 
 
 
 
 
 | 438 | } | 
 
 
 
 
 | 439 |  | 
 
 
 
 
 | 440 | /* node->parent != my_right */ | 
 
 
 
 
 | 441 | if ((node->weight == (my_right->weight - 1)) && (my_right != h->root_node)) | 
 
 
 
 
 | 442 | { | 
 
 
 
 
 | 443 | node->my_block = my_right->my_block; | 
 
 
 
 
 | 444 | } | 
 
 
 
 
 | 445 | else | 
 
 
 
 
 | 446 | { | 
 
 
 
 
 | 447 | node->my_block = fgk_make_block (h, node); | 
 
 
 
 
 | 448 | } | 
 
 
 
 
 | 449 | } | 
 
 
 
 
 | 450 |  | 
 
 
 
 
 | 451 | /* When an element is seen the first time this is called to remove it from the list of | 
 
 
 
 
 | 452 | * zero weight elements and introduce a new internal node to the tree.  */ | 
 
 
 
 
 | 453 | static fgk_node* fgk_increase_zero_weight (fgk_stream *h, int n) | 
 
 
 
 
 | 454 | { | 
 
 
 
 
 | 455 | fgk_node *this_zero, *new_internal, *zero_ptr; | 
 
 
 
 
 | 456 |  | 
 
 
 
 
 | 457 | this_zero = h->alphabet + n; | 
 
 
 
 
 | 458 |  | 
 
 
 
 
 | 459 | if (h->zero_freq_count == 1) | 
 
 
 
 
 | 460 | { | 
 
 
 
 
 | 461 | /* this is the last one */ | 
 
 
 
 
 | 462 | this_zero->right_child = NULL; | 
 
 
 
 
 | 463 |  | 
 
 
 
 
 | 464 | if (this_zero->right->weight == 1) | 
 
 
 
 
 | 465 | { | 
 
 
 
 
 | 466 | this_zero->my_block = this_zero->right->my_block; | 
 
 
 
 
 | 467 | } | 
 
 
 
 
 | 468 | else | 
 
 
 
 
 | 469 | { | 
 
 
 
 
 | 470 | this_zero->my_block = fgk_make_block (h, this_zero); | 
 
 
 
 
 | 471 | } | 
 
 
 
 
 | 472 |  | 
 
 
 
 
 | 473 | h->remaining_zeros = NULL; | 
 
 
 
 
 | 474 |  | 
 
 
 
 
 | 475 | return this_zero; | 
 
 
 
 
 | 476 | } | 
 
 
 
 
 | 477 |  | 
 
 
 
 
 | 478 | zero_ptr = h->remaining_zeros; | 
 
 
 
 
 | 479 |  | 
 
 
 
 
 | 480 | new_internal = h->free_node++; | 
 
 
 
 
 | 481 |  | 
 
 
 
 
 | 482 | new_internal->parent      = zero_ptr->parent; | 
 
 
 
 
 | 483 | new_internal->right       = zero_ptr->right; | 
 
 
 
 
 | 484 | new_internal->weight      = 0; | 
 
 
 
 
 | 485 | new_internal->right_child = this_zero; | 
 
 
 
 
 | 486 | new_internal->left        = this_zero; | 
 
 
 
 
 | 487 |  | 
 
 
 
 
 | 488 | if (h->remaining_zeros == h->root_node) | 
 
 
 
 
 | 489 | { | 
 
 
 
 
 | 490 | /* This is the first element to be coded */ | 
 
 
 
 
 | 491 | h->root_node           = new_internal; | 
 
 
 
 
 | 492 | this_zero->my_block    = fgk_make_block (h, this_zero); | 
 
 
 
 
 | 493 | new_internal->my_block = fgk_make_block (h, new_internal); | 
 
 
 
 
 | 494 | } | 
 
 
 
 
 | 495 | else | 
 
 
 
 
 | 496 | { | 
 
 
 
 
 | 497 | new_internal->right->left = new_internal; | 
 
 
 
 
 | 498 |  | 
 
 
 
 
 | 499 | if (zero_ptr->parent->right_child == zero_ptr) | 
 
 
 
 
 | 500 | { | 
 
 
 
 
 | 501 | zero_ptr->parent->right_child = new_internal; | 
 
 
 
 
 | 502 | } | 
 
 
 
 
 | 503 | else | 
 
 
 
 
 | 504 | { | 
 
 
 
 
 | 505 | zero_ptr->parent->left_child = new_internal; | 
 
 
 
 
 | 506 | } | 
 
 
 
 
 | 507 |  | 
 
 
 
 
 | 508 | if (new_internal->right->weight == 1) | 
 
 
 
 
 | 509 | { | 
 
 
 
 
 | 510 | new_internal->my_block = new_internal->right->my_block; | 
 
 
 
 
 | 511 | } | 
 
 
 
 
 | 512 | else | 
 
 
 
 
 | 513 | { | 
 
 
 
 
 | 514 | new_internal->my_block = fgk_make_block (h, new_internal); | 
 
 
 
 
 | 515 | } | 
 
 
 
 
 | 516 |  | 
 
 
 
 
 | 517 | this_zero->my_block = new_internal->my_block; | 
 
 
 
 
 | 518 | } | 
 
 
 
 
 | 519 |  | 
 
 
 
 
 | 520 | fgk_eliminate_zero (h, this_zero); | 
 
 
 
 
 | 521 |  | 
 
 
 
 
 | 522 | new_internal->left_child = h->remaining_zeros; | 
 
 
 
 
 | 523 |  | 
 
 
 
 
 | 524 | this_zero->right       = new_internal; | 
 
 
 
 
 | 525 | this_zero->left        = h->remaining_zeros; | 
 
 
 
 
 | 526 | this_zero->parent      = new_internal; | 
 
 
 
 
 | 527 | this_zero->left_child  = NULL; | 
 
 
 
 
 | 528 | this_zero->right_child = NULL; | 
 
 
 
 
 | 529 |  | 
 
 
 
 
 | 530 | h->remaining_zeros->parent = new_internal; | 
 
 
 
 
 | 531 | h->remaining_zeros->right  = this_zero; | 
 
 
 
 
 | 532 |  | 
 
 
 
 
 | 533 | return this_zero; | 
 
 
 
 
 | 534 | } | 
 
 
 
 
 | 535 |  | 
 
 
 
 
 | 536 | /* When a zero frequency element is encoded, it is followed by the binary representation | 
 
 
 
 
 | 537 | * of the index into the remaining elements.  Sets a cache to the element before it so | 
 
 
 
 
 | 538 | * that it can be removed without calling this procedure again.  */ | 
 
 
 
 
 | 539 | static unsigned int fgk_find_nth_zero (fgk_stream* h, int n) | 
 
 
 
 
 | 540 | { | 
 
 
 
 
 | 541 | fgk_node *target_ptr = h->alphabet + n; | 
 
 
 
 
 | 542 | fgk_node *head_ptr = h->remaining_zeros; | 
 
 
 
 
 | 543 | unsigned int idx = 0; | 
 
 
 
 
 | 544 |  | 
 
 
 
 
 | 545 | while (target_ptr != head_ptr) | 
 
 
 
 
 | 546 | { | 
 
 
 
 
 | 547 | head_ptr = head_ptr->right_child; | 
 
 
 
 
 | 548 | idx += 1; | 
 
 
 
 
 | 549 | } | 
 
 
 
 
 | 550 |  | 
 
 
 
 
 | 551 | return idx; | 
 
 
 
 
 | 552 | } | 
 
 
 
 
 | 553 |  | 
 
 
 
 
 | 554 | /* Splices node out of the list of zeros. */ | 
 
 
 
 
 | 555 | static void fgk_eliminate_zero (fgk_stream* h, fgk_node *node) | 
 
 
 
 
 | 556 | { | 
 
 
 
 
 | 557 | if (h->zero_freq_count == 1) | 
 
 
 
 
 | 558 | { | 
 
 
 
 
 | 559 | return; | 
 
 
 
 
 | 560 | } | 
 
 
 
 
 | 561 |  | 
 
 
 
 
 | 562 | fgk_factor_remaining(h); | 
 
 
 
 
 | 563 |  | 
 
 
 
 
 | 564 | if (node->left_child == NULL) | 
 
 
 
 
 | 565 | { | 
 
 
 
 
 | 566 | h->remaining_zeros = h->remaining_zeros->right_child; | 
 
 
 
 
 | 567 | h->remaining_zeros->left_child = NULL; | 
 
 
 
 
 | 568 | } | 
 
 
 
 
 | 569 | else if (node->right_child == NULL) | 
 
 
 
 
 | 570 | { | 
 
 
 
 
 | 571 | node->left_child->right_child = NULL; | 
 
 
 
 
 | 572 | } | 
 
 
 
 
 | 573 | else | 
 
 
 
 
 | 574 | { | 
 
 
 
 
 | 575 | node->right_child->left_child = node->left_child; | 
 
 
 
 
 | 576 | node->left_child->right_child = node->right_child; | 
 
 
 
 
 | 577 | } | 
 
 
 
 
 | 578 | } | 
 
 
 
 
 | 579 |  | 
 
 
 
 
 | 580 | static void fgk_init_node (fgk_node *node, int i, int size) | 
 
 
 
 
 | 581 | { | 
 
 
 
 
 | 582 | if (i < size - 1) | 
 
 
 
 
 | 583 | { | 
 
 
 
 
 | 584 | node->right_child = node + 1; | 
 
 
 
 
 | 585 | } | 
 
 
 
 
 | 586 | else | 
 
 
 
 
 | 587 | { | 
 
 
 
 
 | 588 | node->right_child = NULL; | 
 
 
 
 
 | 589 | } | 
 
 
 
 
 | 590 |  | 
 
 
 
 
 | 591 | if (i >= 1) | 
 
 
 
 
 | 592 | { | 
 
 
 
 
 | 593 | node->left_child = node - 1; | 
 
 
 
 
 | 594 | } | 
 
 
 
 
 | 595 | else | 
 
 
 
 
 | 596 | { | 
 
 
 
 
 | 597 | node->left_child = NULL; | 
 
 
 
 
 | 598 | } | 
 
 
 
 
 | 599 |  | 
 
 
 
 
 | 600 | node->weight      = 0; | 
 
 
 
 
 | 601 | node->parent      = NULL; | 
 
 
 
 
 | 602 | node->right = NULL; | 
 
 
 
 
 | 603 | node->left  = NULL; | 
 
 
 
 
 | 604 | node->my_block    = NULL; | 
 
 
 
 
 | 605 | } | 
 
 
 
 
 | 606 |  | 
 
 
 
 
 | 607 | /* The data structure used is an array of blocks, which are unions of free pointers and | 
 
 
 
 
 | 608 | * huffnode pointers.  free blocks are a linked list of free blocks, the front of which is | 
 
 
 
 
 | 609 | * h->free_block.  The used blocks are pointers to the head of each block.  */ | 
 
 
 
 
 | 610 | static fgk_block* fgk_make_block (fgk_stream *h, fgk_node* lead) | 
 
 
 
 
 | 611 | { | 
 
 
 
 
 | 612 | fgk_block *ret = h->free_block; | 
 
 
 
 
 | 613 |  | 
 
 
 
 
 | 614 | XD3_ASSERT (h->free_block != NULL); | 
 
 
 
 
 | 615 |  | 
 
 
 
 
 | 616 | h->free_block = h->free_block->block_freeptr; | 
 
 
 
 
 | 617 |  | 
 
 
 
 
 | 618 | ret->block_leader = lead; | 
 
 
 
 
 | 619 |  | 
 
 
 
 
 | 620 | return ret; | 
 
 
 
 
 | 621 | } | 
 
 
 
 
 | 622 |  | 
 
 
 
 
 | 623 | /* Restores the block to the front of the free list. */ | 
 
 
 
 
 | 624 | static void fgk_free_block (fgk_stream *h, fgk_block *b) | 
 
 
 
 
 | 625 | { | 
 
 
 
 
 | 626 | b->block_freeptr = h->free_block; | 
 
 
 
 
 | 627 | h->free_block = b; | 
 
 
 
 
 | 628 | } | 
 
 
 
 
 | 629 |  | 
 
 
 
 
 | 630 | /* sets zero_freq_count, zero_freq_rem, and zero_freq_exp to satsity the equation given | 
 
 
 
 
 | 631 | * above.  */ | 
 
 
 
 
 | 632 | static void fgk_factor_remaining (fgk_stream *h) | 
 
 
 
 
 | 633 | { | 
 
 
 
 
 | 634 | unsigned int i; | 
 
 
 
 
 | 635 |  | 
 
 
 
 
 | 636 | i = (--h->zero_freq_count); | 
 
 
 
 
 | 637 | h->zero_freq_exp = 0; | 
 
 
 
 
 | 638 |  | 
 
 
 
 
 | 639 | while (i > 1) | 
 
 
 
 
 | 640 | { | 
 
 
 
 
 | 641 | h->zero_freq_exp += 1; | 
 
 
 
 
 | 642 | i >>= 1; | 
 
 
 
 
 | 643 | } | 
 
 
 
 
 | 644 |  | 
 
 
 
 
 | 645 | i = 1 << h->zero_freq_exp; | 
 
 
 
 
 | 646 |  | 
 
 
 
 
 | 647 | h->zero_freq_rem = h->zero_freq_count - i; | 
 
 
 
 
 | 648 | } | 
 
 
 
 
 | 649 |  | 
 
 
 
 
 | 650 | /* receives a bit at a time and returns true when a complete code has | 
 
 
 
 
 | 651 | * been received. | 
 
 
 
 
 | 652 | */ | 
 
 
 
 
 | 653 | static int INLINE fgk_decode_bit (fgk_stream* h, fgk_bit b) | 
 
 
 
 
 | 654 | { | 
 
 
 
 
 | 655 | XD3_ASSERT (b == 1 || b == 0); | 
 
 
 
 
 | 656 |  | 
 
 
 
 
 | 657 | if (IS_ADAPTIVE && h->decode_ptr->weight == 0) | 
 
 
 
 
 | 658 | { | 
 
 
 
 
 | 659 | int bitsreq; | 
 
 
 
 
 | 660 |  | 
 
 
 
 
 | 661 | if (h->zero_freq_rem == 0) | 
 
 
 
 
 | 662 | { | 
 
 
 
 
 | 663 | bitsreq = h->zero_freq_exp; | 
 
 
 
 
 | 664 | } | 
 
 
 
 
 | 665 | else | 
 
 
 
 
 | 666 | { | 
 
 
 
 
 | 667 | bitsreq = h->zero_freq_exp + 1; | 
 
 
 
 
 | 668 | } | 
 
 
 
 
 | 669 |  | 
 
 
 
 
 | 670 | h->coded_bits[h->coded_depth] = b; | 
 
 
 
 
 | 671 | h->coded_depth += 1; | 
 
 
 
 
 | 672 |  | 
 
 
 
 
 | 673 | return h->coded_depth >= bitsreq; | 
 
 
 
 
 | 674 | } | 
 
 
 
 
 | 675 | else | 
 
 
 
 
 | 676 | { | 
 
 
 
 
 | 677 | if (b) | 
 
 
 
 
 | 678 | { | 
 
 
 
 
 | 679 | h->decode_ptr = h->decode_ptr->right_child; | 
 
 
 
 
 | 680 | } | 
 
 
 
 
 | 681 | else | 
 
 
 
 
 | 682 | { | 
 
 
 
 
 | 683 | h->decode_ptr = h->decode_ptr->left_child; | 
 
 
 
 
 | 684 | } | 
 
 
 
 
 | 685 |  | 
 
 
 
 
 | 686 | if (h->decode_ptr->left_child == NULL) | 
 
 
 
 
 | 687 | { | 
 
 
 
 
 | 688 | /* If the weight is non-zero, finished. */ | 
 
 
 
 
 | 689 | if (h->decode_ptr->weight != 0) | 
 
 
 
 
 | 690 | { | 
 
 
 
 
 | 691 | return 1; | 
 
 
 
 
 | 692 | } | 
 
 
 
 
 | 693 |  | 
 
 
 
 
 | 694 | /* zero_freq_count is dropping to 0, finished. */ | 
 
 
 
 
 | 695 | return h->zero_freq_count == 1; | 
 
 
 
 
 | 696 | } | 
 
 
 
 
 | 697 | else | 
 
 
 
 
 | 698 | { | 
 
 
 
 
 | 699 | return 0; | 
 
 
 
 
 | 700 | } | 
 
 
 
 
 | 701 | } | 
 
 
 
 
 | 702 | } | 
 
 
 
 
 | 703 |  | 
 
 
 
 
 | 704 | static int fgk_nth_zero (fgk_stream* h, int n) | 
 
 
 
 
 | 705 | { | 
 
 
 
 
 | 706 | fgk_node *ret = h->remaining_zeros; | 
 
 
 
 
 | 707 |  | 
 
 
 
 
 | 708 | /* ERROR: if during this loop (ret->right_child == NULL) then the encoder's zero count | 
 
 
 
 
 | 709 | * is too high.  Could return an error code now, but is probably unnecessary overhead, | 
 
 
 
 
 | 710 | * since the caller should check integrity anyway. */ | 
 
 
 
 
 | 711 | for (; n != 0 && ret->right_child != NULL; n -= 1) | 
 
 
 
 
 | 712 | { | 
 
 
 
 
 | 713 | ret = ret->right_child; | 
 
 
 
 
 | 714 | } | 
 
 
 
 
 | 715 |  | 
 
 
 
 
 | 716 | return ret - h->alphabet; | 
 
 
 
 
 | 717 | } | 
 
 
 
 
 | 718 |  | 
 
 
 
 
 | 719 | /* once fgk_decode_bit returns 1, this retrieves an index into the | 
 
 
 
 
 | 720 | * alphabet otherwise this returns 0, indicating more bits are | 
 
 
 
 
 | 721 | * required. | 
 
 
 
 
 | 722 | */ | 
 
 
 
 
 | 723 | static int fgk_decode_data (fgk_stream* h) | 
 
 
 
 
 | 724 | { | 
 
 
 
 
 | 725 | unsigned int elt = h->decode_ptr - h->alphabet; | 
 
 
 
 
 | 726 |  | 
 
 
 
 
 | 727 | if (IS_ADAPTIVE && h->decode_ptr->weight == 0) { | 
 
 
 
 
 | 728 | int i; | 
 
 
 
 
 | 729 | unsigned int n = 0; | 
 
 
 
 
 | 730 |  | 
 
 
 
 
 | 731 | for (i = 0; i < h->coded_depth - 1; i += 1) | 
 
 
 
 
 | 732 | { | 
 
 
 
 
 | 733 | n |= h->coded_bits[i]; | 
 
 
 
 
 | 734 | n <<= 1; | 
 
 
 
 
 | 735 | } | 
 
 
 
 
 | 736 |  | 
 
 
 
 
 | 737 | n |= h->coded_bits[i]; | 
 
 
 
 
 | 738 | elt = fgk_nth_zero(h, n); | 
 
 
 
 
 | 739 | } | 
 
 
 
 
 | 740 |  | 
 
 
 
 
 | 741 | h->coded_depth = 0; | 
 
 
 
 
 | 742 |  | 
 
 
 
 
 | 743 | if (IS_ADAPTIVE) | 
 
 
 
 
 | 744 | { | 
 
 
 
 
 | 745 | fgk_update_tree(h, elt); | 
 
 
 
 
 | 746 | } | 
 
 
 
 
 | 747 |  | 
 
 
 
 
 | 748 | h->decode_ptr = h->root_node; | 
 
 
 
 
 | 749 |  | 
 
 
 
 
 | 750 | return elt; | 
 
 
 
 
 | 751 | } | 
 
 
 
 
 | 752 |  | 
 
 
 
 
 | 753 | static void fgk_destroy (xd3_stream *stream, | 
 
 
 
 
 | 754 | fgk_stream *h) | 
 
 
 
 
 | 755 | { | 
 
 
 
 
 | 756 | if (h != NULL) | 
 
 
 
 
 | 757 | { | 
 
 
 
 
 | 758 | xd3_free (stream, h->alphabet); | 
 
 
 
 
 | 759 | xd3_free (stream, h->coded_bits); | 
 
 
 
 
 | 760 | xd3_free (stream, h->block_array); | 
 
 
 
 
 | 761 | xd3_free (stream, h); | 
 
 
 
 
 | 762 | } | 
 
 
 
 
 | 763 | } | 
 
 
 
 
 | 764 |  | 
 
 
 
 
 | 765 | /*********************************************************************/ | 
 
 
 
 
 | 766 | /*                             Xdelta                                */ | 
 
 
 
 
 | 767 | /*********************************************************************/ | 
 
 
 
 
 | 768 |  | 
 
 
 
 
 | 769 | static int | 
 
 
 
 
 | 770 | xd3_encode_fgk (xd3_stream *stream, fgk_stream *sec_stream, xd3_output *input, xd3_output *output, xd3_sec_cfg *cfg) | 
 
 
 
 
 | 771 | { | 
 
 
 
 
 | 772 | bit_state   bstate = BIT_STATE_ENCODE_INIT; | 
 
 
 
 
 | 773 | xd3_output *cur_page; | 
 
 
 
 
 | 774 | int ret; | 
 
 
 
 
 | 775 |  | 
 
 
 
 
 | 776 | /* OPT: quit compression early if it looks bad */ | 
 
 
 
 
 | 777 | for (cur_page = input; cur_page; cur_page = cur_page->next_page) | 
 
 
 
 
 | 778 | { | 
 
 
 
 
 | 779 | const uint8_t *inp     = cur_page->base; | 
 
 
 
 
 | 780 | const uint8_t *inp_max = inp + cur_page->next; | 
 
 
 
 
 | 781 |  | 
 
 
 
 
 | 782 | while (inp < inp_max) | 
 
 
 
 
 | 783 | { | 
 
 
 
 
 | 784 | usize_t bits = fgk_encode_data (sec_stream, *inp++); | 
 
 
 
 
 | 785 |  | 
 
 
 
 
 | 786 | while (bits--) | 
 
 
 
 
 | 787 | { | 
 
 
 
 
 | 788 | if ((ret = xd3_encode_bit (stream, & output, & bstate, fgk_get_encoded_bit (sec_stream)))) { return ret; } | 
 
 
 
 
 | 789 | } | 
 
 
 
 
 | 790 | } | 
 
 
 
 
 | 791 | } | 
 
 
 
 
 | 792 |  | 
 
 
 
 
 | 793 | return xd3_flush_bits (stream, & output, & bstate); | 
 
 
 
 
 | 794 | } | 
 
 
 
 
 | 795 |  | 
 
 
 
 
 | 796 | static int | 
 
 
 
 
 | 797 | xd3_decode_fgk (xd3_stream     *stream, | 
 
 
 
 
 | 798 | fgk_stream     *sec_stream, | 
 
 
 
 
 | 799 | const uint8_t **input_pos, | 
 
 
 
 
 | 800 | const uint8_t  *const input_max, | 
 
 
 
 
 | 801 | uint8_t       **output_pos, | 
 
 
 
 
 | 802 | const uint8_t  *const output_max) | 
 
 
 
 
 | 803 | { | 
 
 
 
 
 | 804 | bit_state bstate; | 
 
 
 
 
 | 805 | uint8_t *output = *output_pos; | 
 
 
 
 
 | 806 | const uint8_t *input = *input_pos; | 
 
 
 
 
 | 807 |  | 
 
 
 
 
 | 808 | for (;;) | 
 
 
 
 
 | 809 | { | 
 
 
 
 
 | 810 | if (input == input_max) | 
 
 
 
 
 | 811 | { | 
 
 
 
 
 | 812 | stream->msg = "secondary decoder end of input"; | 
 
 
 
 
 | 813 | return XD3_INTERNAL; | 
 
 
 
 
 | 814 | } | 
 
 
 
 
 | 815 |  | 
 
 
 
 
 | 816 | bstate.cur_byte = *input++; | 
 
 
 
 
 | 817 |  | 
 
 
 
 
 | 818 | for (bstate.cur_mask = 1; bstate.cur_mask != 0x100; bstate.cur_mask <<= 1) | 
 
 
 
 
 | 819 | { | 
 
 
 
 
 | 820 | int done = fgk_decode_bit (sec_stream, (bstate.cur_byte & bstate.cur_mask) && 1); | 
 
 
 
 
 | 821 |  | 
 
 
 
 
 | 822 | if (! done) { continue; } | 
 
 
 
 
 | 823 |  | 
 
 
 
 
 | 824 | *output++ = fgk_decode_data (sec_stream); | 
 
 
 
 
 | 825 |  | 
 
 
 
 
 | 826 | if (unlikely (output == output_max)) | 
 
 
 
 
 | 827 | { | 
 
 
 
 
 | 828 | /* During regression testing: */ | 
 
 
 
 
 | 829 | IF_REGRESSION ({ | 
 
 
 
 
 | 830 | int ret; | 
 
 
 
 
 | 831 | bstate.cur_mask <<= 1; | 
 
 
 
 
 | 832 | if ((ret = xd3_test_clean_bits (stream, & bstate))) { return ret; } | 
 
 
 
 
 | 833 | }); | 
 
 
 
 
 | 834 |  | 
 
 
 
 
 | 835 | (*output_pos) = output; | 
 
 
 
 
 | 836 | (*input_pos) = input; | 
 
 
 
 
 | 837 | return 0; | 
 
 
 
 
 | 838 | } | 
 
 
 
 
 | 839 | } | 
 
 
 
 
 | 840 | } | 
 
 
 
 
 | 841 | } | 
 
 
 
 
 | 842 |  | 
 
 
 
 
 | 843 | #endif /* _XDELTA3_FGK_ */ |