| 1 | /* xdelta 3 - delta compression tools and library | 
 
 
 
 
 | 2 | * Copyright (C) 2002, 2006, 2007.  Joshua P. MacDonald | 
 
 
 
 
 | 3 | * | 
 
 
 
 
 | 4 | *  This program is free software; you can redistribute it and/or modify | 
 
 
 
 
 | 5 | *  it under the terms of the GNU General Public License as published by | 
 
 
 
 
 | 6 | *  the Free Software Foundation; either version 2 of the License, or | 
 
 
 
 
 | 7 | *  (at your option) any later version. | 
 
 
 
 
 | 8 | * | 
 
 
 
 
 | 9 | *  This program is distributed in the hope that it will be useful, | 
 
 
 
 
 | 10 | *  but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 
 
 
 
 | 11 | *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
 
 
 
 
 | 12 | *  GNU General Public License for more details. | 
 
 
 
 
 | 13 | * | 
 
 
 
 
 | 14 | *  You should have received a copy of the GNU General Public License | 
 
 
 
 
 | 15 | *  along with this program; if not, write to the Free Software | 
 
 
 
 
 | 16 | *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA | 
 
 
 
 
 | 17 | */ | 
 
 
 
 
 | 18 |  | 
 
 
 
 
 | 19 | #ifndef _XDELTA3_DJW_H_ | 
 
 
 
 
 | 20 | #define _XDELTA3_DJW_H_ | 
 
 
 
 
 | 21 |  | 
 
 
 
 
 | 22 | /* The following people deserve much credit for the algorithms and techniques contained in | 
 
 
 
 
 | 23 | * this file: | 
 
 
 
 
 | 24 |  | 
 
 
 
 
 | 25 | Julian Seward | 
 
 
 
 
 | 26 | Bzip2 sources, implementation of the multi-table Huffman technique. | 
 
 
 
 
 | 27 |  | 
 
 
 
 
 | 28 | Jean-loup Gailly and Mark Adler and L. Peter Deutsch | 
 
 
 
 
 | 29 | Zlib source code, RFC 1951 | 
 
 
 
 
 | 30 |  | 
 
 
 
 
 | 31 | Daniel S. Hirschberg and Debra A. LeLewer | 
 
 
 
 
 | 32 | "Efficient Decoding of Prefix Codes" | 
 
 
 
 
 | 33 | Communications of the ACM, April 1990 33(4). | 
 
 
 
 
 | 34 |  | 
 
 
 
 
 | 35 | David J. Wheeler | 
 
 
 
 
 | 36 | Program bred3.c, bexp3 and accompanying documents bred3.ps, huff.ps. | 
 
 
 
 
 | 37 | This contains the idea behind the multi-table Huffman and 1-2 coding techniques. | 
 
 
 
 
 | 38 | ftp://ftp.cl.cam.ac.uk/users/djw3/ | 
 
 
 
 
 | 39 |  | 
 
 
 
 
 | 40 | */ | 
 
 
 
 
 | 41 |  | 
 
 
 
 
 | 42 | /* OPT: during the multi-table iteration, pick the worst-overall performing table and | 
 
 
 
 
 | 43 | * replace it with exactly the frequencies of the worst-overall performing sector or | 
 
 
 
 
 | 44 | * N-worst performing sectors. */ | 
 
 
 
 
 | 45 |  | 
 
 
 
 
 | 46 | /* REF: See xdfs-0.222 and xdfs-0.226 for some old experiments with the Bzip prefix coding | 
 
 
 
 
 | 47 | * strategy.  xdfs-0.256 contains the last of the other-format tests, including RFC1950 | 
 
 
 
 
 | 48 | * and the RFC1950+MTF tests. */ | 
 
 
 
 
 | 49 |  | 
 
 
 
 
 | 50 | #define DJW_MAX_CODELEN      32 /* Maximum length of an alphabet code. */ | 
 
 
 
 
 | 51 |  | 
 
 
 
 
 | 52 | #define DJW_TOTAL_CODES      (DJW_MAX_CODELEN+2) /* [RUN_0, RUN_1, 1-DJW_MAX_CODELEN] */ | 
 
 
 
 
 | 53 |  | 
 
 
 
 
 | 54 | #define RUN_0                0 /* Symbols used in MTF+1/2 coding. */ | 
 
 
 
 
 | 55 | #define RUN_1                1 | 
 
 
 
 
 | 56 |  | 
 
 
 
 
 | 57 | #define DJW_BASIC_CODES      5  /* Number of code lengths always encoded (djw_encode_basic array) */ | 
 
 
 
 
 | 58 | #define DJW_RUN_CODES        2  /* Number of run codes */ | 
 
 
 
 
 | 59 | #define DJW_EXTRA_12OFFSET   7  /* Offset of extra codes */ | 
 
 
 
 
 | 60 | #define DJW_EXTRA_CODES      15 /* Number of optionally encoded code lengths (djw_encode_extra array) */ | 
 
 
 
 
 | 61 | #define DJW_EXTRA_CODE_BITS  4  /* Number of bits to code [0-DJW_EXTRA_CODES] */ | 
 
 
 
 
 | 62 |  | 
 
 
 
 
 | 63 | #define DJW_MAX_GROUPS       8  /* Max number of group coding tables */ | 
 
 
 
 
 | 64 | #define DJW_GROUP_BITS       3  /* Number of bits to code [1-DJW_MAX_GROUPS] */ | 
 
 
 
 
 | 65 |  | 
 
 
 
 
 | 66 | #define DJW_SECTORSZ_MULT     5  /* Multiplier for encoded sectorsz */ | 
 
 
 
 
 | 67 | #define DJW_SECTORSZ_BITS     5  /* Number of bits to code group size */ | 
 
 
 
 
 | 68 | #define DJW_SECTORSZ_MAX      ((1 << DJW_SECTORSZ_BITS) * DJW_SECTORSZ_MULT) | 
 
 
 
 
 | 69 |  | 
 
 
 
 
 | 70 | #define DJW_MAX_ITER         6  /* Maximum number of iterations to find group tables. */ | 
 
 
 
 
 | 71 | #define DJW_MIN_IMPROVEMENT  20 /* Minimum number of bits an iteration must reduce coding by. */ | 
 
 
 
 
 | 72 |  | 
 
 
 
 
 | 73 | #define DJW_MAX_CLCLEN       15 /* Maximum code length of a prefix code length */ | 
 
 
 
 
 | 74 | #define DJW_CLCLEN_BITS      4  /* Number of bits to code [0-DJW_MAX_CLCLEN] */ | 
 
 
 
 
 | 75 |  | 
 
 
 
 
 | 76 | #define DJW_MAX_GBCLEN       7  /* Maximum code length of a group selector */ | 
 
 
 
 
 | 77 | #define DJW_GBCLEN_BITS      3  /* Number of bits to code [0-DJW_MAX_GBCLEN] | 
 
 
 
 
 | 78 | * @!@ Actually, should never have zero code lengths here, or | 
 
 
 
 
 | 79 | * else a group went unused.  Write a test for this: if a group | 
 
 
 
 
 | 80 | * goes unused, eliminate it? */ | 
 
 
 
 
 | 81 |  | 
 
 
 
 
 | 82 | #define EFFICIENCY_BITS      16 /* It has to save at least this many bits... */ | 
 
 
 
 
 | 83 |  | 
 
 
 
 
 | 84 | typedef struct _djw_stream   djw_stream; | 
 
 
 
 
 | 85 | typedef struct _djw_heapen   djw_heapen; | 
 
 
 
 
 | 86 | typedef struct _djw_prefix   djw_prefix; | 
 
 
 
 
 | 87 | typedef uint32_t             djw_weight; | 
 
 
 
 
 | 88 |  | 
 
 
 
 
 | 89 | /* To enable Huffman tuning code... */ | 
 
 
 
 
 | 90 | #ifndef TUNE_HUFFMAN | 
 
 
 
 
 | 91 | #define TUNE_HUFFMAN 0 | 
 
 
 
 
 | 92 | #endif | 
 
 
 
 
 | 93 |  | 
 
 
 
 
 | 94 | #if TUNE_HUFFMAN == 0 | 
 
 
 
 
 | 95 | #define xd3_real_encode_huff xd3_encode_huff | 
 
 
 
 
 | 96 | #define IF_TUNE(x) | 
 
 
 
 
 | 97 | #define IF_NTUNE(x) x | 
 
 
 
 
 | 98 | #else | 
 
 
 
 
 | 99 | static uint xd3_bitsof_output (xd3_output *output, bit_state *bstate); | 
 
 
 
 
 | 100 | #define IF_TUNE(x) x | 
 
 
 
 
 | 101 | #define IF_NTUNE(x) | 
 
 
 
 
 | 102 | static djw_weight tune_freq[DJW_TOTAL_CODES]; | 
 
 
 
 
 | 103 | static uint8_t tune_clen[DJW_MAX_GROUPS][ALPHABET_SIZE]; | 
 
 
 
 
 | 104 | static usize_t  tune_prefix_bits; | 
 
 
 
 
 | 105 | static usize_t  tune_select_bits; | 
 
 
 
 
 | 106 | static usize_t  tune_encode_bits; | 
 
 
 
 
 | 107 | #endif | 
 
 
 
 
 | 108 | struct _djw_heapen | 
 
 
 
 
 | 109 | { | 
 
 
 
 
 | 110 | uint32_t depth; | 
 
 
 
 
 | 111 | uint32_t freq; | 
 
 
 
 
 | 112 | uint32_t parent; | 
 
 
 
 
 | 113 | }; | 
 
 
 
 
 | 114 |  | 
 
 
 
 
 | 115 | struct _djw_prefix | 
 
 
 
 
 | 116 | { | 
 
 
 
 
 | 117 | usize_t   scount; | 
 
 
 
 
 | 118 | uint8_t *symbol; | 
 
 
 
 
 | 119 | usize_t   mcount; | 
 
 
 
 
 | 120 | uint8_t *mtfsym; | 
 
 
 
 
 | 121 | uint8_t *repcnt; | 
 
 
 
 
 | 122 | }; | 
 
 
 
 
 | 123 |  | 
 
 
 
 
 | 124 | struct _djw_stream | 
 
 
 
 
 | 125 | { | 
 
 
 
 
 | 126 | int unused; | 
 
 
 
 
 | 127 | }; | 
 
 
 
 
 | 128 |  | 
 
 
 
 
 | 129 | /* Each Huffman table consists of 256 "code length" (CLEN) codes, which are themselves | 
 
 
 
 
 | 130 | * Huffman coded after eliminating repeats and move-to-front coding.  The prefix consists | 
 
 
 
 
 | 131 | * of all the CLEN codes in djw_encode_basic plus a 4-bit value stating how many of the | 
 
 
 
 
 | 132 | * djw_encode_extra codes are actually coded (the rest are presumed zero, or unused CLEN | 
 
 
 
 
 | 133 | * codes). | 
 
 
 
 
 | 134 | * | 
 
 
 
 
 | 135 | * These values of these two arrays were arrived at by studying the distribution of min | 
 
 
 
 
 | 136 | * and max clen over a collection of DATA, INST, and ADDR inputs.  The goal is to specify | 
 
 
 
 
 | 137 | * the order of djw_extra_codes that is most likely to minimize the number of extra codes | 
 
 
 
 
 | 138 | * that must be encoded. | 
 
 
 
 
 | 139 | * | 
 
 
 
 
 | 140 | * Results: 158896 sections were counted by compressing files (window size 512K) listed | 
 
 
 
 
 | 141 | * with: `find / -type f ( -user jmacd -o -perm +444 )` | 
 
 
 
 
 | 142 | * | 
 
 
 
 
 | 143 | * The distribution of CLEN codes for each efficient invocation of the secondary | 
 
 
 
 
 | 144 | * compressor (taking the best number of groups/sector size) was recorded.  Then we look at | 
 
 
 
 
 | 145 | * the distribution of min and max clen values, counting the number of times the value | 
 
 
 
 
 | 146 | * C_low is less than the min and C_high is greater than the max.  Values >= C_high and <= | 
 
 
 
 
 | 147 | * C_low will not have their lengths coded.  The results are sorted and the least likely | 
 
 
 
 
 | 148 | * 15 are placed into the djw_encode_extra[] array in order.  These values are used as | 
 
 
 
 
 | 149 | * the initial MTF ordering. | 
 
 
 
 
 | 150 |  | 
 
 
 
 
 | 151 | clow[1] = 155119 | 
 
 
 
 
 | 152 | clow[2] = 140325 | 
 
 
 
 
 | 153 | clow[3] = 84072 | 
 
 
 
 
 | 154 | --- | 
 
 
 
 
 | 155 | clow[4] = 7225 | 
 
 
 
 
 | 156 | clow[5] = 1093 | 
 
 
 
 
 | 157 | clow[6] = 215 | 
 
 
 
 
 | 158 | --- | 
 
 
 
 
 | 159 | chigh[4] = 1 | 
 
 
 
 
 | 160 | chigh[5] = 30 | 
 
 
 
 
 | 161 | chigh[6] = 218 | 
 
 
 
 
 | 162 | chigh[7] = 2060 | 
 
 
 
 
 | 163 | chigh[8] = 13271 | 
 
 
 
 
 | 164 | --- | 
 
 
 
 
 | 165 | chigh[9] = 39463 | 
 
 
 
 
 | 166 | chigh[10] = 77360 | 
 
 
 
 
 | 167 | chigh[11] = 118298 | 
 
 
 
 
 | 168 | chigh[12] = 141360 | 
 
 
 
 
 | 169 | chigh[13] = 154086 | 
 
 
 
 
 | 170 | chigh[14] = 157967 | 
 
 
 
 
 | 171 | chigh[15] = 158603 | 
 
 
 
 
 | 172 | chigh[16] = 158864 | 
 
 
 
 
 | 173 | chigh[17] = 158893 | 
 
 
 
 
 | 174 | chigh[18] = 158895 | 
 
 
 
 
 | 175 | chigh[19] = 158896 | 
 
 
 
 
 | 176 | chigh[20] = 158896 | 
 
 
 
 
 | 177 |  | 
 
 
 
 
 | 178 | */ | 
 
 
 
 
 | 179 |  | 
 
 
 
 
 | 180 | static const uint8_t djw_encode_12extra[DJW_EXTRA_CODES] = | 
 
 
 
 
 | 181 | { | 
 
 
 
 
 | 182 | 9, 10, 3, 11, 2, 12, 13, 1, 14, 15, 16, 17, 18, 19, 20 | 
 
 
 
 
 | 183 | }; | 
 
 
 
 
 | 184 |  | 
 
 
 
 
 | 185 | static const uint8_t djw_encode_12basic[DJW_BASIC_CODES] = | 
 
 
 
 
 | 186 | { | 
 
 
 
 
 | 187 | 4, 5, 6, 7, 8, | 
 
 
 
 
 | 188 | }; | 
 
 
 
 
 | 189 |  | 
 
 
 
 
 | 190 | /*********************************************************************/ | 
 
 
 
 
 | 191 | /*                              DECLS                                */ | 
 
 
 
 
 | 192 | /*********************************************************************/ | 
 
 
 
 
 | 193 |  | 
 
 
 
 
 | 194 | static djw_stream*     djw_alloc           (xd3_stream *stream /*, int alphabet_size */); | 
 
 
 
 
 | 195 | static void            djw_init            (djw_stream *h); | 
 
 
 
 
 | 196 | static void            djw_destroy         (xd3_stream *stream, | 
 
 
 
 
 | 197 | djw_stream *h); | 
 
 
 
 
 | 198 |  | 
 
 
 
 
 | 199 | #if XD3_ENCODER | 
 
 
 
 
 | 200 | static int             xd3_encode_huff     (xd3_stream   *stream, | 
 
 
 
 
 | 201 | djw_stream  *sec_stream, | 
 
 
 
 
 | 202 | xd3_output   *input, | 
 
 
 
 
 | 203 | xd3_output   *output, | 
 
 
 
 
 | 204 | xd3_sec_cfg  *cfg); | 
 
 
 
 
 | 205 | #endif | 
 
 
 
 
 | 206 |  | 
 
 
 
 
 | 207 | static int             xd3_decode_huff     (xd3_stream     *stream, | 
 
 
 
 
 | 208 | djw_stream    *sec_stream, | 
 
 
 
 
 | 209 | const uint8_t **input, | 
 
 
 
 
 | 210 | const uint8_t  *const input_end, | 
 
 
 
 
 | 211 | uint8_t       **output, | 
 
 
 
 
 | 212 | const uint8_t  *const output_end); | 
 
 
 
 
 | 213 |  | 
 
 
 
 
 | 214 | /*********************************************************************/ | 
 
 
 
 
 | 215 | /*                             HUFFMAN                               */ | 
 
 
 
 
 | 216 | /*********************************************************************/ | 
 
 
 
 
 | 217 |  | 
 
 
 
 
 | 218 | static djw_stream* | 
 
 
 
 
 | 219 | djw_alloc (xd3_stream *stream) | 
 
 
 
 
 | 220 | { | 
 
 
 
 
 | 221 | return xd3_alloc (stream, sizeof (djw_stream), 1); | 
 
 
 
 
 | 222 | } | 
 
 
 
 
 | 223 |  | 
 
 
 
 
 | 224 | static void | 
 
 
 
 
 | 225 | djw_init (djw_stream *h) | 
 
 
 
 
 | 226 | { | 
 
 
 
 
 | 227 | /* Fields are initialized prior to use. */ | 
 
 
 
 
 | 228 | } | 
 
 
 
 
 | 229 |  | 
 
 
 
 
 | 230 | static void | 
 
 
 
 
 | 231 | djw_destroy (xd3_stream *stream, | 
 
 
 
 
 | 232 | djw_stream *h) | 
 
 
 
 
 | 233 | { | 
 
 
 
 
 | 234 | xd3_free (stream, h); | 
 
 
 
 
 | 235 | } | 
 
 
 
 
 | 236 |  | 
 
 
 
 
 | 237 |  | 
 
 
 
 
 | 238 | /*********************************************************************/ | 
 
 
 
 
 | 239 | /*                               HEAP                                */ | 
 
 
 
 
 | 240 | /*********************************************************************/ | 
 
 
 
 
 | 241 |  | 
 
 
 
 
 | 242 | static INLINE int | 
 
 
 
 
 | 243 | heap_less (const djw_heapen *a, const djw_heapen *b) | 
 
 
 
 
 | 244 | { | 
 
 
 
 
 | 245 | return a->freq   < b->freq || | 
 
 
 
 
 | 246 | (a->freq  == b->freq && | 
 
 
 
 
 | 247 | a->depth  < b->depth); | 
 
 
 
 
 | 248 | } | 
 
 
 
 
 | 249 |  | 
 
 
 
 
 | 250 | static INLINE void | 
 
 
 
 
 | 251 | heap_insert (uint *heap, const djw_heapen *ents, uint p, const uint e) | 
 
 
 
 
 | 252 | { | 
 
 
 
 
 | 253 | /* Insert ents[e] into next slot heap[p] */ | 
 
 
 
 
 | 254 | uint pp = p/2; /* P's parent */ | 
 
 
 
 
 | 255 |  | 
 
 
 
 
 | 256 | while (heap_less (& ents[e], & ents[heap[pp]])) | 
 
 
 
 
 | 257 | { | 
 
 
 
 
 | 258 | heap[p] = heap[pp]; | 
 
 
 
 
 | 259 | p  = pp; | 
 
 
 
 
 | 260 | pp = p/2; | 
 
 
 
 
 | 261 | } | 
 
 
 
 
 | 262 |  | 
 
 
 
 
 | 263 | heap[p] = e; | 
 
 
 
 
 | 264 | } | 
 
 
 
 
 | 265 |  | 
 
 
 
 
 | 266 | static INLINE djw_heapen* | 
 
 
 
 
 | 267 | heap_extract (uint *heap, const djw_heapen *ents, uint heap_last) | 
 
 
 
 
 | 268 | { | 
 
 
 
 
 | 269 | uint smallest = heap[1]; | 
 
 
 
 
 | 270 | uint p, pc, t; | 
 
 
 
 
 | 271 |  | 
 
 
 
 
 | 272 | /* Caller decrements heap_last, so heap_last+1 is the replacement elt. */ | 
 
 
 
 
 | 273 | heap[1] = heap[heap_last+1]; | 
 
 
 
 
 | 274 |  | 
 
 
 
 
 | 275 | /* Re-heapify */ | 
 
 
 
 
 | 276 | for (p = 1; ; p = pc) | 
 
 
 
 
 | 277 | { | 
 
 
 
 
 | 278 | pc = p*2; | 
 
 
 
 
 | 279 |  | 
 
 
 
 
 | 280 | /* Reached bottom of heap */ | 
 
 
 
 
 | 281 | if (pc > heap_last) { break; } | 
 
 
 
 
 | 282 |  | 
 
 
 
 
 | 283 | /* See if second child is smaller. */ | 
 
 
 
 
 | 284 | if (pc < heap_last && heap_less (& ents[heap[pc+1]], & ents[heap[pc]])) { pc += 1; } | 
 
 
 
 
 | 285 |  | 
 
 
 
 
 | 286 | /* If pc is not smaller than p, heap property re-established. */ | 
 
 
 
 
 | 287 | if (! heap_less (& ents[heap[pc]], & ents[heap[p]])) { break; } | 
 
 
 
 
 | 288 |  | 
 
 
 
 
 | 289 | t = heap[pc]; | 
 
 
 
 
 | 290 | heap[pc] = heap[p]; | 
 
 
 
 
 | 291 | heap[p] = t; | 
 
 
 
 
 | 292 | } | 
 
 
 
 
 | 293 |  | 
 
 
 
 
 | 294 | return (djw_heapen*) & ents[smallest]; | 
 
 
 
 
 | 295 | } | 
 
 
 
 
 | 296 |  | 
 
 
 
 
 | 297 | #if XD3_DEBUG | 
 
 
 
 
 | 298 | static void | 
 
 
 
 
 | 299 | heap_check (uint *heap, djw_heapen *ents, uint heap_last) | 
 
 
 
 
 | 300 | { | 
 
 
 
 
 | 301 | uint i; | 
 
 
 
 
 | 302 | for (i = 1; i <= heap_last; i += 1) | 
 
 
 
 
 | 303 | { | 
 
 
 
 
 | 304 | /* Heap property: child not less than parent */ | 
 
 
 
 
 | 305 | XD3_ASSERT (! heap_less (& ents[heap[i]], & ents[heap[i/2]])); | 
 
 
 
 
 | 306 | } | 
 
 
 
 
 | 307 | } | 
 
 
 
 
 | 308 | #endif | 
 
 
 
 
 | 309 |  | 
 
 
 
 
 | 310 | /*********************************************************************/ | 
 
 
 
 
 | 311 | /*                             MTF, 1/2                              */ | 
 
 
 
 
 | 312 | /*********************************************************************/ | 
 
 
 
 
 | 313 |  | 
 
 
 
 
 | 314 | static INLINE usize_t | 
 
 
 
 
 | 315 | djw_update_mtf (uint8_t *mtf, usize_t mtf_i) | 
 
 
 
 
 | 316 | { | 
 
 
 
 
 | 317 | int k; | 
 
 
 
 
 | 318 | usize_t sym = mtf[mtf_i]; | 
 
 
 
 
 | 319 |  | 
 
 
 
 
 | 320 | for (k = mtf_i; k != 0; k -= 1) { mtf[k] = mtf[k-1]; } | 
 
 
 
 
 | 321 |  | 
 
 
 
 
 | 322 | mtf[0] = sym; | 
 
 
 
 
 | 323 | return sym; | 
 
 
 
 
 | 324 | } | 
 
 
 
 
 | 325 |  | 
 
 
 
 
 | 326 | static INLINE void | 
 
 
 
 
 | 327 | djw_update_1_2 (int *mtf_run, usize_t *mtf_i, uint8_t *mtfsym, djw_weight *freq) | 
 
 
 
 
 | 328 | { | 
 
 
 
 
 | 329 | int code; | 
 
 
 
 
 | 330 |  | 
 
 
 
 
 | 331 | do | 
 
 
 
 
 | 332 | { | 
 
 
 
 
 | 333 | /* Offset by 1, since any number of RUN_ symbols implies run>0... */ | 
 
 
 
 
 | 334 | *mtf_run -= 1; | 
 
 
 
 
 | 335 |  | 
 
 
 
 
 | 336 | code = (*mtf_run & 1) ? RUN_1 : RUN_0; | 
 
 
 
 
 | 337 |  | 
 
 
 
 
 | 338 | mtfsym[(*mtf_i)++] = code; | 
 
 
 
 
 | 339 | freq[code] += 1; | 
 
 
 
 
 | 340 | *mtf_run >>= 1; | 
 
 
 
 
 | 341 | } | 
 
 
 
 
 | 342 | while (*mtf_run >= 1); | 
 
 
 
 
 | 343 |  | 
 
 
 
 
 | 344 | *mtf_run = 0; | 
 
 
 
 
 | 345 | } | 
 
 
 
 
 | 346 |  | 
 
 
 
 
 | 347 | static void | 
 
 
 
 
 | 348 | djw_init_clen_mtf_1_2 (uint8_t *clmtf) | 
 
 
 
 
 | 349 | { | 
 
 
 
 
 | 350 | int i, cl_i = 0; | 
 
 
 
 
 | 351 |  | 
 
 
 
 
 | 352 | clmtf[cl_i++] = 0; | 
 
 
 
 
 | 353 | for (i = 0; i < DJW_BASIC_CODES; i += 1) { clmtf[cl_i++] = djw_encode_12basic[i]; } | 
 
 
 
 
 | 354 | for (i = 0; i < DJW_EXTRA_CODES; i += 1) { clmtf[cl_i++] = djw_encode_12extra[i]; } | 
 
 
 
 
 | 355 | } | 
 
 
 
 
 | 356 |  | 
 
 
 
 
 | 357 | /*********************************************************************/ | 
 
 
 
 
 | 358 | /*                           PREFIX CODES                            */ | 
 
 
 
 
 | 359 | /*********************************************************************/ | 
 
 
 
 
 | 360 | #if XD3_ENCODER | 
 
 
 
 
 | 361 | static usize_t | 
 
 
 
 
 | 362 | djw_build_prefix (const djw_weight *freq, uint8_t *clen, int asize, int maxlen) | 
 
 
 
 
 | 363 | { | 
 
 
 
 
 | 364 | /* Heap with 0th entry unused, prefix tree with up to ALPHABET_SIZE-1 internal nodes, | 
 
 
 
 
 | 365 | * never more than ALPHABET_SIZE entries actually in the heap (minimum weight subtrees | 
 
 
 
 
 | 366 | * during prefix construction).  First ALPHABET_SIZE entries are the actual symbols, | 
 
 
 
 
 | 367 | * next ALPHABET_SIZE-1 are internal nodes. */ | 
 
 
 
 
 | 368 | djw_heapen ents[ALPHABET_SIZE * 2]; | 
 
 
 
 
 | 369 | uint        heap[ALPHABET_SIZE + 1]; | 
 
 
 
 
 | 370 |  | 
 
 
 
 
 | 371 | uint heap_last; /* Index of the last _valid_ heap entry. */ | 
 
 
 
 
 | 372 | uint ents_size; /* Number of entries, including 0th fake entry */ | 
 
 
 
 
 | 373 | int  overflow;  /* Number of code lengths that overflow */ | 
 
 
 
 
 | 374 | uint32_t total_bits; | 
 
 
 
 
 | 375 | int i; | 
 
 
 
 
 | 376 |  | 
 
 
 
 
 | 377 | IF_DEBUG (uint32_t first_bits = 0); | 
 
 
 
 
 | 378 |  | 
 
 
 
 
 | 379 | /* Insert real symbol frequences. */ | 
 
 
 
 
 | 380 | for (i = 0; i < asize; i += 1) | 
 
 
 
 
 | 381 | { | 
 
 
 
 
 | 382 | ents[i+1].freq = freq[i]; | 
 
 
 
 
 | 383 | } | 
 
 
 
 
 | 384 |  | 
 
 
 
 
 | 385 | again: | 
 
 
 
 
 | 386 |  | 
 
 
 
 
 | 387 | /* The loop is re-entered each time an overflow occurs.  Re-initialize... */ | 
 
 
 
 
 | 388 | heap_last = 0; | 
 
 
 
 
 | 389 | ents_size = 1; | 
 
 
 
 
 | 390 | overflow  = 0; | 
 
 
 
 
 | 391 | total_bits = 0; | 
 
 
 
 
 | 392 |  | 
 
 
 
 
 | 393 | /* 0th entry terminates the while loop in heap_insert (its the parent of the smallest | 
 
 
 
 
 | 394 | * element, always less-than) */ | 
 
 
 
 
 | 395 | heap[0] = 0; | 
 
 
 
 
 | 396 | ents[0].depth = 0; | 
 
 
 
 
 | 397 | ents[0].freq  = 0; | 
 
 
 
 
 | 398 |  | 
 
 
 
 
 | 399 | /* Initial heap. */ | 
 
 
 
 
 | 400 | for (i = 0; i < asize; i += 1, ents_size += 1) | 
 
 
 
 
 | 401 | { | 
 
 
 
 
 | 402 | ents[ents_size].depth  = 0; | 
 
 
 
 
 | 403 | ents[ents_size].parent = 0; | 
 
 
 
 
 | 404 |  | 
 
 
 
 
 | 405 | if (ents[ents_size].freq != 0) | 
 
 
 
 
 | 406 | { | 
 
 
 
 
 | 407 | heap_insert (heap, ents, ++heap_last, ents_size); | 
 
 
 
 
 | 408 | } | 
 
 
 
 
 | 409 | } | 
 
 
 
 
 | 410 |  | 
 
 
 
 
 | 411 | IF_DEBUG (heap_check (heap, ents, heap_last)); | 
 
 
 
 
 | 412 |  | 
 
 
 
 
 | 413 | /* Must be at least one symbol, or else we can't get here. */ | 
 
 
 
 
 | 414 | XD3_ASSERT (heap_last != 0); | 
 
 
 
 
 | 415 |  | 
 
 
 
 
 | 416 | /* If there is only one symbol, fake a second to prevent zero-length codes. */ | 
 
 
 
 
 | 417 | if (unlikely (heap_last == 1)) | 
 
 
 
 
 | 418 | { | 
 
 
 
 
 | 419 | /* Pick either the first or last symbol. */ | 
 
 
 
 
 | 420 | int s = freq[0] ? asize-1 : 0; | 
 
 
 
 
 | 421 | ents[s+1].freq = 1; | 
 
 
 
 
 | 422 | goto again; | 
 
 
 
 
 | 423 | } | 
 
 
 
 
 | 424 |  | 
 
 
 
 
 | 425 | /* Build prefix tree. */ | 
 
 
 
 
 | 426 | while (heap_last > 1) | 
 
 
 
 
 | 427 | { | 
 
 
 
 
 | 428 | djw_heapen *h1 = heap_extract (heap, ents, --heap_last); | 
 
 
 
 
 | 429 | djw_heapen *h2 = heap_extract (heap, ents, --heap_last); | 
 
 
 
 
 | 430 |  | 
 
 
 
 
 | 431 | ents[ents_size].freq   = h1->freq + h2->freq; | 
 
 
 
 
 | 432 | ents[ents_size].depth  = 1 + max (h1->depth, h2->depth); | 
 
 
 
 
 | 433 | ents[ents_size].parent = 0; | 
 
 
 
 
 | 434 |  | 
 
 
 
 
 | 435 | h1->parent = h2->parent = ents_size; | 
 
 
 
 
 | 436 |  | 
 
 
 
 
 | 437 | heap_insert (heap, ents, ++heap_last, ents_size++); | 
 
 
 
 
 | 438 |  | 
 
 
 
 
 | 439 | IF_DEBUG (heap_check (heap, ents, heap_last)); | 
 
 
 
 
 | 440 | } | 
 
 
 
 
 | 441 |  | 
 
 
 
 
 | 442 | /* Now compute prefix code lengths, counting parents. */ | 
 
 
 
 
 | 443 | for (i = 1; i < asize+1; i += 1) | 
 
 
 
 
 | 444 | { | 
 
 
 
 
 | 445 | int b = 0; | 
 
 
 
 
 | 446 |  | 
 
 
 
 
 | 447 | if (ents[i].freq != 0) | 
 
 
 
 
 | 448 | { | 
 
 
 
 
 | 449 | int p = i; | 
 
 
 
 
 | 450 |  | 
 
 
 
 
 | 451 | while ((p = ents[p].parent) != 0) { b += 1; } | 
 
 
 
 
 | 452 |  | 
 
 
 
 
 | 453 | if (b > maxlen) { overflow = 1; } | 
 
 
 
 
 | 454 |  | 
 
 
 
 
 | 455 | total_bits += b * freq[i-1]; | 
 
 
 
 
 | 456 | } | 
 
 
 
 
 | 457 |  | 
 
 
 
 
 | 458 | /* clen is 0-origin, unlike ents. */ | 
 
 
 
 
 | 459 | clen[i-1] = b; | 
 
 
 
 
 | 460 | } | 
 
 
 
 
 | 461 |  | 
 
 
 
 
 | 462 | IF_DEBUG (if (first_bits == 0) first_bits = total_bits); | 
 
 
 
 
 | 463 |  | 
 
 
 
 
 | 464 | if (! overflow) | 
 
 
 
 
 | 465 | { | 
 
 
 
 
 | 466 | IF_DEBUG (if (first_bits != total_bits) | 
 
 
 
 
 | 467 | { | 
 
 
 
 
 | 468 | DP(RINT "code length overflow changed %u bits\n", (usize_t)(total_bits - first_bits)); | 
 
 
 
 
 | 469 | }); | 
 
 
 
 
 | 470 | return total_bits; | 
 
 
 
 
 | 471 | } | 
 
 
 
 
 | 472 |  | 
 
 
 
 
 | 473 | /* OPT: There is a non-looping way to fix overflow shown in zlib, but this is easier | 
 
 
 
 
 | 474 | * (for now), as done in bzip2. */ | 
 
 
 
 
 | 475 | for (i = 1; i < asize+1; i += 1) | 
 
 
 
 
 | 476 | { | 
 
 
 
 
 | 477 | ents[i].freq = ents[i].freq / 2 + 1; | 
 
 
 
 
 | 478 | } | 
 
 
 
 
 | 479 |  | 
 
 
 
 
 | 480 | goto again; | 
 
 
 
 
 | 481 | } | 
 
 
 
 
 | 482 |  | 
 
 
 
 
 | 483 | static void | 
 
 
 
 
 | 484 | djw_build_codes (uint *codes, const uint8_t *clen, int asize DEBUG_ARG (int abs_max)) | 
 
 
 
 
 | 485 | { | 
 
 
 
 
 | 486 | int i, l; | 
 
 
 
 
 | 487 | int min_clen = DJW_MAX_CODELEN; | 
 
 
 
 
 | 488 | int max_clen = 0; | 
 
 
 
 
 | 489 | uint code = 0; | 
 
 
 
 
 | 490 |  | 
 
 
 
 
 | 491 | for (i = 0; i < asize; i += 1) | 
 
 
 
 
 | 492 | { | 
 
 
 
 
 | 493 | if (clen[i] > 0 && clen[i] < min_clen) | 
 
 
 
 
 | 494 | { | 
 
 
 
 
 | 495 | min_clen = clen[i]; | 
 
 
 
 
 | 496 | } | 
 
 
 
 
 | 497 |  | 
 
 
 
 
 | 498 | max_clen = max (max_clen, (int) clen[i]); | 
 
 
 
 
 | 499 | } | 
 
 
 
 
 | 500 |  | 
 
 
 
 
 | 501 | XD3_ASSERT (max_clen <= abs_max); | 
 
 
 
 
 | 502 |  | 
 
 
 
 
 | 503 | for (l = min_clen; l <= max_clen; l += 1) | 
 
 
 
 
 | 504 | { | 
 
 
 
 
 | 505 | for (i = 0; i < asize; i += 1) | 
 
 
 
 
 | 506 | { | 
 
 
 
 
 | 507 | if (clen[i] == l) { codes[i] = code++; } | 
 
 
 
 
 | 508 | } | 
 
 
 
 
 | 509 |  | 
 
 
 
 
 | 510 | code <<= 1; | 
 
 
 
 
 | 511 | } | 
 
 
 
 
 | 512 | } | 
 
 
 
 
 | 513 |  | 
 
 
 
 
 | 514 | /*********************************************************************/ | 
 
 
 
 
 | 515 | /*                            MOVE-TO-FRONT                          */ | 
 
 
 
 
 | 516 | /*********************************************************************/ | 
 
 
 
 
 | 517 | static void | 
 
 
 
 
 | 518 | djw_compute_mtf_1_2 (djw_prefix *prefix, | 
 
 
 
 
 | 519 | uint8_t     *mtf, | 
 
 
 
 
 | 520 | djw_weight *freq_out,   /* freak out! */ | 
 
 
 
 
 | 521 | usize_t       nsym) | 
 
 
 
 
 | 522 | { | 
 
 
 
 
 | 523 | int i, j, k; | 
 
 
 
 
 | 524 | usize_t sym; | 
 
 
 
 
 | 525 | usize_t size = prefix->scount; | 
 
 
 
 
 | 526 | usize_t mtf_i = 0; | 
 
 
 
 
 | 527 | int mtf_run = 0; | 
 
 
 
 
 | 528 |  | 
 
 
 
 
 | 529 | memset (freq_out, 0, sizeof (freq_out[0]) * (nsym+1)); | 
 
 
 
 
 | 530 |  | 
 
 
 
 
 | 531 | for (i = 0; i < size; ) | 
 
 
 
 
 | 532 | { | 
 
 
 
 
 | 533 | /* OPT: Bzip optimizes this algorithm a little by effectively checking j==0 before | 
 
 
 
 
 | 534 | * the MTF update. */ | 
 
 
 
 
 | 535 | sym = prefix->symbol[i++]; | 
 
 
 
 
 | 536 |  | 
 
 
 
 
 | 537 | for (j = 0; mtf[j] != sym; j += 1) { } | 
 
 
 
 
 | 538 |  | 
 
 
 
 
 | 539 | XD3_ASSERT (j < nsym); | 
 
 
 
 
 | 540 |  | 
 
 
 
 
 | 541 | for (k = j; k >= 1; k -= 1) { mtf[k] = mtf[k-1]; } | 
 
 
 
 
 | 542 |  | 
 
 
 
 
 | 543 | mtf[0] = sym; | 
 
 
 
 
 | 544 |  | 
 
 
 
 
 | 545 | if (j == 0) | 
 
 
 
 
 | 546 | { | 
 
 
 
 
 | 547 | mtf_run += 1; | 
 
 
 
 
 | 548 | continue; | 
 
 
 
 
 | 549 | } | 
 
 
 
 
 | 550 |  | 
 
 
 
 
 | 551 | if (mtf_run > 0) | 
 
 
 
 
 | 552 | { | 
 
 
 
 
 | 553 | djw_update_1_2 (& mtf_run, & mtf_i, prefix->mtfsym, freq_out); | 
 
 
 
 
 | 554 | } | 
 
 
 
 
 | 555 |  | 
 
 
 
 
 | 556 | /* Non-zero symbols are offset by RUN_1 */ | 
 
 
 
 
 | 557 | prefix->mtfsym[mtf_i++] = j+RUN_1; | 
 
 
 
 
 | 558 | freq_out[j+RUN_1] += 1; | 
 
 
 
 
 | 559 | } | 
 
 
 
 
 | 560 |  | 
 
 
 
 
 | 561 | if (mtf_run > 0) | 
 
 
 
 
 | 562 | { | 
 
 
 
 
 | 563 | djw_update_1_2 (& mtf_run, & mtf_i, prefix->mtfsym, freq_out); | 
 
 
 
 
 | 564 | } | 
 
 
 
 
 | 565 |  | 
 
 
 
 
 | 566 | prefix->mcount = mtf_i; | 
 
 
 
 
 | 567 | } | 
 
 
 
 
 | 568 |  | 
 
 
 
 
 | 569 | static usize_t | 
 
 
 
 
 | 570 | djw_count_freqs (djw_weight *freq, xd3_output *input) | 
 
 
 
 
 | 571 | { | 
 
 
 
 
 | 572 | xd3_output  *in; | 
 
 
 
 
 | 573 | usize_t       size = 0; | 
 
 
 
 
 | 574 |  | 
 
 
 
 
 | 575 | memset (freq, 0, sizeof (freq[0]) * ALPHABET_SIZE); | 
 
 
 
 
 | 576 |  | 
 
 
 
 
 | 577 | /* Freqency counting. OPT: can be accomplished beforehand. */ | 
 
 
 
 
 | 578 | for (in = input; in; in = in->next_page) | 
 
 
 
 
 | 579 | { | 
 
 
 
 
 | 580 | const uint8_t *p     = in->base; | 
 
 
 
 
 | 581 | const uint8_t *p_max = p + in->next; | 
 
 
 
 
 | 582 |  | 
 
 
 
 
 | 583 | size += in->next; | 
 
 
 
 
 | 584 |  | 
 
 
 
 
 | 585 | do { freq[*p++] += 1; } while (p < p_max); | 
 
 
 
 
 | 586 | } | 
 
 
 
 
 | 587 |  | 
 
 
 
 
 | 588 | IF_DEBUG1 ({int i; | 
 
 
 
 
 | 589 | DP(RINT "freqs: "); | 
 
 
 
 
 | 590 | for (i = 0; i < ALPHABET_SIZE; i += 1) { DP(RINT "%u ", freq[i]); } | 
 
 
 
 
 | 591 | DP(RINT "\n");}); | 
 
 
 
 
 | 592 |  | 
 
 
 
 
 | 593 | return size; | 
 
 
 
 
 | 594 | } | 
 
 
 
 
 | 595 |  | 
 
 
 
 
 | 596 | static void | 
 
 
 
 
 | 597 | djw_compute_multi_prefix (int          groups, | 
 
 
 
 
 | 598 | uint8_t      clen[DJW_MAX_GROUPS][ALPHABET_SIZE], | 
 
 
 
 
 | 599 | djw_prefix *prefix) | 
 
 
 
 
 | 600 | { | 
 
 
 
 
 | 601 | int gp, i; | 
 
 
 
 
 | 602 |  | 
 
 
 
 
 | 603 | prefix->scount = ALPHABET_SIZE; | 
 
 
 
 
 | 604 | memcpy (prefix->symbol, clen[0], ALPHABET_SIZE); | 
 
 
 
 
 | 605 |  | 
 
 
 
 
 | 606 | for (gp = 1; gp < groups; gp += 1) | 
 
 
 
 
 | 607 | { | 
 
 
 
 
 | 608 | for (i = 0; i < ALPHABET_SIZE; i += 1) | 
 
 
 
 
 | 609 | { | 
 
 
 
 
 | 610 | if (clen[gp][i] == 0) | 
 
 
 
 
 | 611 | { | 
 
 
 
 
 | 612 | continue; | 
 
 
 
 
 | 613 | } | 
 
 
 
 
 | 614 |  | 
 
 
 
 
 | 615 | prefix->symbol[prefix->scount++] = clen[gp][i]; | 
 
 
 
 
 | 616 | } | 
 
 
 
 
 | 617 | } | 
 
 
 
 
 | 618 | } | 
 
 
 
 
 | 619 |  | 
 
 
 
 
 | 620 | static void | 
 
 
 
 
 | 621 | djw_compute_prefix_1_2 (djw_prefix *prefix, djw_weight *freq) | 
 
 
 
 
 | 622 | { | 
 
 
 
 
 | 623 | uint8_t clmtf[DJW_MAX_CODELEN+1]; | 
 
 
 
 
 | 624 |  | 
 
 
 
 
 | 625 | djw_init_clen_mtf_1_2 (clmtf); | 
 
 
 
 
 | 626 |  | 
 
 
 
 
 | 627 | djw_compute_mtf_1_2 (prefix, clmtf, freq, DJW_MAX_CODELEN+1); | 
 
 
 
 
 | 628 | } | 
 
 
 
 
 | 629 |  | 
 
 
 
 
 | 630 | static int | 
 
 
 
 
 | 631 | djw_encode_prefix (xd3_stream    *stream, | 
 
 
 
 
 | 632 | xd3_output   **output, | 
 
 
 
 
 | 633 | bit_state     *bstate, | 
 
 
 
 
 | 634 | djw_prefix   *prefix) | 
 
 
 
 
 | 635 | { | 
 
 
 
 
 | 636 | int ret, i; | 
 
 
 
 
 | 637 | uint num_to_encode; | 
 
 
 
 
 | 638 | djw_weight clfreq[DJW_TOTAL_CODES]; | 
 
 
 
 
 | 639 | uint8_t    clclen[DJW_TOTAL_CODES]; | 
 
 
 
 
 | 640 | uint       clcode[DJW_TOTAL_CODES]; | 
 
 
 
 
 | 641 |  | 
 
 
 
 
 | 642 | IF_TUNE (memset (clfreq, 0, sizeof (clfreq))); | 
 
 
 
 
 | 643 |  | 
 
 
 
 
 | 644 | /* Move-to-front encode prefix symbols, count frequencies */ | 
 
 
 
 
 | 645 | djw_compute_prefix_1_2 (prefix, clfreq); | 
 
 
 
 
 | 646 |  | 
 
 
 
 
 | 647 | /* Compute codes */ | 
 
 
 
 
 | 648 | djw_build_prefix (clfreq, clclen, DJW_TOTAL_CODES, DJW_MAX_CLCLEN); | 
 
 
 
 
 | 649 | djw_build_codes  (clcode, clclen, DJW_TOTAL_CODES DEBUG_ARG (DJW_MAX_CLCLEN)); | 
 
 
 
 
 | 650 |  | 
 
 
 
 
 | 651 | /* Compute number of extra codes beyond basic ones for this template. */ | 
 
 
 
 
 | 652 | num_to_encode = DJW_TOTAL_CODES; | 
 
 
 
 
 | 653 | while (num_to_encode > DJW_EXTRA_12OFFSET && clclen[num_to_encode-1] == 0) { num_to_encode -= 1; } | 
 
 
 
 
 | 654 | XD3_ASSERT (num_to_encode - DJW_EXTRA_12OFFSET < (1 << DJW_EXTRA_CODE_BITS)); | 
 
 
 
 
 | 655 |  | 
 
 
 
 
 | 656 | /* Encode: # of extra codes */ | 
 
 
 
 
 | 657 | if ((ret = xd3_encode_bits (stream, output, bstate, DJW_EXTRA_CODE_BITS, | 
 
 
 
 
 | 658 | num_to_encode - DJW_EXTRA_12OFFSET))) { return ret; } | 
 
 
 
 
 | 659 |  | 
 
 
 
 
 | 660 | /* Encode: MTF code lengths */ | 
 
 
 
 
 | 661 | for (i = 0; i < num_to_encode; i += 1) | 
 
 
 
 
 | 662 | { | 
 
 
 
 
 | 663 | if ((ret = xd3_encode_bits (stream, output, bstate, DJW_CLCLEN_BITS, clclen[i]))) { return ret; } | 
 
 
 
 
 | 664 | } | 
 
 
 
 
 | 665 |  | 
 
 
 
 
 | 666 | /* Encode: CLEN code lengths */ | 
 
 
 
 
 | 667 | for (i = 0; i < prefix->mcount; i += 1) | 
 
 
 
 
 | 668 | { | 
 
 
 
 
 | 669 | usize_t mtf_sym = prefix->mtfsym[i]; | 
 
 
 
 
 | 670 | usize_t bits    = clclen[mtf_sym]; | 
 
 
 
 
 | 671 | usize_t code    = clcode[mtf_sym]; | 
 
 
 
 
 | 672 |  | 
 
 
 
 
 | 673 | if ((ret = xd3_encode_bits (stream, output, bstate, bits, code))) { return ret; } | 
 
 
 
 
 | 674 | } | 
 
 
 
 
 | 675 |  | 
 
 
 
 
 | 676 | IF_TUNE (memcpy (tune_freq, clfreq, sizeof (clfreq))); | 
 
 
 
 
 | 677 |  | 
 
 
 
 
 | 678 | return 0; | 
 
 
 
 
 | 679 | } | 
 
 
 
 
 | 680 |  | 
 
 
 
 
 | 681 | static void | 
 
 
 
 
 | 682 | djw_compute_selector_1_2 (djw_prefix *prefix, | 
 
 
 
 
 | 683 | usize_t       groups, | 
 
 
 
 
 | 684 | djw_weight *gbest_freq) | 
 
 
 
 
 | 685 | { | 
 
 
 
 
 | 686 | uint8_t grmtf[DJW_MAX_GROUPS]; | 
 
 
 
 
 | 687 | usize_t i; | 
 
 
 
 
 | 688 |  | 
 
 
 
 
 | 689 | for (i = 0; i < groups; i += 1) { grmtf[i] = i; } | 
 
 
 
 
 | 690 |  | 
 
 
 
 
 | 691 | djw_compute_mtf_1_2 (prefix, grmtf, gbest_freq, groups); | 
 
 
 
 
 | 692 | } | 
 
 
 
 
 | 693 |  | 
 
 
 
 
 | 694 | static int | 
 
 
 
 
 | 695 | xd3_encode_howmany_groups (xd3_stream *stream, | 
 
 
 
 
 | 696 | xd3_sec_cfg *cfg, | 
 
 
 
 
 | 697 | usize_t input_size, | 
 
 
 
 
 | 698 | usize_t *ret_groups, | 
 
 
 
 
 | 699 | usize_t *ret_sector_size) | 
 
 
 
 
 | 700 | { | 
 
 
 
 
 | 701 | usize_t cfg_groups = 0; | 
 
 
 
 
 | 702 | usize_t cfg_sector_size = 0; | 
 
 
 
 
 | 703 | usize_t sugg_groups = 0; | 
 
 
 
 
 | 704 | usize_t sugg_sector_size = 0; | 
 
 
 
 
 | 705 |  | 
 
 
 
 
 | 706 | if (cfg->ngroups != 0) | 
 
 
 
 
 | 707 | { | 
 
 
 
 
 | 708 | if (cfg->ngroups < 0 || cfg->ngroups > DJW_MAX_GROUPS) | 
 
 
 
 
 | 709 | { | 
 
 
 
 
 | 710 | stream->msg = "invalid secondary encoder group number"; | 
 
 
 
 
 | 711 | return XD3_INTERNAL; | 
 
 
 
 
 | 712 | } | 
 
 
 
 
 | 713 |  | 
 
 
 
 
 | 714 | cfg_groups = cfg->ngroups; | 
 
 
 
 
 | 715 | } | 
 
 
 
 
 | 716 |  | 
 
 
 
 
 | 717 | if (cfg->sector_size != 0) | 
 
 
 
 
 | 718 | { | 
 
 
 
 
 | 719 | if (cfg->sector_size < DJW_SECTORSZ_MULT || cfg->sector_size > DJW_SECTORSZ_MAX || (cfg->sector_size % DJW_SECTORSZ_MULT) != 0) | 
 
 
 
 
 | 720 | { | 
 
 
 
 
 | 721 | stream->msg = "invalid secondary encoder sector size"; | 
 
 
 
 
 | 722 | return XD3_INTERNAL; | 
 
 
 
 
 | 723 | } | 
 
 
 
 
 | 724 |  | 
 
 
 
 
 | 725 | cfg_sector_size = cfg->sector_size; | 
 
 
 
 
 | 726 | } | 
 
 
 
 
 | 727 |  | 
 
 
 
 
 | 728 | if (cfg_groups == 0 || cfg_sector_size == 0) | 
 
 
 
 
 | 729 | { | 
 
 
 
 
 | 730 | /* These values were found empirically using xdelta3-tune around version | 
 
 
 
 
 | 731 | * xdfs-0.256. */ | 
 
 
 
 
 | 732 | switch (cfg->data_type) | 
 
 
 
 
 | 733 | { | 
 
 
 
 
 | 734 | case DATA_SECTION: | 
 
 
 
 
 | 735 | if      (input_size < 1000)   { sugg_groups = 1; sugg_sector_size = 0; } | 
 
 
 
 
 | 736 | else if (input_size < 4000)   { sugg_groups = 2; sugg_sector_size = 10; } | 
 
 
 
 
 | 737 | else if (input_size < 7000)   { sugg_groups = 3; sugg_sector_size = 10; } | 
 
 
 
 
 | 738 | else if (input_size < 10000)  { sugg_groups = 4; sugg_sector_size = 10; } | 
 
 
 
 
 | 739 | else if (input_size < 25000)  { sugg_groups = 5; sugg_sector_size = 10; } | 
 
 
 
 
 | 740 | else if (input_size < 50000)  { sugg_groups = 7; sugg_sector_size = 20; } | 
 
 
 
 
 | 741 | else if (input_size < 100000) { sugg_groups = 8; sugg_sector_size = 30; } | 
 
 
 
 
 | 742 | else                          { sugg_groups = 8; sugg_sector_size = 70; } | 
 
 
 
 
 | 743 | break; | 
 
 
 
 
 | 744 | case INST_SECTION: | 
 
 
 
 
 | 745 | if      (input_size < 7000)   { sugg_groups = 1; sugg_sector_size = 0; } | 
 
 
 
 
 | 746 | else if (input_size < 10000)  { sugg_groups = 2; sugg_sector_size = 50; } | 
 
 
 
 
 | 747 | else if (input_size < 25000)  { sugg_groups = 3; sugg_sector_size = 50; } | 
 
 
 
 
 | 748 | else if (input_size < 50000)  { sugg_groups = 6; sugg_sector_size = 40; } | 
 
 
 
 
 | 749 | else if (input_size < 100000) { sugg_groups = 8; sugg_sector_size = 40; } | 
 
 
 
 
 | 750 | else                          { sugg_groups = 8; sugg_sector_size = 40; } | 
 
 
 
 
 | 751 | break; | 
 
 
 
 
 | 752 | case ADDR_SECTION: | 
 
 
 
 
 | 753 | if      (input_size < 9000)   { sugg_groups = 1; sugg_sector_size = 0; } | 
 
 
 
 
 | 754 | else if (input_size < 25000)  { sugg_groups = 2; sugg_sector_size = 130; } | 
 
 
 
 
 | 755 | else if (input_size < 50000)  { sugg_groups = 3; sugg_sector_size = 130; } | 
 
 
 
 
 | 756 | else if (input_size < 100000) { sugg_groups = 5; sugg_sector_size = 130; } | 
 
 
 
 
 | 757 | else                          { sugg_groups = 7; sugg_sector_size = 130; } | 
 
 
 
 
 | 758 | break; | 
 
 
 
 
 | 759 | } | 
 
 
 
 
 | 760 |  | 
 
 
 
 
 | 761 | if (cfg_groups == 0) | 
 
 
 
 
 | 762 | { | 
 
 
 
 
 | 763 | cfg_groups = sugg_groups; | 
 
 
 
 
 | 764 | } | 
 
 
 
 
 | 765 |  | 
 
 
 
 
 | 766 | if (cfg_sector_size == 0) | 
 
 
 
 
 | 767 | { | 
 
 
 
 
 | 768 | cfg_sector_size = sugg_sector_size; | 
 
 
 
 
 | 769 | } | 
 
 
 
 
 | 770 | } | 
 
 
 
 
 | 771 |  | 
 
 
 
 
 | 772 | if (cfg_groups != 1 && cfg_sector_size == 0) | 
 
 
 
 
 | 773 | { | 
 
 
 
 
 | 774 | switch (cfg->data_type) | 
 
 
 
 
 | 775 | { | 
 
 
 
 
 | 776 | case DATA_SECTION: | 
 
 
 
 
 | 777 | cfg_sector_size = 20; | 
 
 
 
 
 | 778 | break; | 
 
 
 
 
 | 779 | case INST_SECTION: | 
 
 
 
 
 | 780 | cfg_sector_size = 50; | 
 
 
 
 
 | 781 | break; | 
 
 
 
 
 | 782 | case ADDR_SECTION: | 
 
 
 
 
 | 783 | cfg_sector_size = 130; | 
 
 
 
 
 | 784 | break; | 
 
 
 
 
 | 785 | } | 
 
 
 
 
 | 786 | } | 
 
 
 
 
 | 787 |  | 
 
 
 
 
 | 788 | (*ret_groups)     = cfg_groups; | 
 
 
 
 
 | 789 | (*ret_sector_size) = cfg_sector_size; | 
 
 
 
 
 | 790 |  | 
 
 
 
 
 | 791 | XD3_ASSERT (cfg_groups > 0 && cfg_groups <= DJW_MAX_GROUPS); | 
 
 
 
 
 | 792 | XD3_ASSERT (cfg_groups == 1 || (cfg_sector_size >= DJW_SECTORSZ_MULT && cfg_sector_size <= DJW_SECTORSZ_MAX)); | 
 
 
 
 
 | 793 |  | 
 
 
 
 
 | 794 | return 0; | 
 
 
 
 
 | 795 | } | 
 
 
 
 
 | 796 |  | 
 
 
 
 
 | 797 | static int | 
 
 
 
 
 | 798 | xd3_real_encode_huff (xd3_stream   *stream, | 
 
 
 
 
 | 799 | djw_stream  *h, | 
 
 
 
 
 | 800 | xd3_output   *input, | 
 
 
 
 
 | 801 | xd3_output   *output, | 
 
 
 
 
 | 802 | xd3_sec_cfg  *cfg) | 
 
 
 
 
 | 803 | { | 
 
 
 
 
 | 804 | int         ret; | 
 
 
 
 
 | 805 | usize_t      groups, sector_size; | 
 
 
 
 
 | 806 | bit_state   bstate = BIT_STATE_ENCODE_INIT; | 
 
 
 
 
 | 807 | xd3_output *in; | 
 
 
 
 
 | 808 | int         encode_bits; | 
 
 
 
 
 | 809 | usize_t      input_bits; | 
 
 
 
 
 | 810 | usize_t      input_bytes; | 
 
 
 
 
 | 811 | usize_t      initial_offset = output->next; | 
 
 
 
 
 | 812 | djw_weight real_freq[ALPHABET_SIZE]; | 
 
 
 
 
 | 813 | uint8_t    *gbest = NULL; /* Dynamic allocations: could put these in djw_stream. */ | 
 
 
 
 
 | 814 | uint8_t    *gbest_mtf = NULL; | 
 
 
 
 
 | 815 |  | 
 
 
 
 
 | 816 | input_bytes = djw_count_freqs (real_freq, input); | 
 
 
 
 
 | 817 | input_bits  = input_bytes * 8; | 
 
 
 
 
 | 818 |  | 
 
 
 
 
 | 819 | XD3_ASSERT (input_bytes > 0); | 
 
 
 
 
 | 820 |  | 
 
 
 
 
 | 821 | if ((ret = xd3_encode_howmany_groups (stream, cfg, input_bytes, & groups, & sector_size))) | 
 
 
 
 
 | 822 | { | 
 
 
 
 
 | 823 | return ret; | 
 
 
 
 
 | 824 | } | 
 
 
 
 
 | 825 |  | 
 
 
 
 
 | 826 | if (0) | 
 
 
 
 
 | 827 | { | 
 
 
 
 
 | 828 | regroup: | 
 
 
 
 
 | 829 | /* Sometimes we dynamically decide there are too many groups.  Arrive here. */ | 
 
 
 
 
 | 830 | output->next = initial_offset; | 
 
 
 
 
 | 831 | xd3_bit_state_encode_init (& bstate); | 
 
 
 
 
 | 832 | } | 
 
 
 
 
 | 833 |  | 
 
 
 
 
 | 834 | /* Encode: # of groups (3 bits) */ | 
 
 
 
 
 | 835 | if ((ret = xd3_encode_bits (stream, & output, & bstate, DJW_GROUP_BITS, groups-1))) { goto failure; } | 
 
 
 
 
 | 836 |  | 
 
 
 
 
 | 837 | if (groups == 1) | 
 
 
 
 
 | 838 | { | 
 
 
 
 
 | 839 | /* Single Huffman group. */ | 
 
 
 
 
 | 840 | uint        code[ALPHABET_SIZE]; /* Codes */ | 
 
 
 
 
 | 841 | IF_TUNE  (uint8_t    *clen = tune_clen[0];) | 
 
 
 
 
 | 842 | IF_NTUNE (uint8_t     clen[ALPHABET_SIZE];) | 
 
 
 
 
 | 843 | uint8_t    prefix_mtfsym[ALPHABET_SIZE]; | 
 
 
 
 
 | 844 | djw_prefix prefix; | 
 
 
 
 
 | 845 |  | 
 
 
 
 
 | 846 | encode_bits = | 
 
 
 
 
 | 847 | djw_build_prefix (real_freq, clen, ALPHABET_SIZE, DJW_MAX_CODELEN); | 
 
 
 
 
 | 848 | djw_build_codes  (code, clen, ALPHABET_SIZE DEBUG_ARG (DJW_MAX_CODELEN)); | 
 
 
 
 
 | 849 |  | 
 
 
 
 
 | 850 | if (encode_bits + EFFICIENCY_BITS >= input_bits && ! cfg->inefficient) { goto nosecond; } | 
 
 
 
 
 | 851 |  | 
 
 
 
 
 | 852 | /* Encode: prefix */ | 
 
 
 
 
 | 853 | prefix.mtfsym = prefix_mtfsym; | 
 
 
 
 
 | 854 | prefix.symbol = clen; | 
 
 
 
 
 | 855 | prefix.scount = ALPHABET_SIZE; | 
 
 
 
 
 | 856 |  | 
 
 
 
 
 | 857 | if ((ret = djw_encode_prefix (stream, & output, & bstate, & prefix))) { goto failure; } | 
 
 
 
 
 | 858 |  | 
 
 
 
 
 | 859 | if (encode_bits + (8 * output->next) + EFFICIENCY_BITS >= input_bits && ! cfg->inefficient) { goto nosecond; } | 
 
 
 
 
 | 860 |  | 
 
 
 
 
 | 861 | IF_TUNE (tune_prefix_bits = xd3_bitsof_output (output, & bstate)); | 
 
 
 
 
 | 862 | IF_TUNE (tune_select_bits = 0); | 
 
 
 
 
 | 863 | IF_TUNE (tune_encode_bits = encode_bits); | 
 
 
 
 
 | 864 |  | 
 
 
 
 
 | 865 | /* Encode: data */ | 
 
 
 
 
 | 866 | for (in = input; in; in = in->next_page) | 
 
 
 
 
 | 867 | { | 
 
 
 
 
 | 868 | const uint8_t *p     = in->base; | 
 
 
 
 
 | 869 | const uint8_t *p_max = p + in->next; | 
 
 
 
 
 | 870 |  | 
 
 
 
 
 | 871 | do | 
 
 
 
 
 | 872 | { | 
 
 
 
 
 | 873 | usize_t sym  = *p++; | 
 
 
 
 
 | 874 | usize_t bits = clen[sym]; | 
 
 
 
 
 | 875 |  | 
 
 
 
 
 | 876 | IF_DEBUG (encode_bits -= bits); | 
 
 
 
 
 | 877 |  | 
 
 
 
 
 | 878 | if ((ret = xd3_encode_bits (stream, & output, & bstate, bits, code[sym]))) { goto failure; } | 
 
 
 
 
 | 879 | } | 
 
 
 
 
 | 880 | while (p < p_max); | 
 
 
 
 
 | 881 | } | 
 
 
 
 
 | 882 |  | 
 
 
 
 
 | 883 | XD3_ASSERT (encode_bits == 0); | 
 
 
 
 
 | 884 | } | 
 
 
 
 
 | 885 | else | 
 
 
 
 
 | 886 | { | 
 
 
 
 
 | 887 | /* DJW Huffman */ | 
 
 
 
 
 | 888 | djw_weight evolve_freq[DJW_MAX_GROUPS][ALPHABET_SIZE]; | 
 
 
 
 
 | 889 | #if TUNE_HUFFMAN == 0 | 
 
 
 
 
 | 890 | uint8_t evolve_clen[DJW_MAX_GROUPS][ALPHABET_SIZE]; | 
 
 
 
 
 | 891 | #else | 
 
 
 
 
 | 892 | #define evolve_clen tune_clen | 
 
 
 
 
 | 893 | #endif | 
 
 
 
 
 | 894 | djw_weight left = input_bytes; | 
 
 
 
 
 | 895 | int gp; | 
 
 
 
 
 | 896 | int niter = 0; | 
 
 
 
 
 | 897 | usize_t select_bits; | 
 
 
 
 
 | 898 | usize_t sym1 = 0, sym2 = 0, s; | 
 
 
 
 
 | 899 | usize_t   gcost[DJW_MAX_GROUPS]; | 
 
 
 
 
 | 900 | uint     gbest_code[DJW_MAX_GROUPS+2]; | 
 
 
 
 
 | 901 | uint8_t  gbest_clen[DJW_MAX_GROUPS+2]; | 
 
 
 
 
 | 902 | usize_t   gbest_max = 1 + (input_bytes - 1) / sector_size; | 
 
 
 
 
 | 903 | int      best_bits = 0; | 
 
 
 
 
 | 904 | usize_t   gbest_no; | 
 
 
 
 
 | 905 | usize_t   gpcnt; | 
 
 
 
 
 | 906 | const uint8_t *p; | 
 
 
 
 
 | 907 | IF_DEBUG1 (usize_t gcount[DJW_MAX_GROUPS]); | 
 
 
 
 
 | 908 |  | 
 
 
 
 
 | 909 | /* Encode: sector size (5 bits) */ | 
 
 
 
 
 | 910 | if ((ret = xd3_encode_bits (stream, & output, & bstate, | 
 
 
 
 
 | 911 | DJW_SECTORSZ_BITS, (sector_size/DJW_SECTORSZ_MULT)-1))) { goto failure; } | 
 
 
 
 
 | 912 |  | 
 
 
 
 
 | 913 | /* Dynamic allocation. */ | 
 
 
 
 
 | 914 | if (gbest == NULL) | 
 
 
 
 
 | 915 | { | 
 
 
 
 
 | 916 | if ((gbest = xd3_alloc (stream, gbest_max, 1)) == NULL) { ret = ENOMEM; goto failure; } | 
 
 
 
 
 | 917 | } | 
 
 
 
 
 | 918 |  | 
 
 
 
 
 | 919 | if (gbest_mtf == NULL) | 
 
 
 
 
 | 920 | { | 
 
 
 
 
 | 921 | if ((gbest_mtf = xd3_alloc (stream, gbest_max, 1)) == NULL) { ret = ENOMEM; goto failure; } | 
 
 
 
 
 | 922 | } | 
 
 
 
 
 | 923 |  | 
 
 
 
 
 | 924 | /* OPT: Some of the inner loops can be optimized, as shown in bzip2 */ | 
 
 
 
 
 | 925 |  | 
 
 
 
 
 | 926 | /* Generate initial code length tables. */ | 
 
 
 
 
 | 927 | for (gp = 0; gp < groups; gp += 1) | 
 
 
 
 
 | 928 | { | 
 
 
 
 
 | 929 | djw_weight sum  = 0; | 
 
 
 
 
 | 930 | djw_weight goal = left / (groups - gp); | 
 
 
 
 
 | 931 |  | 
 
 
 
 
 | 932 | IF_DEBUG1 (usize_t nz = 0); | 
 
 
 
 
 | 933 |  | 
 
 
 
 
 | 934 | /* Due to the single-code granularity of this distribution, it may be that we | 
 
 
 
 
 | 935 | * can't generate a distribution for each group.  In that case subtract one | 
 
 
 
 
 | 936 | * group and try again.  If (inefficient), we're testing group behavior, so | 
 
 
 
 
 | 937 | * don't mess things up. */ | 
 
 
 
 
 | 938 | if (goal == 0 && !cfg->inefficient) | 
 
 
 
 
 | 939 | { | 
 
 
 
 
 | 940 | IF_DEBUG1 (DP(RINT "too many groups (%u), dropping one\n", groups)); | 
 
 
 
 
 | 941 | groups -= 1; | 
 
 
 
 
 | 942 | goto regroup; | 
 
 
 
 
 | 943 | } | 
 
 
 
 
 | 944 |  | 
 
 
 
 
 | 945 | /* Sum == goal is possible when (cfg->inefficient)... */ | 
 
 
 
 
 | 946 | while (sum < goal) | 
 
 
 
 
 | 947 | { | 
 
 
 
 
 | 948 | XD3_ASSERT (sym2 < ALPHABET_SIZE); | 
 
 
 
 
 | 949 | IF_DEBUG1 (nz += real_freq[sym2] != 0); | 
 
 
 
 
 | 950 | sum += real_freq[sym2++]; | 
 
 
 
 
 | 951 | } | 
 
 
 
 
 | 952 |  | 
 
 
 
 
 | 953 | IF_DEBUG1(DP(RINT "group %u has symbols %u..%u (%u non-zero) (%u/%u = %.3f)\n", | 
 
 
 
 
 | 954 | gp, sym1, sym2, nz, sum, input_bytes, sum / (double)input_bytes);); | 
 
 
 
 
 | 955 |  | 
 
 
 
 
 | 956 | for (s = 0; s < ALPHABET_SIZE; s += 1) | 
 
 
 
 
 | 957 | { | 
 
 
 
 
 | 958 | evolve_clen[gp][s] = (s >= sym1 && s <= sym2) ? 1 : 16; | 
 
 
 
 
 | 959 | } | 
 
 
 
 
 | 960 |  | 
 
 
 
 
 | 961 | left -= sum; | 
 
 
 
 
 | 962 | sym1  = sym2+1; | 
 
 
 
 
 | 963 | } | 
 
 
 
 
 | 964 |  | 
 
 
 
 
 | 965 | repeat: | 
 
 
 
 
 | 966 |  | 
 
 
 
 
 | 967 | niter += 1; | 
 
 
 
 
 | 968 | gbest_no = 0; | 
 
 
 
 
 | 969 | memset (evolve_freq, 0, sizeof (evolve_freq[0]) * groups); | 
 
 
 
 
 | 970 | IF_DEBUG1 (memset (gcount, 0, sizeof (gcount[0]) * groups)); | 
 
 
 
 
 | 971 |  | 
 
 
 
 
 | 972 | /* For each input page (loop is irregular to allow non-pow2-size group size. */ | 
 
 
 
 
 | 973 | in = input; | 
 
 
 
 
 | 974 | p  = in->base; | 
 
 
 
 
 | 975 |  | 
 
 
 
 
 | 976 | /* For each group-size sector. */ | 
 
 
 
 
 | 977 | do | 
 
 
 
 
 | 978 | { | 
 
 
 
 
 | 979 | const uint8_t *p0  = p; | 
 
 
 
 
 | 980 | xd3_output    *in0 = in; | 
 
 
 
 
 | 981 | usize_t best   = 0; | 
 
 
 
 
 | 982 | usize_t winner = 0; | 
 
 
 
 
 | 983 |  | 
 
 
 
 
 | 984 | /* Select best group for each sector, update evolve_freq. */ | 
 
 
 
 
 | 985 | memset (gcost, 0, sizeof (gcost[0]) * groups); | 
 
 
 
 
 | 986 |  | 
 
 
 
 
 | 987 | /* For each byte in sector. */ | 
 
 
 
 
 | 988 | for (gpcnt = 0; gpcnt < sector_size; gpcnt += 1) | 
 
 
 
 
 | 989 | { | 
 
 
 
 
 | 990 | /* For each group. */ | 
 
 
 
 
 | 991 | for (gp = 0; gp < groups; gp += 1) | 
 
 
 
 
 | 992 | { | 
 
 
 
 
 | 993 | gcost[gp] += evolve_clen[gp][*p]; | 
 
 
 
 
 | 994 | } | 
 
 
 
 
 | 995 |  | 
 
 
 
 
 | 996 | /* Check end-of-input-page. */ | 
 
 
 
 
 | 997 | #             define GP_PAGE()                \ | 
 
 
 
 
 | 998 | if (++p - in->base == in->next) \ | 
 
 
 
 
 | 999 | {                             \ | 
 
 
 
 
 | 1000 | in = in->next_page;         \ | 
 
 
 
 
 | 1001 | if (in == NULL) { break; }  \ | 
 
 
 
 
 | 1002 | p  = in->base;              \ | 
 
 
 
 
 | 1003 | } | 
 
 
 
 
 | 1004 |  | 
 
 
 
 
 | 1005 | GP_PAGE (); | 
 
 
 
 
 | 1006 | } | 
 
 
 
 
 | 1007 |  | 
 
 
 
 
 | 1008 | /* Find min cost group for this sector */ | 
 
 
 
 
 | 1009 | best = -1U; | 
 
 
 
 
 | 1010 | for (gp = 0; gp < groups; gp += 1) | 
 
 
 
 
 | 1011 | { | 
 
 
 
 
 | 1012 | if (gcost[gp] < best) { best = gcost[gp]; winner = gp; } | 
 
 
 
 
 | 1013 | } | 
 
 
 
 
 | 1014 |  | 
 
 
 
 
 | 1015 | XD3_ASSERT(gbest_no < gbest_max); | 
 
 
 
 
 | 1016 | gbest[gbest_no++] = winner; | 
 
 
 
 
 | 1017 | IF_DEBUG1 (gcount[winner] += 1); | 
 
 
 
 
 | 1018 |  | 
 
 
 
 
 | 1019 | p  = p0; | 
 
 
 
 
 | 1020 | in = in0; | 
 
 
 
 
 | 1021 |  | 
 
 
 
 
 | 1022 | /* Update group frequencies. */ | 
 
 
 
 
 | 1023 | for (gpcnt = 0; gpcnt < sector_size; gpcnt += 1) | 
 
 
 
 
 | 1024 | { | 
 
 
 
 
 | 1025 | evolve_freq[winner][*p] += 1; | 
 
 
 
 
 | 1026 |  | 
 
 
 
 
 | 1027 | GP_PAGE (); | 
 
 
 
 
 | 1028 | } | 
 
 
 
 
 | 1029 | } | 
 
 
 
 
 | 1030 | while (in != NULL); | 
 
 
 
 
 | 1031 |  | 
 
 
 
 
 | 1032 | XD3_ASSERT (gbest_no == gbest_max); | 
 
 
 
 
 | 1033 |  | 
 
 
 
 
 | 1034 | /* Recompute code lengths. */ | 
 
 
 
 
 | 1035 | encode_bits = 0; | 
 
 
 
 
 | 1036 | for (gp = 0; gp < groups; gp += 1) | 
 
 
 
 
 | 1037 | { | 
 
 
 
 
 | 1038 | int i; | 
 
 
 
 
 | 1039 | uint8_t evolve_zero[ALPHABET_SIZE]; | 
 
 
 
 
 | 1040 | int any_zeros = 0; | 
 
 
 
 
 | 1041 |  | 
 
 
 
 
 | 1042 | memset (evolve_zero, 0, sizeof (evolve_zero)); | 
 
 
 
 
 | 1043 |  | 
 
 
 
 
 | 1044 | /* Cannot allow a zero clen when the real frequency is non-zero.  Note: this | 
 
 
 
 
 | 1045 | * means we are going to encode a fairly long code for these unused entries.  An | 
 
 
 
 
 | 1046 | * improvement would be to implement a NOTUSED code for when these are actually | 
 
 
 
 
 | 1047 | * zero, but this requires another data structure (evolve_zero) since we don't | 
 
 
 
 
 | 1048 | * know when evolve_freq[i] == 0...  Briefly tested, looked worse. */ | 
 
 
 
 
 | 1049 | for (i = 0; i < ALPHABET_SIZE; i += 1) | 
 
 
 
 
 | 1050 | { | 
 
 
 
 
 | 1051 | if (evolve_freq[gp][i] == 0 && real_freq[i] != 0) | 
 
 
 
 
 | 1052 | { | 
 
 
 
 
 | 1053 | evolve_freq[gp][i] = 1; | 
 
 
 
 
 | 1054 | evolve_zero[i] = 1; | 
 
 
 
 
 | 1055 | any_zeros = 1; | 
 
 
 
 
 | 1056 | } | 
 
 
 
 
 | 1057 | } | 
 
 
 
 
 | 1058 |  | 
 
 
 
 
 | 1059 | encode_bits += djw_build_prefix (evolve_freq[gp], evolve_clen[gp], ALPHABET_SIZE, DJW_MAX_CODELEN); | 
 
 
 
 
 | 1060 |  | 
 
 
 
 
 | 1061 | /* The above faking of frequencies does not matter for the last iteration, but | 
 
 
 
 
 | 1062 | * we don't know when that is yet.  However, it also breaks the encode_bits | 
 
 
 
 
 | 1063 | * computation.  Necessary for accuracy, and for the (encode_bits==0) assert | 
 
 
 
 
 | 1064 | * after all bits are output. */ | 
 
 
 
 
 | 1065 | if (any_zeros) | 
 
 
 
 
 | 1066 | { | 
 
 
 
 
 | 1067 | IF_DEBUG1 (usize_t save_total = encode_bits); | 
 
 
 
 
 | 1068 |  | 
 
 
 
 
 | 1069 | for (i = 0; i < ALPHABET_SIZE; i += 1) | 
 
 
 
 
 | 1070 | { | 
 
 
 
 
 | 1071 | if (evolve_zero[i]) { encode_bits -= evolve_clen[gp][i]; } | 
 
 
 
 
 | 1072 | } | 
 
 
 
 
 | 1073 |  | 
 
 
 
 
 | 1074 | IF_DEBUG1 (DP(RINT "evolve_zero reduced %u bits in group %u\n", save_total - encode_bits, gp)); | 
 
 
 
 
 | 1075 | } | 
 
 
 
 
 | 1076 | } | 
 
 
 
 
 | 1077 |  | 
 
 
 
 
 | 1078 | IF_DEBUG1( | 
 
 
 
 
 | 1079 | DP(RINT "pass %u total bits: %u group uses: ", niter, encode_bits); | 
 
 
 
 
 | 1080 | for (gp = 0; gp < groups; gp += 1) { DP(RINT "%u ", gcount[gp]); } | 
 
 
 
 
 | 1081 | DP(RINT "\n");); | 
 
 
 
 
 | 1082 |  | 
 
 
 
 
 | 1083 | /* End iteration.  (The following assertion proved invalid.) */ | 
 
 
 
 
 | 1084 | /*XD3_ASSERT (niter == 1 || best_bits >= encode_bits);*/ | 
 
 
 
 
 | 1085 |  | 
 
 
 
 
 | 1086 | IF_DEBUG1 (if (niter > 1 && best_bits < encode_bits) { | 
 
 
 
 
 | 1087 | DP(RINT "iteration lost %u bits\n", encode_bits - best_bits); }); | 
 
 
 
 
 | 1088 |  | 
 
 
 
 
 | 1089 | if (niter == 1 || (niter < DJW_MAX_ITER && (best_bits - encode_bits) >= DJW_MIN_IMPROVEMENT)) | 
 
 
 
 
 | 1090 | { | 
 
 
 
 
 | 1091 | best_bits = encode_bits; | 
 
 
 
 
 | 1092 | goto repeat; | 
 
 
 
 
 | 1093 | } | 
 
 
 
 
 | 1094 |  | 
 
 
 
 
 | 1095 | /* Efficiency check. */ | 
 
 
 
 
 | 1096 | if (encode_bits + EFFICIENCY_BITS >= input_bits && ! cfg->inefficient) { goto nosecond; } | 
 
 
 
 
 | 1097 |  | 
 
 
 
 
 | 1098 | IF_DEBUG1 (DP(RINT "djw compression: %u -> %0.3f\n", input_bytes, encode_bits / 8.0)); | 
 
 
 
 
 | 1099 |  | 
 
 
 
 
 | 1100 | /* Encode: prefix */ | 
 
 
 
 
 | 1101 | { | 
 
 
 
 
 | 1102 | uint8_t     prefix_symbol[DJW_MAX_GROUPS * ALPHABET_SIZE]; | 
 
 
 
 
 | 1103 | uint8_t     prefix_mtfsym[DJW_MAX_GROUPS * ALPHABET_SIZE]; | 
 
 
 
 
 | 1104 | uint8_t     prefix_repcnt[DJW_MAX_GROUPS * ALPHABET_SIZE]; | 
 
 
 
 
 | 1105 | djw_prefix prefix; | 
 
 
 
 
 | 1106 |  | 
 
 
 
 
 | 1107 | prefix.symbol = prefix_symbol; | 
 
 
 
 
 | 1108 | prefix.mtfsym = prefix_mtfsym; | 
 
 
 
 
 | 1109 | prefix.repcnt = prefix_repcnt; | 
 
 
 
 
 | 1110 |  | 
 
 
 
 
 | 1111 | djw_compute_multi_prefix (groups, evolve_clen, & prefix); | 
 
 
 
 
 | 1112 | if ((ret = djw_encode_prefix (stream, & output, & bstate, & prefix))) { goto failure; } | 
 
 
 
 
 | 1113 | } | 
 
 
 
 
 | 1114 |  | 
 
 
 
 
 | 1115 | /* Encode: selector frequencies */ | 
 
 
 
 
 | 1116 | { | 
 
 
 
 
 | 1117 | djw_weight gbest_freq[DJW_MAX_GROUPS+1]; | 
 
 
 
 
 | 1118 | djw_prefix gbest_prefix; | 
 
 
 
 
 | 1119 | usize_t i; | 
 
 
 
 
 | 1120 |  | 
 
 
 
 
 | 1121 | gbest_prefix.scount = gbest_no; | 
 
 
 
 
 | 1122 | gbest_prefix.symbol = gbest; | 
 
 
 
 
 | 1123 | gbest_prefix.mtfsym = gbest_mtf; | 
 
 
 
 
 | 1124 |  | 
 
 
 
 
 | 1125 | djw_compute_selector_1_2 (& gbest_prefix, groups, gbest_freq); | 
 
 
 
 
 | 1126 |  | 
 
 
 
 
 | 1127 | select_bits = | 
 
 
 
 
 | 1128 | djw_build_prefix (gbest_freq, gbest_clen, groups+1, DJW_MAX_GBCLEN); | 
 
 
 
 
 | 1129 | djw_build_codes  (gbest_code, gbest_clen, groups+1  DEBUG_ARG (DJW_MAX_GBCLEN)); | 
 
 
 
 
 | 1130 |  | 
 
 
 
 
 | 1131 | IF_TUNE (tune_prefix_bits = xd3_bitsof_output (output, & bstate)); | 
 
 
 
 
 | 1132 | IF_TUNE (tune_select_bits = select_bits); | 
 
 
 
 
 | 1133 | IF_TUNE (tune_encode_bits = encode_bits); | 
 
 
 
 
 | 1134 |  | 
 
 
 
 
 | 1135 | for (i = 0; i < groups+1; i += 1) | 
 
 
 
 
 | 1136 | { | 
 
 
 
 
 | 1137 | if ((ret = xd3_encode_bits (stream, & output, & bstate, DJW_GBCLEN_BITS, gbest_clen[i]))) { goto failure; } | 
 
 
 
 
 | 1138 | } | 
 
 
 
 
 | 1139 |  | 
 
 
 
 
 | 1140 | for (i = 0; i < gbest_prefix.mcount; i += 1) | 
 
 
 
 
 | 1141 | { | 
 
 
 
 
 | 1142 | usize_t gp_mtf      = gbest_mtf[i]; | 
 
 
 
 
 | 1143 | usize_t gp_sel_bits = gbest_clen[gp_mtf]; | 
 
 
 
 
 | 1144 | usize_t gp_sel_code = gbest_code[gp_mtf]; | 
 
 
 
 
 | 1145 |  | 
 
 
 
 
 | 1146 | XD3_ASSERT (gp_mtf < groups+1); | 
 
 
 
 
 | 1147 |  | 
 
 
 
 
 | 1148 | if ((ret = xd3_encode_bits (stream, & output, & bstate, gp_sel_bits, gp_sel_code))) { goto failure; } | 
 
 
 
 
 | 1149 |  | 
 
 
 
 
 | 1150 | IF_DEBUG (select_bits -= gp_sel_bits); | 
 
 
 
 
 | 1151 | } | 
 
 
 
 
 | 1152 |  | 
 
 
 
 
 | 1153 | XD3_ASSERT (select_bits == 0); | 
 
 
 
 
 | 1154 | } | 
 
 
 
 
 | 1155 |  | 
 
 
 
 
 | 1156 | /* Efficiency check. */ | 
 
 
 
 
 | 1157 | if (encode_bits + select_bits + (8 * output->next) + EFFICIENCY_BITS >= input_bits && ! cfg->inefficient) { goto nosecond; } | 
 
 
 
 
 | 1158 |  | 
 
 
 
 
 | 1159 | /* Encode: data */ | 
 
 
 
 
 | 1160 | { | 
 
 
 
 
 | 1161 | uint evolve_code[DJW_MAX_GROUPS][ALPHABET_SIZE]; | 
 
 
 
 
 | 1162 | usize_t sector = 0; | 
 
 
 
 
 | 1163 |  | 
 
 
 
 
 | 1164 | /* Build code tables for each group. */ | 
 
 
 
 
 | 1165 | for (gp = 0; gp < groups; gp += 1) | 
 
 
 
 
 | 1166 | { | 
 
 
 
 
 | 1167 | djw_build_codes (evolve_code[gp], evolve_clen[gp], ALPHABET_SIZE DEBUG_ARG (DJW_MAX_CODELEN)); | 
 
 
 
 
 | 1168 | } | 
 
 
 
 
 | 1169 |  | 
 
 
 
 
 | 1170 | /* Now loop over the input. */ | 
 
 
 
 
 | 1171 | in = input; | 
 
 
 
 
 | 1172 | p  = in->base; | 
 
 
 
 
 | 1173 |  | 
 
 
 
 
 | 1174 | do | 
 
 
 
 
 | 1175 | { | 
 
 
 
 
 | 1176 | /* For each sector. */ | 
 
 
 
 
 | 1177 | usize_t   gp_best  = gbest[sector]; | 
 
 
 
 
 | 1178 | uint    *gp_codes = evolve_code[gp_best]; | 
 
 
 
 
 | 1179 | uint8_t *gp_clens = evolve_clen[gp_best]; | 
 
 
 
 
 | 1180 |  | 
 
 
 
 
 | 1181 | XD3_ASSERT (sector < gbest_no); | 
 
 
 
 
 | 1182 |  | 
 
 
 
 
 | 1183 | sector += 1; | 
 
 
 
 
 | 1184 |  | 
 
 
 
 
 | 1185 | /* Encode the sector data. */ | 
 
 
 
 
 | 1186 | for (gpcnt = 0; gpcnt < sector_size; gpcnt += 1) | 
 
 
 
 
 | 1187 | { | 
 
 
 
 
 | 1188 | usize_t sym  = *p; | 
 
 
 
 
 | 1189 | usize_t bits = gp_clens[sym]; | 
 
 
 
 
 | 1190 | usize_t code = gp_codes[sym]; | 
 
 
 
 
 | 1191 |  | 
 
 
 
 
 | 1192 | IF_DEBUG (encode_bits -= bits); | 
 
 
 
 
 | 1193 |  | 
 
 
 
 
 | 1194 | if ((ret = xd3_encode_bits (stream, & output, & bstate, bits, code))) { goto failure; } | 
 
 
 
 
 | 1195 |  | 
 
 
 
 
 | 1196 | GP_PAGE (); | 
 
 
 
 
 | 1197 | } | 
 
 
 
 
 | 1198 | } | 
 
 
 
 
 | 1199 | while (in != NULL); | 
 
 
 
 
 | 1200 |  | 
 
 
 
 
 | 1201 | XD3_ASSERT (select_bits == 0); | 
 
 
 
 
 | 1202 | XD3_ASSERT (encode_bits == 0); | 
 
 
 
 
 | 1203 |  | 
 
 
 
 
 | 1204 | #undef evolve_clen | 
 
 
 
 
 | 1205 | } | 
 
 
 
 
 | 1206 | } | 
 
 
 
 
 | 1207 |  | 
 
 
 
 
 | 1208 | ret = xd3_flush_bits (stream, & output, & bstate); | 
 
 
 
 
 | 1209 |  | 
 
 
 
 
 | 1210 | if (0) | 
 
 
 
 
 | 1211 | { | 
 
 
 
 
 | 1212 | nosecond: | 
 
 
 
 
 | 1213 | stream->msg = "secondary compression was inefficient"; | 
 
 
 
 
 | 1214 | ret = XD3_NOSECOND; | 
 
 
 
 
 | 1215 | } | 
 
 
 
 
 | 1216 |  | 
 
 
 
 
 | 1217 | failure: | 
 
 
 
 
 | 1218 |  | 
 
 
 
 
 | 1219 | xd3_free (stream, gbest); | 
 
 
 
 
 | 1220 | xd3_free (stream, gbest_mtf); | 
 
 
 
 
 | 1221 | return ret; | 
 
 
 
 
 | 1222 | } | 
 
 
 
 
 | 1223 | #endif /* XD3_ENCODER */ | 
 
 
 
 
 | 1224 |  | 
 
 
 
 
 | 1225 | /*********************************************************************/ | 
 
 
 
 
 | 1226 | /*                              DECODE                               */ | 
 
 
 
 
 | 1227 | /*********************************************************************/ | 
 
 
 
 
 | 1228 |  | 
 
 
 
 
 | 1229 | static void | 
 
 
 
 
 | 1230 | djw_build_decoder (xd3_stream    *stream, | 
 
 
 
 
 | 1231 | usize_t         asize, | 
 
 
 
 
 | 1232 | usize_t         abs_max, | 
 
 
 
 
 | 1233 | const uint8_t *clen, | 
 
 
 
 
 | 1234 | uint8_t       *inorder, | 
 
 
 
 
 | 1235 | uint          *base, | 
 
 
 
 
 | 1236 | uint          *limit, | 
 
 
 
 
 | 1237 | uint          *min_clenp, | 
 
 
 
 
 | 1238 | uint          *max_clenp) | 
 
 
 
 
 | 1239 | { | 
 
 
 
 
 | 1240 | int i, l; | 
 
 
 
 
 | 1241 | const uint8_t *ci; | 
 
 
 
 
 | 1242 | uint nr_clen [DJW_MAX_CODELEN+2]; | 
 
 
 
 
 | 1243 | uint tmp_base[DJW_MAX_CODELEN+2]; | 
 
 
 
 
 | 1244 | int min_clen; | 
 
 
 
 
 | 1245 | int max_clen; | 
 
 
 
 
 | 1246 |  | 
 
 
 
 
 | 1247 | /* Assumption: the two temporary arrays are large enough to hold abs_max. */ | 
 
 
 
 
 | 1248 | XD3_ASSERT (abs_max <= DJW_MAX_CODELEN); | 
 
 
 
 
 | 1249 |  | 
 
 
 
 
 | 1250 | /* This looks something like the start of zlib's inftrees.c */ | 
 
 
 
 
 | 1251 | memset (nr_clen, 0, sizeof (nr_clen[0]) * (abs_max+1)); | 
 
 
 
 
 | 1252 |  | 
 
 
 
 
 | 1253 | /* Count number of each code length */ | 
 
 
 
 
 | 1254 | i  = asize; | 
 
 
 
 
 | 1255 | ci = clen; | 
 
 
 
 
 | 1256 | do | 
 
 
 
 
 | 1257 | { | 
 
 
 
 
 | 1258 | /* Caller _must_ check that values are in-range.  Most of the time | 
 
 
 
 
 | 1259 | * the caller decodes a specific number of bits, which imply the max value, and the | 
 
 
 
 
 | 1260 | * other time the caller decodes a huffman value, which must be in-range.  Therefore, | 
 
 
 
 
 | 1261 | * its an assertion and this function cannot otherwise fail. */ | 
 
 
 
 
 | 1262 | XD3_ASSERT (*ci <= abs_max); | 
 
 
 
 
 | 1263 |  | 
 
 
 
 
 | 1264 | nr_clen[*ci++]++; | 
 
 
 
 
 | 1265 | } | 
 
 
 
 
 | 1266 | while (--i != 0); | 
 
 
 
 
 | 1267 |  | 
 
 
 
 
 | 1268 | /* Compute min, max. */ | 
 
 
 
 
 | 1269 | for (i = 1; i <= abs_max; i += 1) { if (nr_clen[i]) { break; } } | 
 
 
 
 
 | 1270 | min_clen = i; | 
 
 
 
 
 | 1271 | for (i = abs_max; i != 0; i -= 1) { if (nr_clen[i]) { break; } } | 
 
 
 
 
 | 1272 | max_clen = i; | 
 
 
 
 
 | 1273 |  | 
 
 
 
 
 | 1274 | /* Fill the BASE, LIMIT table. */ | 
 
 
 
 
 | 1275 | tmp_base[min_clen] = 0; | 
 
 
 
 
 | 1276 | base[min_clen]     = 0; | 
 
 
 
 
 | 1277 | limit[min_clen]    = nr_clen[min_clen] - 1; | 
 
 
 
 
 | 1278 | for (i = min_clen + 1; i <= max_clen; i += 1) | 
 
 
 
 
 | 1279 | { | 
 
 
 
 
 | 1280 | uint last_limit = ((limit[i-1] + 1) << 1); | 
 
 
 
 
 | 1281 | tmp_base[i] = tmp_base[i-1] + nr_clen[i-1]; | 
 
 
 
 
 | 1282 | limit[i]    = last_limit + nr_clen[i] - 1; | 
 
 
 
 
 | 1283 | base[i]     = last_limit - tmp_base[i]; | 
 
 
 
 
 | 1284 | } | 
 
 
 
 
 | 1285 |  | 
 
 
 
 
 | 1286 | /* Fill the inorder array, canonically ordered codes. */ | 
 
 
 
 
 | 1287 | ci = clen; | 
 
 
 
 
 | 1288 | for (i = 0; i < asize; i += 1) | 
 
 
 
 
 | 1289 | { | 
 
 
 
 
 | 1290 | if ((l = *ci++) != 0) | 
 
 
 
 
 | 1291 | { | 
 
 
 
 
 | 1292 | inorder[tmp_base[l]++] = i; | 
 
 
 
 
 | 1293 | } | 
 
 
 
 
 | 1294 | } | 
 
 
 
 
 | 1295 |  | 
 
 
 
 
 | 1296 | *min_clenp = min_clen; | 
 
 
 
 
 | 1297 | *max_clenp = max_clen; | 
 
 
 
 
 | 1298 | } | 
 
 
 
 
 | 1299 |  | 
 
 
 
 
 | 1300 | static INLINE int | 
 
 
 
 
 | 1301 | djw_decode_symbol (xd3_stream     *stream, | 
 
 
 
 
 | 1302 | bit_state      *bstate, | 
 
 
 
 
 | 1303 | const uint8_t **input, | 
 
 
 
 
 | 1304 | const uint8_t  *input_end, | 
 
 
 
 
 | 1305 | const uint8_t  *inorder, | 
 
 
 
 
 | 1306 | const uint     *base, | 
 
 
 
 
 | 1307 | const uint     *limit, | 
 
 
 
 
 | 1308 | uint            min_clen, | 
 
 
 
 
 | 1309 | uint            max_clen, | 
 
 
 
 
 | 1310 | usize_t         *sym, | 
 
 
 
 
 | 1311 | usize_t          max_sym) | 
 
 
 
 
 | 1312 | { | 
 
 
 
 
 | 1313 | usize_t code = 0; | 
 
 
 
 
 | 1314 | usize_t bits = 0; | 
 
 
 
 
 | 1315 |  | 
 
 
 
 
 | 1316 | /* OPT: Supposedly a small lookup table improves speed here... */ | 
 
 
 
 
 | 1317 |  | 
 
 
 
 
 | 1318 | /* Code outline is similar to xd3_decode_bits... */ | 
 
 
 
 
 | 1319 | if (bstate->cur_mask == 0x100) { goto next_byte; } | 
 
 
 
 
 | 1320 |  | 
 
 
 
 
 | 1321 | for (;;) | 
 
 
 
 
 | 1322 | { | 
 
 
 
 
 | 1323 | do | 
 
 
 
 
 | 1324 | { | 
 
 
 
 
 | 1325 | if (bits == max_clen) { goto corrupt; } | 
 
 
 
 
 | 1326 |  | 
 
 
 
 
 | 1327 | bits += 1; | 
 
 
 
 
 | 1328 | code  = (code << 1); | 
 
 
 
 
 | 1329 |  | 
 
 
 
 
 | 1330 | if (bstate->cur_byte & bstate->cur_mask) { code |= 1; } | 
 
 
 
 
 | 1331 |  | 
 
 
 
 
 | 1332 | bstate->cur_mask <<= 1; | 
 
 
 
 
 | 1333 |  | 
 
 
 
 
 | 1334 | if (bits >= min_clen && code <= limit[bits]) { goto done; } | 
 
 
 
 
 | 1335 | } | 
 
 
 
 
 | 1336 | while (bstate->cur_mask != 0x100); | 
 
 
 
 
 | 1337 |  | 
 
 
 
 
 | 1338 | next_byte: | 
 
 
 
 
 | 1339 |  | 
 
 
 
 
 | 1340 | if (*input == input_end) | 
 
 
 
 
 | 1341 | { | 
 
 
 
 
 | 1342 | stream->msg = "secondary decoder end of input"; | 
 
 
 
 
 | 1343 | return XD3_INTERNAL; | 
 
 
 
 
 | 1344 | } | 
 
 
 
 
 | 1345 |  | 
 
 
 
 
 | 1346 | bstate->cur_byte = *(*input)++; | 
 
 
 
 
 | 1347 | bstate->cur_mask = 1; | 
 
 
 
 
 | 1348 | } | 
 
 
 
 
 | 1349 |  | 
 
 
 
 
 | 1350 | done: | 
 
 
 
 
 | 1351 |  | 
 
 
 
 
 | 1352 | if (base[bits] <= code) | 
 
 
 
 
 | 1353 | { | 
 
 
 
 
 | 1354 | usize_t offset = code - base[bits]; | 
 
 
 
 
 | 1355 |  | 
 
 
 
 
 | 1356 | if (offset <= max_sym) | 
 
 
 
 
 | 1357 | { | 
 
 
 
 
 | 1358 | IF_DEBUG2 (DP(RINT "(j) %u ", code)); | 
 
 
 
 
 | 1359 | *sym = inorder[offset]; | 
 
 
 
 
 | 1360 | return 0; | 
 
 
 
 
 | 1361 | } | 
 
 
 
 
 | 1362 | } | 
 
 
 
 
 | 1363 |  | 
 
 
 
 
 | 1364 | corrupt: | 
 
 
 
 
 | 1365 | stream->msg = "secondary decoder invalid code"; | 
 
 
 
 
 | 1366 | return XD3_INTERNAL; | 
 
 
 
 
 | 1367 | } | 
 
 
 
 
 | 1368 |  | 
 
 
 
 
 | 1369 | static int | 
 
 
 
 
 | 1370 | djw_decode_clclen (xd3_stream     *stream, | 
 
 
 
 
 | 1371 | bit_state      *bstate, | 
 
 
 
 
 | 1372 | const uint8_t **input, | 
 
 
 
 
 | 1373 | const uint8_t  *input_end, | 
 
 
 
 
 | 1374 | uint8_t        *cl_inorder, | 
 
 
 
 
 | 1375 | uint           *cl_base, | 
 
 
 
 
 | 1376 | uint           *cl_limit, | 
 
 
 
 
 | 1377 | uint           *cl_minlen, | 
 
 
 
 
 | 1378 | uint           *cl_maxlen, | 
 
 
 
 
 | 1379 | uint8_t        *cl_mtf) | 
 
 
 
 
 | 1380 | { | 
 
 
 
 
 | 1381 | int ret; | 
 
 
 
 
 | 1382 | uint8_t cl_clen[DJW_TOTAL_CODES]; | 
 
 
 
 
 | 1383 | usize_t num_codes, value; | 
 
 
 
 
 | 1384 | int i; | 
 
 
 
 
 | 1385 |  | 
 
 
 
 
 | 1386 | /* How many extra code lengths to encode. */ | 
 
 
 
 
 | 1387 | if ((ret = xd3_decode_bits (stream, bstate, input, input_end, DJW_EXTRA_CODE_BITS, & num_codes))) { return ret; } | 
 
 
 
 
 | 1388 |  | 
 
 
 
 
 | 1389 | num_codes += DJW_EXTRA_12OFFSET; | 
 
 
 
 
 | 1390 |  | 
 
 
 
 
 | 1391 | /* Read num_codes. */ | 
 
 
 
 
 | 1392 | for (i = 0; i < num_codes; i += 1) | 
 
 
 
 
 | 1393 | { | 
 
 
 
 
 | 1394 | if ((ret = xd3_decode_bits (stream, bstate, input, input_end, DJW_CLCLEN_BITS, & value))) { return ret; } | 
 
 
 
 
 | 1395 |  | 
 
 
 
 
 | 1396 | cl_clen[i] = value; | 
 
 
 
 
 | 1397 | } | 
 
 
 
 
 | 1398 |  | 
 
 
 
 
 | 1399 | /* Set the rest to zero. */ | 
 
 
 
 
 | 1400 | for (; i < DJW_TOTAL_CODES; i += 1) { cl_clen[i] = 0; } | 
 
 
 
 
 | 1401 |  | 
 
 
 
 
 | 1402 | /* No need to check for in-range clen values, because: */ | 
 
 
 
 
 | 1403 | XD3_ASSERT (1 << DJW_CLCLEN_BITS == DJW_MAX_CLCLEN + 1); | 
 
 
 
 
 | 1404 |  | 
 
 
 
 
 | 1405 | /* Build the code-length decoder. */ | 
 
 
 
 
 | 1406 | djw_build_decoder (stream, DJW_TOTAL_CODES, DJW_MAX_CLCLEN, | 
 
 
 
 
 | 1407 | cl_clen, cl_inorder, cl_base, cl_limit, cl_minlen, cl_maxlen); | 
 
 
 
 
 | 1408 |  | 
 
 
 
 
 | 1409 | /* Initialize the MTF state. */ | 
 
 
 
 
 | 1410 | djw_init_clen_mtf_1_2 (cl_mtf); | 
 
 
 
 
 | 1411 |  | 
 
 
 
 
 | 1412 | return 0; | 
 
 
 
 
 | 1413 | } | 
 
 
 
 
 | 1414 |  | 
 
 
 
 
 | 1415 | static INLINE int | 
 
 
 
 
 | 1416 | djw_decode_1_2 (xd3_stream     *stream, | 
 
 
 
 
 | 1417 | bit_state      *bstate, | 
 
 
 
 
 | 1418 | const uint8_t **input, | 
 
 
 
 
 | 1419 | const uint8_t  *input_end, | 
 
 
 
 
 | 1420 | const uint8_t  *inorder, | 
 
 
 
 
 | 1421 | const uint     *base, | 
 
 
 
 
 | 1422 | const uint     *limit, | 
 
 
 
 
 | 1423 | const uint     *minlen, | 
 
 
 
 
 | 1424 | const uint     *maxlen, | 
 
 
 
 
 | 1425 | uint8_t        *mtfvals, | 
 
 
 
 
 | 1426 | usize_t          elts, | 
 
 
 
 
 | 1427 | usize_t          skip_offset, | 
 
 
 
 
 | 1428 | uint8_t        *values) | 
 
 
 
 
 | 1429 | { | 
 
 
 
 
 | 1430 | usize_t n = 0, rep = 0, mtf = 0, s = 0; | 
 
 
 
 
 | 1431 | int ret; | 
 
 
 
 
 | 1432 |  | 
 
 
 
 
 | 1433 | while (n < elts) | 
 
 
 
 
 | 1434 | { | 
 
 
 
 
 | 1435 | /* Special case inside generic code: CLEN only: If not the first group, we already | 
 
 
 
 
 | 1436 | * know the zero frequencies. */ | 
 
 
 
 
 | 1437 | if (skip_offset != 0 && n >= skip_offset && values[n-skip_offset] == 0) | 
 
 
 
 
 | 1438 | { | 
 
 
 
 
 | 1439 | values[n++] = 0; | 
 
 
 
 
 | 1440 | continue; | 
 
 
 
 
 | 1441 | } | 
 
 
 
 
 | 1442 |  | 
 
 
 
 
 | 1443 | /* Repeat last symbol. */ | 
 
 
 
 
 | 1444 | if (rep != 0) | 
 
 
 
 
 | 1445 | { | 
 
 
 
 
 | 1446 | values[n++] = mtfvals[0]; | 
 
 
 
 
 | 1447 | rep -= 1; | 
 
 
 
 
 | 1448 | continue; | 
 
 
 
 
 | 1449 | } | 
 
 
 
 
 | 1450 |  | 
 
 
 
 
 | 1451 | /* Symbol following last repeat code. */ | 
 
 
 
 
 | 1452 | if (mtf != 0) | 
 
 
 
 
 | 1453 | { | 
 
 
 
 
 | 1454 | usize_t sym = djw_update_mtf (mtfvals, mtf); | 
 
 
 
 
 | 1455 | values[n++] = sym; | 
 
 
 
 
 | 1456 | mtf = 0; | 
 
 
 
 
 | 1457 | continue; | 
 
 
 
 
 | 1458 | } | 
 
 
 
 
 | 1459 |  | 
 
 
 
 
 | 1460 | /* Decode next symbol/repeat code. */ | 
 
 
 
 
 | 1461 | if ((ret = djw_decode_symbol (stream, bstate, input, input_end, | 
 
 
 
 
 | 1462 | inorder, base, limit, *minlen, *maxlen, | 
 
 
 
 
 | 1463 | & mtf, DJW_TOTAL_CODES))) { return ret; } | 
 
 
 
 
 | 1464 |  | 
 
 
 
 
 | 1465 | if (mtf <= RUN_1) | 
 
 
 
 
 | 1466 | { | 
 
 
 
 
 | 1467 | /* Repetition. */ | 
 
 
 
 
 | 1468 | rep = ((mtf + 1) << s); | 
 
 
 
 
 | 1469 | mtf = 0; | 
 
 
 
 
 | 1470 | s += 1; | 
 
 
 
 
 | 1471 | } | 
 
 
 
 
 | 1472 | else | 
 
 
 
 
 | 1473 | { | 
 
 
 
 
 | 1474 | /* Remove the RUN_1 MTF offset. */ | 
 
 
 
 
 | 1475 | mtf -= 1; | 
 
 
 
 
 | 1476 | s = 0; | 
 
 
 
 
 | 1477 | } | 
 
 
 
 
 | 1478 | } | 
 
 
 
 
 | 1479 |  | 
 
 
 
 
 | 1480 | /* If (rep != 0) there were too many codes received. */ | 
 
 
 
 
 | 1481 | if (rep != 0) | 
 
 
 
 
 | 1482 | { | 
 
 
 
 
 | 1483 | stream->msg = "secondary decoder invalid repeat code"; | 
 
 
 
 
 | 1484 | return XD3_INTERNAL; | 
 
 
 
 
 | 1485 | } | 
 
 
 
 
 | 1486 |  | 
 
 
 
 
 | 1487 | return 0; | 
 
 
 
 
 | 1488 | } | 
 
 
 
 
 | 1489 |  | 
 
 
 
 
 | 1490 | static INLINE int | 
 
 
 
 
 | 1491 | djw_decode_prefix (xd3_stream     *stream, | 
 
 
 
 
 | 1492 | bit_state      *bstate, | 
 
 
 
 
 | 1493 | const uint8_t **input, | 
 
 
 
 
 | 1494 | const uint8_t  *input_end, | 
 
 
 
 
 | 1495 | const uint8_t  *cl_inorder, | 
 
 
 
 
 | 1496 | const uint     *cl_base, | 
 
 
 
 
 | 1497 | const uint     *cl_limit, | 
 
 
 
 
 | 1498 | const uint     *cl_minlen, | 
 
 
 
 
 | 1499 | const uint     *cl_maxlen, | 
 
 
 
 
 | 1500 | uint8_t        *cl_mtf, | 
 
 
 
 
 | 1501 | usize_t          groups, | 
 
 
 
 
 | 1502 | uint8_t        *clen) | 
 
 
 
 
 | 1503 | { | 
 
 
 
 
 | 1504 | return djw_decode_1_2 (stream, bstate, input, input_end, | 
 
 
 
 
 | 1505 | cl_inorder, cl_base, cl_limit, cl_minlen, cl_maxlen, cl_mtf, | 
 
 
 
 
 | 1506 | ALPHABET_SIZE * groups, ALPHABET_SIZE, clen); | 
 
 
 
 
 | 1507 | } | 
 
 
 
 
 | 1508 |  | 
 
 
 
 
 | 1509 | static int | 
 
 
 
 
 | 1510 | xd3_decode_huff (xd3_stream     *stream, | 
 
 
 
 
 | 1511 | djw_stream    *h, | 
 
 
 
 
 | 1512 | const uint8_t **input_pos, | 
 
 
 
 
 | 1513 | const uint8_t  *const input_end, | 
 
 
 
 
 | 1514 | uint8_t       **output_pos, | 
 
 
 
 
 | 1515 | const uint8_t  *const output_end) | 
 
 
 
 
 | 1516 | { | 
 
 
 
 
 | 1517 | const uint8_t *input = *input_pos; | 
 
 
 
 
 | 1518 | uint8_t  *output = *output_pos; | 
 
 
 
 
 | 1519 | bit_state bstate = BIT_STATE_DECODE_INIT; | 
 
 
 
 
 | 1520 | uint8_t  *sel_group = NULL; | 
 
 
 
 
 | 1521 | usize_t    groups, gp; | 
 
 
 
 
 | 1522 | usize_t    output_bytes = (output_end - output); | 
 
 
 
 
 | 1523 | usize_t    sector_size; | 
 
 
 
 
 | 1524 | usize_t    sectors; | 
 
 
 
 
 | 1525 | int ret; | 
 
 
 
 
 | 1526 |  | 
 
 
 
 
 | 1527 | /* Invalid input. */ | 
 
 
 
 
 | 1528 | if (output_bytes == 0) | 
 
 
 
 
 | 1529 | { | 
 
 
 
 
 | 1530 | stream->msg = "secondary decoder invalid input"; | 
 
 
 
 
 | 1531 | return XD3_INTERNAL; | 
 
 
 
 
 | 1532 | } | 
 
 
 
 
 | 1533 |  | 
 
 
 
 
 | 1534 | /* Decode: number of groups */ | 
 
 
 
 
 | 1535 | if ((ret = xd3_decode_bits (stream, & bstate, & input, input_end, DJW_GROUP_BITS, & groups))) { goto fail; } | 
 
 
 
 
 | 1536 |  | 
 
 
 
 
 | 1537 | groups += 1; | 
 
 
 
 
 | 1538 |  | 
 
 
 
 
 | 1539 | if (groups > 1) | 
 
 
 
 
 | 1540 | { | 
 
 
 
 
 | 1541 | /* Decode: group size */ | 
 
 
 
 
 | 1542 | if ((ret = xd3_decode_bits (stream, & bstate, & input, input_end, DJW_SECTORSZ_BITS, & sector_size))) { goto fail; } | 
 
 
 
 
 | 1543 |  | 
 
 
 
 
 | 1544 | sector_size = (sector_size + 1) * DJW_SECTORSZ_MULT; | 
 
 
 
 
 | 1545 | } | 
 
 
 
 
 | 1546 | else | 
 
 
 
 
 | 1547 | { | 
 
 
 
 
 | 1548 | /* Default for groups == 1 */ | 
 
 
 
 
 | 1549 | sector_size = output_bytes; | 
 
 
 
 
 | 1550 | } | 
 
 
 
 
 | 1551 |  | 
 
 
 
 
 | 1552 | sectors = 1 + (output_bytes - 1) / sector_size; | 
 
 
 
 
 | 1553 |  | 
 
 
 
 
 | 1554 | /* @!@ In the case of groups==1, lots of extra stack space gets used here.  Could | 
 
 
 
 
 | 1555 | * dynamically allocate this memory, which would help with excess parameter passing, | 
 
 
 
 
 | 1556 | * too.  Passing too many parameters in this file, simplify it! */ | 
 
 
 
 
 | 1557 |  | 
 
 
 
 
 | 1558 | /* Outer scope: per-group symbol decoder tables. */ | 
 
 
 
 
 | 1559 | { | 
 
 
 
 
 | 1560 | uint8_t inorder[DJW_MAX_GROUPS][ALPHABET_SIZE]; | 
 
 
 
 
 | 1561 | uint    base   [DJW_MAX_GROUPS][DJW_MAX_CODELEN+2]; | 
 
 
 
 
 | 1562 | uint    limit  [DJW_MAX_GROUPS][DJW_MAX_CODELEN+2]; | 
 
 
 
 
 | 1563 | uint    minlen [DJW_MAX_GROUPS]; | 
 
 
 
 
 | 1564 | uint    maxlen [DJW_MAX_GROUPS]; | 
 
 
 
 
 | 1565 |  | 
 
 
 
 
 | 1566 | /* Nested scope: code length decoder tables. */ | 
 
 
 
 
 | 1567 | { | 
 
 
 
 
 | 1568 | uint8_t clen      [DJW_MAX_GROUPS][ALPHABET_SIZE]; | 
 
 
 
 
 | 1569 | uint8_t cl_inorder[DJW_TOTAL_CODES]; | 
 
 
 
 
 | 1570 | uint    cl_base   [DJW_MAX_CLCLEN+2]; | 
 
 
 
 
 | 1571 | uint    cl_limit  [DJW_MAX_CLCLEN+2]; | 
 
 
 
 
 | 1572 | uint8_t cl_mtf    [DJW_TOTAL_CODES]; | 
 
 
 
 
 | 1573 | uint    cl_minlen; | 
 
 
 
 
 | 1574 | uint    cl_maxlen; | 
 
 
 
 
 | 1575 |  | 
 
 
 
 
 | 1576 | /* Compute the code length decoder. */ | 
 
 
 
 
 | 1577 | if ((ret = djw_decode_clclen (stream, & bstate, & input, input_end, | 
 
 
 
 
 | 1578 | cl_inorder, cl_base, cl_limit, & cl_minlen, | 
 
 
 
 
 | 1579 | & cl_maxlen, cl_mtf))) { goto fail; } | 
 
 
 
 
 | 1580 |  | 
 
 
 
 
 | 1581 | /* Now decode each group decoder. */ | 
 
 
 
 
 | 1582 | if ((ret = djw_decode_prefix (stream, & bstate, & input, input_end, | 
 
 
 
 
 | 1583 | cl_inorder, cl_base, cl_limit, | 
 
 
 
 
 | 1584 | & cl_minlen, & cl_maxlen, cl_mtf, | 
 
 
 
 
 | 1585 | groups, clen[0]))) { goto fail; } | 
 
 
 
 
 | 1586 |  | 
 
 
 
 
 | 1587 | /* Prepare the actual decoding tables. */ | 
 
 
 
 
 | 1588 | for (gp = 0; gp < groups; gp += 1) | 
 
 
 
 
 | 1589 | { | 
 
 
 
 
 | 1590 | djw_build_decoder (stream, ALPHABET_SIZE, DJW_MAX_CODELEN, | 
 
 
 
 
 | 1591 | clen[gp], inorder[gp], base[gp], limit[gp], | 
 
 
 
 
 | 1592 | & minlen[gp], & maxlen[gp]); | 
 
 
 
 
 | 1593 | } | 
 
 
 
 
 | 1594 | } | 
 
 
 
 
 | 1595 |  | 
 
 
 
 
 | 1596 | /* Decode: selector clens. */ | 
 
 
 
 
 | 1597 | { | 
 
 
 
 
 | 1598 | uint8_t sel_inorder[DJW_MAX_GROUPS+2]; | 
 
 
 
 
 | 1599 | uint    sel_base   [DJW_MAX_GBCLEN+2]; | 
 
 
 
 
 | 1600 | uint    sel_limit  [DJW_MAX_GBCLEN+2]; | 
 
 
 
 
 | 1601 | uint8_t sel_mtf    [DJW_MAX_GROUPS+2]; | 
 
 
 
 
 | 1602 | uint    sel_minlen; | 
 
 
 
 
 | 1603 | uint    sel_maxlen; | 
 
 
 
 
 | 1604 |  | 
 
 
 
 
 | 1605 | /* Setup group selection. */ | 
 
 
 
 
 | 1606 | if (groups > 1) | 
 
 
 
 
 | 1607 | { | 
 
 
 
 
 | 1608 | uint8_t sel_clen[DJW_MAX_GROUPS+1]; | 
 
 
 
 
 | 1609 |  | 
 
 
 
 
 | 1610 | for (gp = 0; gp < groups+1; gp += 1) | 
 
 
 
 
 | 1611 | { | 
 
 
 
 
 | 1612 | usize_t value; | 
 
 
 
 
 | 1613 |  | 
 
 
 
 
 | 1614 | if ((ret = xd3_decode_bits (stream, & bstate, & input, input_end, DJW_GBCLEN_BITS, & value))) { goto fail; } | 
 
 
 
 
 | 1615 |  | 
 
 
 
 
 | 1616 | sel_clen[gp] = value; | 
 
 
 
 
 | 1617 | sel_mtf[gp]  = gp; | 
 
 
 
 
 | 1618 | } | 
 
 
 
 
 | 1619 |  | 
 
 
 
 
 | 1620 | if ((sel_group = xd3_alloc (stream, sectors, 1)) == NULL) { ret = ENOMEM; goto fail; } | 
 
 
 
 
 | 1621 |  | 
 
 
 
 
 | 1622 | djw_build_decoder (stream, groups+1, DJW_MAX_GBCLEN, sel_clen, | 
 
 
 
 
 | 1623 | sel_inorder, sel_base, sel_limit, & sel_minlen, & sel_maxlen); | 
 
 
 
 
 | 1624 |  | 
 
 
 
 
 | 1625 | if ((ret = djw_decode_1_2 (stream, & bstate, & input, input_end, | 
 
 
 
 
 | 1626 | sel_inorder, sel_base, sel_limit, & sel_minlen, & sel_maxlen, sel_mtf, | 
 
 
 
 
 | 1627 | sectors, 0, sel_group))) { goto fail; } | 
 
 
 
 
 | 1628 | } | 
 
 
 
 
 | 1629 |  | 
 
 
 
 
 | 1630 | /* Now decode each sector. */ | 
 
 
 
 
 | 1631 | { | 
 
 
 
 
 | 1632 | uint8_t *gp_inorder = inorder[0]; /* Initialize for (groups==1) case. */ | 
 
 
 
 
 | 1633 | uint    *gp_base    = base[0]; | 
 
 
 
 
 | 1634 | uint    *gp_limit   = limit[0]; | 
 
 
 
 
 | 1635 | uint     gp_minlen  = minlen[0]; | 
 
 
 
 
 | 1636 | uint     gp_maxlen  = maxlen[0]; | 
 
 
 
 
 | 1637 | usize_t c; | 
 
 
 
 
 | 1638 |  | 
 
 
 
 
 | 1639 | for (c = 0; c < sectors; c += 1) | 
 
 
 
 
 | 1640 | { | 
 
 
 
 
 | 1641 | usize_t n; | 
 
 
 
 
 | 1642 |  | 
 
 
 
 
 | 1643 | if (groups >= 2) | 
 
 
 
 
 | 1644 | { | 
 
 
 
 
 | 1645 | gp = sel_group[c]; | 
 
 
 
 
 | 1646 |  | 
 
 
 
 
 | 1647 | XD3_ASSERT (gp < groups); | 
 
 
 
 
 | 1648 |  | 
 
 
 
 
 | 1649 | gp_inorder = inorder[gp]; | 
 
 
 
 
 | 1650 | gp_base    = base[gp]; | 
 
 
 
 
 | 1651 | gp_limit   = limit[gp]; | 
 
 
 
 
 | 1652 | gp_minlen  = minlen[gp]; | 
 
 
 
 
 | 1653 | gp_maxlen  = maxlen[gp]; | 
 
 
 
 
 | 1654 | } | 
 
 
 
 
 | 1655 |  | 
 
 
 
 
 | 1656 | XD3_ASSERT (output_end - output > 0); | 
 
 
 
 
 | 1657 |  | 
 
 
 
 
 | 1658 | /* Decode next sector. */ | 
 
 
 
 
 | 1659 | n = min (sector_size, (usize_t) (output_end - output)); | 
 
 
 
 
 | 1660 |  | 
 
 
 
 
 | 1661 | do | 
 
 
 
 
 | 1662 | { | 
 
 
 
 
 | 1663 | usize_t sym; | 
 
 
 
 
 | 1664 |  | 
 
 
 
 
 | 1665 | if ((ret = djw_decode_symbol (stream, & bstate, & input, input_end, | 
 
 
 
 
 | 1666 | gp_inorder, gp_base, gp_limit, gp_minlen, gp_maxlen, | 
 
 
 
 
 | 1667 | & sym, ALPHABET_SIZE))) { goto fail; } | 
 
 
 
 
 | 1668 |  | 
 
 
 
 
 | 1669 | *output++ = sym; | 
 
 
 
 
 | 1670 | } | 
 
 
 
 
 | 1671 | while (--n); | 
 
 
 
 
 | 1672 | } | 
 
 
 
 
 | 1673 | } | 
 
 
 
 
 | 1674 | } | 
 
 
 
 
 | 1675 | } | 
 
 
 
 
 | 1676 |  | 
 
 
 
 
 | 1677 | IF_REGRESSION (if ((ret = xd3_test_clean_bits (stream, & bstate))) { goto fail; }); | 
 
 
 
 
 | 1678 | XD3_ASSERT (ret == 0); | 
 
 
 
 
 | 1679 |  | 
 
 
 
 
 | 1680 | fail: | 
 
 
 
 
 | 1681 | xd3_free (stream, sel_group); | 
 
 
 
 
 | 1682 |  | 
 
 
 
 
 | 1683 | (*input_pos) = input; | 
 
 
 
 
 | 1684 | (*output_pos) = output; | 
 
 
 
 
 | 1685 | return ret; | 
 
 
 
 
 | 1686 | } | 
 
 
 
 
 | 1687 |  | 
 
 
 
 
 | 1688 | /*********************************************************************/ | 
 
 
 
 
 | 1689 | /*                              TUNING                               */ | 
 
 
 
 
 | 1690 | /*********************************************************************/ | 
 
 
 
 
 | 1691 |  | 
 
 
 
 
 | 1692 | #if TUNE_HUFFMAN && XD3_ENCODER | 
 
 
 
 
 | 1693 | #include <stdio.h> | 
 
 
 
 
 | 1694 | #include "xdelta3-fgk.h" | 
 
 
 
 
 | 1695 |  | 
 
 
 
 
 | 1696 | static uint | 
 
 
 
 
 | 1697 | xd3_bitsof_output (xd3_output *output, bit_state *bstate) | 
 
 
 
 
 | 1698 | { | 
 
 
 
 
 | 1699 | uint x = 0; | 
 
 
 
 
 | 1700 | uint m = bstate->cur_mask; | 
 
 
 
 
 | 1701 |  | 
 
 
 
 
 | 1702 | while (m != 1) | 
 
 
 
 
 | 1703 | { | 
 
 
 
 
 | 1704 | x += 1; | 
 
 
 
 
 | 1705 | m >>= 1; | 
 
 
 
 
 | 1706 | } | 
 
 
 
 
 | 1707 |  | 
 
 
 
 
 | 1708 | return x + 8 * xd3_sizeof_output (output); | 
 
 
 
 
 | 1709 | } | 
 
 
 
 
 | 1710 |  | 
 
 
 
 
 | 1711 | static const char* xd3_sect_type (xd3_section_type type) | 
 
 
 
 
 | 1712 | { | 
 
 
 
 
 | 1713 | switch (type) | 
 
 
 
 
 | 1714 | { | 
 
 
 
 
 | 1715 | case DATA_SECTION: return "DATA"; | 
 
 
 
 
 | 1716 | case INST_SECTION: return "INST"; | 
 
 
 
 
 | 1717 | case ADDR_SECTION: return "ADDR"; | 
 
 
 
 
 | 1718 | } | 
 
 
 
 
 | 1719 | abort (); | 
 
 
 
 
 | 1720 | } | 
 
 
 
 
 | 1721 |  | 
 
 
 
 
 | 1722 | static int | 
 
 
 
 
 | 1723 | xd3_encode_huff (xd3_stream   *stream, | 
 
 
 
 
 | 1724 | djw_stream  *h, | 
 
 
 
 
 | 1725 | xd3_output   *input, | 
 
 
 
 
 | 1726 | xd3_output   *unused_output, | 
 
 
 
 
 | 1727 | xd3_sec_cfg  *cfg) | 
 
 
 
 
 | 1728 | { | 
 
 
 
 
 | 1729 | int ret = 0; | 
 
 
 
 
 | 1730 | int input_size = xd3_sizeof_output (input); | 
 
 
 
 
 | 1731 | static int hdr = 0; | 
 
 
 
 
 | 1732 | const char *sect_type = xd3_sect_type (cfg->data_type); | 
 
 
 
 
 | 1733 | xd3_output *output; | 
 
 
 
 
 | 1734 | usize_t output_size; | 
 
 
 
 
 | 1735 |  | 
 
 
 
 
 | 1736 | if (hdr == 0) { hdr = 1; DP(RINT "____ SECT INSZ SECTORSZ GPNO OUTSZ PREFIX SELECT ENCODE\n"); } | 
 
 
 
 
 | 1737 |  | 
 
 
 
 
 | 1738 | DP(RINT "SECTION %s %u\n", sect_type, input_size); | 
 
 
 
 
 | 1739 |  | 
 
 
 
 
 | 1740 | { | 
 
 
 
 
 | 1741 | int gp, i; | 
 
 
 
 
 | 1742 | int best_size = 99999999; | 
 
 
 
 
 | 1743 | usize_t best_prefix = 0, best_select = 0, best_encode = 0, best_sector_size = 0; | 
 
 
 
 
 | 1744 | int best_gpno = -1; | 
 
 
 
 
 | 1745 | const char *t12 = "12"; | 
 
 
 
 
 | 1746 | usize_t clen_count[DJW_MAX_CODELEN+1]; | 
 
 
 
 
 | 1747 | djw_weight best_freq[DJW_TOTAL_CODES]; | 
 
 
 
 
 | 1748 |  | 
 
 
 
 
 | 1749 | for (cfg->ngroups = 1; cfg->ngroups <= /*1*/ DJW_MAX_GROUPS; cfg->ngroups += 1) | 
 
 
 
 
 | 1750 | { | 
 
 
 
 
 | 1751 | for (cfg->sector_size = 10; cfg->sector_size <= DJW_SECTORSZ_MAX; cfg->sector_size += 10) | 
 
 
 
 
 | 1752 | { | 
 
 
 
 
 | 1753 | output = xd3_alloc_output (stream, NULL); | 
 
 
 
 
 | 1754 |  | 
 
 
 
 
 | 1755 | if ((ret = xd3_real_encode_huff (stream, h, input, output, cfg))) { goto fail; } | 
 
 
 
 
 | 1756 |  | 
 
 
 
 
 | 1757 | output_size = xd3_sizeof_output (output); | 
 
 
 
 
 | 1758 |  | 
 
 
 
 
 | 1759 | if (output_size < best_size) | 
 
 
 
 
 | 1760 | { | 
 
 
 
 
 | 1761 | best_size = output_size; | 
 
 
 
 
 | 1762 | best_gpno = cfg->ngroups; | 
 
 
 
 
 | 1763 | best_prefix = tune_prefix_bits; | 
 
 
 
 
 | 1764 | best_select = tune_select_bits; | 
 
 
 
 
 | 1765 | best_encode = tune_encode_bits; | 
 
 
 
 
 | 1766 | best_sector_size = cfg->sector_size; | 
 
 
 
 
 | 1767 | memset (clen_count, 0, sizeof (clen_count)); | 
 
 
 
 
 | 1768 |  | 
 
 
 
 
 | 1769 | for (gp = 0; gp < cfg->ngroups; gp += 1) | 
 
 
 
 
 | 1770 | { | 
 
 
 
 
 | 1771 | for (i = 0; i < ALPHABET_SIZE; i += 1) | 
 
 
 
 
 | 1772 | { | 
 
 
 
 
 | 1773 | clen_count[tune_clen[gp][i]] += 1; | 
 
 
 
 
 | 1774 | } | 
 
 
 
 
 | 1775 | } | 
 
 
 
 
 | 1776 |  | 
 
 
 
 
 | 1777 | memcpy (best_freq, tune_freq, sizeof (tune_freq)); | 
 
 
 
 
 | 1778 |  | 
 
 
 
 
 | 1779 | XD3_ASSERT (sizeof (tune_freq) == sizeof (mtf_freq)); | 
 
 
 
 
 | 1780 | } | 
 
 
 
 
 | 1781 |  | 
 
 
 
 
 | 1782 | if (1) | 
 
 
 
 
 | 1783 | { | 
 
 
 
 
 | 1784 | DP(RINT "COMP%s %u %u %u %u %u %u\n", | 
 
 
 
 
 | 1785 | t12, cfg->ngroups, cfg->sector_size, | 
 
 
 
 
 | 1786 | output_size, tune_prefix_bits, tune_select_bits, tune_encode_bits); | 
 
 
 
 
 | 1787 | } | 
 
 
 
 
 | 1788 | else | 
 
 
 
 
 | 1789 | { | 
 
 
 
 
 | 1790 | fail: | 
 
 
 
 
 | 1791 | DP(RINT "COMP%s %u %u %u %u %u %u\n", | 
 
 
 
 
 | 1792 | t12, cfg->ngroups, cfg->sector_size, | 
 
 
 
 
 | 1793 | input_size, 0, 0, 0); | 
 
 
 
 
 | 1794 | } | 
 
 
 
 
 | 1795 |  | 
 
 
 
 
 | 1796 | xd3_free_output (stream, output); | 
 
 
 
 
 | 1797 |  | 
 
 
 
 
 | 1798 | XD3_ASSERT (ret == 0 || ret == XD3_NOSECOND); | 
 
 
 
 
 | 1799 |  | 
 
 
 
 
 | 1800 | if (cfg->ngroups == 1) { break; } | 
 
 
 
 
 | 1801 | } | 
 
 
 
 
 | 1802 | } | 
 
 
 
 
 | 1803 |  | 
 
 
 
 
 | 1804 | if (best_gpno > 0) | 
 
 
 
 
 | 1805 | { | 
 
 
 
 
 | 1806 | DP(RINT "BEST%s %u %u %u %u %u %u\n", | 
 
 
 
 
 | 1807 | t12, best_gpno, best_sector_size, | 
 
 
 
 
 | 1808 | best_size, best_prefix, best_select, best_encode); | 
 
 
 
 
 | 1809 |  | 
 
 
 
 
 | 1810 | #if 0 | 
 
 
 
 
 | 1811 | DP(RINT "CLEN%s ", t12); | 
 
 
 
 
 | 1812 | for (i = 1; i <= DJW_MAX_CODELEN; i += 1) | 
 
 
 
 
 | 1813 | { | 
 
 
 
 
 | 1814 | DP(RINT "%u ", clen_count[i]); | 
 
 
 
 
 | 1815 | } | 
 
 
 
 
 | 1816 | DP(RINT "\n"); | 
 
 
 
 
 | 1817 |  | 
 
 
 
 
 | 1818 | DP(RINT "FREQ%s ", t12); | 
 
 
 
 
 | 1819 | for (i = 0; i < DJW_TOTAL_CODES; i += 1) | 
 
 
 
 
 | 1820 | { | 
 
 
 
 
 | 1821 | DP(RINT "%u ", tune_freq[i]); | 
 
 
 
 
 | 1822 | } | 
 
 
 
 
 | 1823 | DP(RINT "\n"); | 
 
 
 
 
 | 1824 | #endif | 
 
 
 
 
 | 1825 | } | 
 
 
 
 
 | 1826 | } | 
 
 
 
 
 | 1827 |  | 
 
 
 
 
 | 1828 | /* Compare to split single-table windows. */ | 
 
 
 
 
 | 1829 | { | 
 
 
 
 
 | 1830 | int parts, i; | 
 
 
 
 
 | 1831 |  | 
 
 
 
 
 | 1832 | cfg->ngroups = 1; | 
 
 
 
 
 | 1833 |  | 
 
 
 
 
 | 1834 | for (parts = 2; parts <= DJW_MAX_GROUPS; parts += 1) | 
 
 
 
 
 | 1835 | { | 
 
 
 
 
 | 1836 | usize_t part_size = input_size / parts; | 
 
 
 
 
 | 1837 | xd3_output *inp = input, *partin, *partin_head; | 
 
 
 
 
 | 1838 | usize_t      off = 0; | 
 
 
 
 
 | 1839 | usize_t      part_total = 0; | 
 
 
 
 
 | 1840 |  | 
 
 
 
 
 | 1841 | if (part_size < 1000) { break; } | 
 
 
 
 
 | 1842 |  | 
 
 
 
 
 | 1843 | for (i = 0; i < parts; i += 1) | 
 
 
 
 
 | 1844 | { | 
 
 
 
 
 | 1845 | usize_t inc; | 
 
 
 
 
 | 1846 |  | 
 
 
 
 
 | 1847 | partin = partin_head = xd3_alloc_output (stream, NULL); | 
 
 
 
 
 | 1848 | output = xd3_alloc_output (stream, NULL); | 
 
 
 
 
 | 1849 |  | 
 
 
 
 
 | 1850 | for (inc = 0; ((i < parts-1) && inc < part_size) || | 
 
 
 
 
 | 1851 | ((i == parts-1) && inp != NULL); ) | 
 
 
 
 
 | 1852 | { | 
 
 
 
 
 | 1853 | usize_t take; | 
 
 
 
 
 | 1854 |  | 
 
 
 
 
 | 1855 | if (i < parts-1) | 
 
 
 
 
 | 1856 | { | 
 
 
 
 
 | 1857 | take = min (part_size - inc, inp->next - off); | 
 
 
 
 
 | 1858 | } | 
 
 
 
 
 | 1859 | else | 
 
 
 
 
 | 1860 | { | 
 
 
 
 
 | 1861 | take = inp->next - off; | 
 
 
 
 
 | 1862 | } | 
 
 
 
 
 | 1863 |  | 
 
 
 
 
 | 1864 | ret = xd3_emit_bytes (stream, & partin, inp->base + off, take); | 
 
 
 
 
 | 1865 |  | 
 
 
 
 
 | 1866 | off += take; | 
 
 
 
 
 | 1867 | inc += take; | 
 
 
 
 
 | 1868 |  | 
 
 
 
 
 | 1869 | if (off == inp->next) | 
 
 
 
 
 | 1870 | { | 
 
 
 
 
 | 1871 | inp = inp->next_page; | 
 
 
 
 
 | 1872 | off = 0; | 
 
 
 
 
 | 1873 | } | 
 
 
 
 
 | 1874 | } | 
 
 
 
 
 | 1875 |  | 
 
 
 
 
 | 1876 | ret = xd3_real_encode_huff (stream, h, partin_head, output, cfg); | 
 
 
 
 
 | 1877 |  | 
 
 
 
 
 | 1878 | part_total += xd3_sizeof_output (output); | 
 
 
 
 
 | 1879 |  | 
 
 
 
 
 | 1880 | xd3_free_output (stream, partin_head); | 
 
 
 
 
 | 1881 | xd3_free_output (stream, output); | 
 
 
 
 
 | 1882 |  | 
 
 
 
 
 | 1883 | XD3_ASSERT (ret == 0 || ret == XD3_NOSECOND); | 
 
 
 
 
 | 1884 |  | 
 
 
 
 
 | 1885 | if (ret == XD3_NOSECOND) | 
 
 
 
 
 | 1886 | { | 
 
 
 
 
 | 1887 | break; | 
 
 
 
 
 | 1888 | } | 
 
 
 
 
 | 1889 | } | 
 
 
 
 
 | 1890 |  | 
 
 
 
 
 | 1891 | if (ret != XD3_NOSECOND) | 
 
 
 
 
 | 1892 | { | 
 
 
 
 
 | 1893 | DP(RINT "PART %u %u\n", parts, part_total); | 
 
 
 
 
 | 1894 | } | 
 
 
 
 
 | 1895 | } | 
 
 
 
 
 | 1896 | } | 
 
 
 
 
 | 1897 |  | 
 
 
 
 
 | 1898 | /* Compare to FGK */ | 
 
 
 
 
 | 1899 | { | 
 
 
 
 
 | 1900 | fgk_stream *fgk = fgk_alloc (stream); | 
 
 
 
 
 | 1901 |  | 
 
 
 
 
 | 1902 | fgk_init (fgk); | 
 
 
 
 
 | 1903 |  | 
 
 
 
 
 | 1904 | output = xd3_alloc_output (stream, NULL); | 
 
 
 
 
 | 1905 |  | 
 
 
 
 
 | 1906 | ret = xd3_encode_fgk (stream, fgk, input, output, NULL); | 
 
 
 
 
 | 1907 |  | 
 
 
 
 
 | 1908 | output_size = xd3_sizeof_output (output); | 
 
 
 
 
 | 1909 | xd3_free_output (stream, output); | 
 
 
 
 
 | 1910 | fgk_destroy (stream, fgk); | 
 
 
 
 
 | 1911 |  | 
 
 
 
 
 | 1912 | XD3_ASSERT (ret == 0); | 
 
 
 
 
 | 1913 |  | 
 
 
 
 
 | 1914 | DP(RINT "FGK %u\n", output_size); | 
 
 
 
 
 | 1915 | } | 
 
 
 
 
 | 1916 |  | 
 
 
 
 
 | 1917 | DP(RINT "END_SECTION %s %u\n", sect_type, input_size); | 
 
 
 
 
 | 1918 |  | 
 
 
 
 
 | 1919 | return 0; | 
 
 
 
 
 | 1920 | } | 
 
 
 
 
 | 1921 | #endif | 
 
 
 
 
 | 1922 |  | 
 
 
 
 
 | 1923 | #endif |