| 1 |
/* xdelta 3 - delta compression tools and library |
| 2 |
* Copyright (C) 2002, 2006, 2007. Joshua P. MacDonald |
| 3 |
* |
| 4 |
* This program is free software; you can redistribute it and/or modify |
| 5 |
* it under the terms of the GNU General Public License as published by |
| 6 |
* the Free Software Foundation; either version 2 of the License, or |
| 7 |
* (at your option) any later version. |
| 8 |
* |
| 9 |
* This program is distributed in the hope that it will be useful, |
| 10 |
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 11 |
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 12 |
* GNU General Public License for more details. |
| 13 |
* |
| 14 |
* You should have received a copy of the GNU General Public License |
| 15 |
* along with this program; if not, write to the Free Software |
| 16 |
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
| 17 |
*/ |
| 18 |
|
| 19 |
#ifndef _XDELTA3_DJW_H_ |
| 20 |
#define _XDELTA3_DJW_H_ |
| 21 |
|
| 22 |
/* The following people deserve much credit for the algorithms and techniques contained in |
| 23 |
* this file: |
| 24 |
|
| 25 |
Julian Seward |
| 26 |
Bzip2 sources, implementation of the multi-table Huffman technique. |
| 27 |
|
| 28 |
Jean-loup Gailly and Mark Adler and L. Peter Deutsch |
| 29 |
Zlib source code, RFC 1951 |
| 30 |
|
| 31 |
Daniel S. Hirschberg and Debra A. LeLewer |
| 32 |
"Efficient Decoding of Prefix Codes" |
| 33 |
Communications of the ACM, April 1990 33(4). |
| 34 |
|
| 35 |
David J. Wheeler |
| 36 |
Program bred3.c, bexp3 and accompanying documents bred3.ps, huff.ps. |
| 37 |
This contains the idea behind the multi-table Huffman and 1-2 coding techniques. |
| 38 |
ftp://ftp.cl.cam.ac.uk/users/djw3/ |
| 39 |
|
| 40 |
*/ |
| 41 |
|
| 42 |
/* OPT: during the multi-table iteration, pick the worst-overall performing table and |
| 43 |
* replace it with exactly the frequencies of the worst-overall performing sector or |
| 44 |
* N-worst performing sectors. */ |
| 45 |
|
| 46 |
/* REF: See xdfs-0.222 and xdfs-0.226 for some old experiments with the Bzip prefix coding |
| 47 |
* strategy. xdfs-0.256 contains the last of the other-format tests, including RFC1950 |
| 48 |
* and the RFC1950+MTF tests. */ |
| 49 |
|
| 50 |
#define DJW_MAX_CODELEN 32 /* Maximum length of an alphabet code. */ |
| 51 |
|
| 52 |
#define DJW_TOTAL_CODES (DJW_MAX_CODELEN+2) /* [RUN_0, RUN_1, 1-DJW_MAX_CODELEN] */ |
| 53 |
|
| 54 |
#define RUN_0 0 /* Symbols used in MTF+1/2 coding. */ |
| 55 |
#define RUN_1 1 |
| 56 |
|
| 57 |
#define DJW_BASIC_CODES 5 /* Number of code lengths always encoded (djw_encode_basic array) */ |
| 58 |
#define DJW_RUN_CODES 2 /* Number of run codes */ |
| 59 |
#define DJW_EXTRA_12OFFSET 7 /* Offset of extra codes */ |
| 60 |
#define DJW_EXTRA_CODES 15 /* Number of optionally encoded code lengths (djw_encode_extra array) */ |
| 61 |
#define DJW_EXTRA_CODE_BITS 4 /* Number of bits to code [0-DJW_EXTRA_CODES] */ |
| 62 |
|
| 63 |
#define DJW_MAX_GROUPS 8 /* Max number of group coding tables */ |
| 64 |
#define DJW_GROUP_BITS 3 /* Number of bits to code [1-DJW_MAX_GROUPS] */ |
| 65 |
|
| 66 |
#define DJW_SECTORSZ_MULT 5 /* Multiplier for encoded sectorsz */ |
| 67 |
#define DJW_SECTORSZ_BITS 5 /* Number of bits to code group size */ |
| 68 |
#define DJW_SECTORSZ_MAX ((1 << DJW_SECTORSZ_BITS) * DJW_SECTORSZ_MULT) |
| 69 |
|
| 70 |
#define DJW_MAX_ITER 6 /* Maximum number of iterations to find group tables. */ |
| 71 |
#define DJW_MIN_IMPROVEMENT 20 /* Minimum number of bits an iteration must reduce coding by. */ |
| 72 |
|
| 73 |
#define DJW_MAX_CLCLEN 15 /* Maximum code length of a prefix code length */ |
| 74 |
#define DJW_CLCLEN_BITS 4 /* Number of bits to code [0-DJW_MAX_CLCLEN] */ |
| 75 |
|
| 76 |
#define DJW_MAX_GBCLEN 7 /* Maximum code length of a group selector */ |
| 77 |
#define DJW_GBCLEN_BITS 3 /* Number of bits to code [0-DJW_MAX_GBCLEN] |
| 78 |
* @!@ Actually, should never have zero code lengths here, or |
| 79 |
* else a group went unused. Write a test for this: if a group |
| 80 |
* goes unused, eliminate it? */ |
| 81 |
|
| 82 |
#define EFFICIENCY_BITS 16 /* It has to save at least this many bits... */ |
| 83 |
|
| 84 |
typedef struct _djw_stream djw_stream; |
| 85 |
typedef struct _djw_heapen djw_heapen; |
| 86 |
typedef struct _djw_prefix djw_prefix; |
| 87 |
typedef uint32_t djw_weight; |
| 88 |
|
| 89 |
/* To enable Huffman tuning code... */ |
| 90 |
#ifndef TUNE_HUFFMAN |
| 91 |
#define TUNE_HUFFMAN 0 |
| 92 |
#endif |
| 93 |
|
| 94 |
#if TUNE_HUFFMAN == 0 |
| 95 |
#define xd3_real_encode_huff xd3_encode_huff |
| 96 |
#define IF_TUNE(x) |
| 97 |
#define IF_NTUNE(x) x |
| 98 |
#else |
| 99 |
static uint xd3_bitsof_output (xd3_output *output, bit_state *bstate); |
| 100 |
#define IF_TUNE(x) x |
| 101 |
#define IF_NTUNE(x) |
| 102 |
static djw_weight tune_freq[DJW_TOTAL_CODES]; |
| 103 |
static uint8_t tune_clen[DJW_MAX_GROUPS][ALPHABET_SIZE]; |
| 104 |
static usize_t tune_prefix_bits; |
| 105 |
static usize_t tune_select_bits; |
| 106 |
static usize_t tune_encode_bits; |
| 107 |
#endif |
| 108 |
struct _djw_heapen |
| 109 |
{ |
| 110 |
uint32_t depth; |
| 111 |
uint32_t freq; |
| 112 |
uint32_t parent; |
| 113 |
}; |
| 114 |
|
| 115 |
struct _djw_prefix |
| 116 |
{ |
| 117 |
usize_t scount; |
| 118 |
uint8_t *symbol; |
| 119 |
usize_t mcount; |
| 120 |
uint8_t *mtfsym; |
| 121 |
uint8_t *repcnt; |
| 122 |
}; |
| 123 |
|
| 124 |
struct _djw_stream |
| 125 |
{ |
| 126 |
int unused; |
| 127 |
}; |
| 128 |
|
| 129 |
/* Each Huffman table consists of 256 "code length" (CLEN) codes, which are themselves |
| 130 |
* Huffman coded after eliminating repeats and move-to-front coding. The prefix consists |
| 131 |
* of all the CLEN codes in djw_encode_basic plus a 4-bit value stating how many of the |
| 132 |
* djw_encode_extra codes are actually coded (the rest are presumed zero, or unused CLEN |
| 133 |
* codes). |
| 134 |
* |
| 135 |
* These values of these two arrays were arrived at by studying the distribution of min |
| 136 |
* and max clen over a collection of DATA, INST, and ADDR inputs. The goal is to specify |
| 137 |
* the order of djw_extra_codes that is most likely to minimize the number of extra codes |
| 138 |
* that must be encoded. |
| 139 |
* |
| 140 |
* Results: 158896 sections were counted by compressing files (window size 512K) listed |
| 141 |
* with: `find / -type f ( -user jmacd -o -perm +444 )` |
| 142 |
* |
| 143 |
* The distribution of CLEN codes for each efficient invocation of the secondary |
| 144 |
* compressor (taking the best number of groups/sector size) was recorded. Then we look at |
| 145 |
* the distribution of min and max clen values, counting the number of times the value |
| 146 |
* C_low is less than the min and C_high is greater than the max. Values >= C_high and <= |
| 147 |
* C_low will not have their lengths coded. The results are sorted and the least likely |
| 148 |
* 15 are placed into the djw_encode_extra[] array in order. These values are used as |
| 149 |
* the initial MTF ordering. |
| 150 |
|
| 151 |
clow[1] = 155119 |
| 152 |
clow[2] = 140325 |
| 153 |
clow[3] = 84072 |
| 154 |
--- |
| 155 |
clow[4] = 7225 |
| 156 |
clow[5] = 1093 |
| 157 |
clow[6] = 215 |
| 158 |
--- |
| 159 |
chigh[4] = 1 |
| 160 |
chigh[5] = 30 |
| 161 |
chigh[6] = 218 |
| 162 |
chigh[7] = 2060 |
| 163 |
chigh[8] = 13271 |
| 164 |
--- |
| 165 |
chigh[9] = 39463 |
| 166 |
chigh[10] = 77360 |
| 167 |
chigh[11] = 118298 |
| 168 |
chigh[12] = 141360 |
| 169 |
chigh[13] = 154086 |
| 170 |
chigh[14] = 157967 |
| 171 |
chigh[15] = 158603 |
| 172 |
chigh[16] = 158864 |
| 173 |
chigh[17] = 158893 |
| 174 |
chigh[18] = 158895 |
| 175 |
chigh[19] = 158896 |
| 176 |
chigh[20] = 158896 |
| 177 |
|
| 178 |
*/ |
| 179 |
|
| 180 |
static const uint8_t djw_encode_12extra[DJW_EXTRA_CODES] = |
| 181 |
{ |
| 182 |
9, 10, 3, 11, 2, 12, 13, 1, 14, 15, 16, 17, 18, 19, 20 |
| 183 |
}; |
| 184 |
|
| 185 |
static const uint8_t djw_encode_12basic[DJW_BASIC_CODES] = |
| 186 |
{ |
| 187 |
4, 5, 6, 7, 8, |
| 188 |
}; |
| 189 |
|
| 190 |
/*********************************************************************/ |
| 191 |
/* DECLS */ |
| 192 |
/*********************************************************************/ |
| 193 |
|
| 194 |
static djw_stream* djw_alloc (xd3_stream *stream /*, int alphabet_size */); |
| 195 |
static void djw_init (djw_stream *h); |
| 196 |
static void djw_destroy (xd3_stream *stream, |
| 197 |
djw_stream *h); |
| 198 |
|
| 199 |
#if XD3_ENCODER |
| 200 |
static int xd3_encode_huff (xd3_stream *stream, |
| 201 |
djw_stream *sec_stream, |
| 202 |
xd3_output *input, |
| 203 |
xd3_output *output, |
| 204 |
xd3_sec_cfg *cfg); |
| 205 |
#endif |
| 206 |
|
| 207 |
static int xd3_decode_huff (xd3_stream *stream, |
| 208 |
djw_stream *sec_stream, |
| 209 |
const uint8_t **input, |
| 210 |
const uint8_t *const input_end, |
| 211 |
uint8_t **output, |
| 212 |
const uint8_t *const output_end); |
| 213 |
|
| 214 |
/*********************************************************************/ |
| 215 |
/* HUFFMAN */ |
| 216 |
/*********************************************************************/ |
| 217 |
|
| 218 |
static djw_stream* |
| 219 |
djw_alloc (xd3_stream *stream) |
| 220 |
{ |
| 221 |
return xd3_alloc (stream, sizeof (djw_stream), 1); |
| 222 |
} |
| 223 |
|
| 224 |
static void |
| 225 |
djw_init (djw_stream *h) |
| 226 |
{ |
| 227 |
/* Fields are initialized prior to use. */ |
| 228 |
} |
| 229 |
|
| 230 |
static void |
| 231 |
djw_destroy (xd3_stream *stream, |
| 232 |
djw_stream *h) |
| 233 |
{ |
| 234 |
xd3_free (stream, h); |
| 235 |
} |
| 236 |
|
| 237 |
|
| 238 |
/*********************************************************************/ |
| 239 |
/* HEAP */ |
| 240 |
/*********************************************************************/ |
| 241 |
|
| 242 |
static INLINE int |
| 243 |
heap_less (const djw_heapen *a, const djw_heapen *b) |
| 244 |
{ |
| 245 |
return a->freq < b->freq || |
| 246 |
(a->freq == b->freq && |
| 247 |
a->depth < b->depth); |
| 248 |
} |
| 249 |
|
| 250 |
static INLINE void |
| 251 |
heap_insert (uint *heap, const djw_heapen *ents, uint p, const uint e) |
| 252 |
{ |
| 253 |
/* Insert ents[e] into next slot heap[p] */ |
| 254 |
uint pp = p/2; /* P's parent */ |
| 255 |
|
| 256 |
while (heap_less (& ents[e], & ents[heap[pp]])) |
| 257 |
{ |
| 258 |
heap[p] = heap[pp]; |
| 259 |
p = pp; |
| 260 |
pp = p/2; |
| 261 |
} |
| 262 |
|
| 263 |
heap[p] = e; |
| 264 |
} |
| 265 |
|
| 266 |
static INLINE djw_heapen* |
| 267 |
heap_extract (uint *heap, const djw_heapen *ents, uint heap_last) |
| 268 |
{ |
| 269 |
uint smallest = heap[1]; |
| 270 |
uint p, pc, t; |
| 271 |
|
| 272 |
/* Caller decrements heap_last, so heap_last+1 is the replacement elt. */ |
| 273 |
heap[1] = heap[heap_last+1]; |
| 274 |
|
| 275 |
/* Re-heapify */ |
| 276 |
for (p = 1; ; p = pc) |
| 277 |
{ |
| 278 |
pc = p*2; |
| 279 |
|
| 280 |
/* Reached bottom of heap */ |
| 281 |
if (pc > heap_last) { break; } |
| 282 |
|
| 283 |
/* See if second child is smaller. */ |
| 284 |
if (pc < heap_last && heap_less (& ents[heap[pc+1]], & ents[heap[pc]])) { pc += 1; } |
| 285 |
|
| 286 |
/* If pc is not smaller than p, heap property re-established. */ |
| 287 |
if (! heap_less (& ents[heap[pc]], & ents[heap[p]])) { break; } |
| 288 |
|
| 289 |
t = heap[pc]; |
| 290 |
heap[pc] = heap[p]; |
| 291 |
heap[p] = t; |
| 292 |
} |
| 293 |
|
| 294 |
return (djw_heapen*) & ents[smallest]; |
| 295 |
} |
| 296 |
|
| 297 |
#if XD3_DEBUG |
| 298 |
static void |
| 299 |
heap_check (uint *heap, djw_heapen *ents, uint heap_last) |
| 300 |
{ |
| 301 |
uint i; |
| 302 |
for (i = 1; i <= heap_last; i += 1) |
| 303 |
{ |
| 304 |
/* Heap property: child not less than parent */ |
| 305 |
XD3_ASSERT (! heap_less (& ents[heap[i]], & ents[heap[i/2]])); |
| 306 |
} |
| 307 |
} |
| 308 |
#endif |
| 309 |
|
| 310 |
/*********************************************************************/ |
| 311 |
/* MTF, 1/2 */ |
| 312 |
/*********************************************************************/ |
| 313 |
|
| 314 |
static INLINE usize_t |
| 315 |
djw_update_mtf (uint8_t *mtf, usize_t mtf_i) |
| 316 |
{ |
| 317 |
int k; |
| 318 |
usize_t sym = mtf[mtf_i]; |
| 319 |
|
| 320 |
for (k = mtf_i; k != 0; k -= 1) { mtf[k] = mtf[k-1]; } |
| 321 |
|
| 322 |
mtf[0] = sym; |
| 323 |
return sym; |
| 324 |
} |
| 325 |
|
| 326 |
static INLINE void |
| 327 |
djw_update_1_2 (int *mtf_run, usize_t *mtf_i, uint8_t *mtfsym, djw_weight *freq) |
| 328 |
{ |
| 329 |
int code; |
| 330 |
|
| 331 |
do |
| 332 |
{ |
| 333 |
/* Offset by 1, since any number of RUN_ symbols implies run>0... */ |
| 334 |
*mtf_run -= 1; |
| 335 |
|
| 336 |
code = (*mtf_run & 1) ? RUN_1 : RUN_0; |
| 337 |
|
| 338 |
mtfsym[(*mtf_i)++] = code; |
| 339 |
freq[code] += 1; |
| 340 |
*mtf_run >>= 1; |
| 341 |
} |
| 342 |
while (*mtf_run >= 1); |
| 343 |
|
| 344 |
*mtf_run = 0; |
| 345 |
} |
| 346 |
|
| 347 |
static void |
| 348 |
djw_init_clen_mtf_1_2 (uint8_t *clmtf) |
| 349 |
{ |
| 350 |
int i, cl_i = 0; |
| 351 |
|
| 352 |
clmtf[cl_i++] = 0; |
| 353 |
for (i = 0; i < DJW_BASIC_CODES; i += 1) { clmtf[cl_i++] = djw_encode_12basic[i]; } |
| 354 |
for (i = 0; i < DJW_EXTRA_CODES; i += 1) { clmtf[cl_i++] = djw_encode_12extra[i]; } |
| 355 |
} |
| 356 |
|
| 357 |
/*********************************************************************/ |
| 358 |
/* PREFIX CODES */ |
| 359 |
/*********************************************************************/ |
| 360 |
#if XD3_ENCODER |
| 361 |
static usize_t |
| 362 |
djw_build_prefix (const djw_weight *freq, uint8_t *clen, int asize, int maxlen) |
| 363 |
{ |
| 364 |
/* Heap with 0th entry unused, prefix tree with up to ALPHABET_SIZE-1 internal nodes, |
| 365 |
* never more than ALPHABET_SIZE entries actually in the heap (minimum weight subtrees |
| 366 |
* during prefix construction). First ALPHABET_SIZE entries are the actual symbols, |
| 367 |
* next ALPHABET_SIZE-1 are internal nodes. */ |
| 368 |
djw_heapen ents[ALPHABET_SIZE * 2]; |
| 369 |
uint heap[ALPHABET_SIZE + 1]; |
| 370 |
|
| 371 |
uint heap_last; /* Index of the last _valid_ heap entry. */ |
| 372 |
uint ents_size; /* Number of entries, including 0th fake entry */ |
| 373 |
int overflow; /* Number of code lengths that overflow */ |
| 374 |
uint32_t total_bits; |
| 375 |
int i; |
| 376 |
|
| 377 |
IF_DEBUG (uint32_t first_bits = 0); |
| 378 |
|
| 379 |
/* Insert real symbol frequences. */ |
| 380 |
for (i = 0; i < asize; i += 1) |
| 381 |
{ |
| 382 |
ents[i+1].freq = freq[i]; |
| 383 |
} |
| 384 |
|
| 385 |
again: |
| 386 |
|
| 387 |
/* The loop is re-entered each time an overflow occurs. Re-initialize... */ |
| 388 |
heap_last = 0; |
| 389 |
ents_size = 1; |
| 390 |
overflow = 0; |
| 391 |
total_bits = 0; |
| 392 |
|
| 393 |
/* 0th entry terminates the while loop in heap_insert (its the parent of the smallest |
| 394 |
* element, always less-than) */ |
| 395 |
heap[0] = 0; |
| 396 |
ents[0].depth = 0; |
| 397 |
ents[0].freq = 0; |
| 398 |
|
| 399 |
/* Initial heap. */ |
| 400 |
for (i = 0; i < asize; i += 1, ents_size += 1) |
| 401 |
{ |
| 402 |
ents[ents_size].depth = 0; |
| 403 |
ents[ents_size].parent = 0; |
| 404 |
|
| 405 |
if (ents[ents_size].freq != 0) |
| 406 |
{ |
| 407 |
heap_insert (heap, ents, ++heap_last, ents_size); |
| 408 |
} |
| 409 |
} |
| 410 |
|
| 411 |
IF_DEBUG (heap_check (heap, ents, heap_last)); |
| 412 |
|
| 413 |
/* Must be at least one symbol, or else we can't get here. */ |
| 414 |
XD3_ASSERT (heap_last != 0); |
| 415 |
|
| 416 |
/* If there is only one symbol, fake a second to prevent zero-length codes. */ |
| 417 |
if (unlikely (heap_last == 1)) |
| 418 |
{ |
| 419 |
/* Pick either the first or last symbol. */ |
| 420 |
int s = freq[0] ? asize-1 : 0; |
| 421 |
ents[s+1].freq = 1; |
| 422 |
goto again; |
| 423 |
} |
| 424 |
|
| 425 |
/* Build prefix tree. */ |
| 426 |
while (heap_last > 1) |
| 427 |
{ |
| 428 |
djw_heapen *h1 = heap_extract (heap, ents, --heap_last); |
| 429 |
djw_heapen *h2 = heap_extract (heap, ents, --heap_last); |
| 430 |
|
| 431 |
ents[ents_size].freq = h1->freq + h2->freq; |
| 432 |
ents[ents_size].depth = 1 + max (h1->depth, h2->depth); |
| 433 |
ents[ents_size].parent = 0; |
| 434 |
|
| 435 |
h1->parent = h2->parent = ents_size; |
| 436 |
|
| 437 |
heap_insert (heap, ents, ++heap_last, ents_size++); |
| 438 |
|
| 439 |
IF_DEBUG (heap_check (heap, ents, heap_last)); |
| 440 |
} |
| 441 |
|
| 442 |
/* Now compute prefix code lengths, counting parents. */ |
| 443 |
for (i = 1; i < asize+1; i += 1) |
| 444 |
{ |
| 445 |
int b = 0; |
| 446 |
|
| 447 |
if (ents[i].freq != 0) |
| 448 |
{ |
| 449 |
int p = i; |
| 450 |
|
| 451 |
while ((p = ents[p].parent) != 0) { b += 1; } |
| 452 |
|
| 453 |
if (b > maxlen) { overflow = 1; } |
| 454 |
|
| 455 |
total_bits += b * freq[i-1]; |
| 456 |
} |
| 457 |
|
| 458 |
/* clen is 0-origin, unlike ents. */ |
| 459 |
clen[i-1] = b; |
| 460 |
} |
| 461 |
|
| 462 |
IF_DEBUG (if (first_bits == 0) first_bits = total_bits); |
| 463 |
|
| 464 |
if (! overflow) |
| 465 |
{ |
| 466 |
IF_DEBUG (if (first_bits != total_bits) |
| 467 |
{ |
| 468 |
DP(RINT "code length overflow changed %u bits\n", (usize_t)(total_bits - first_bits)); |
| 469 |
}); |
| 470 |
return total_bits; |
| 471 |
} |
| 472 |
|
| 473 |
/* OPT: There is a non-looping way to fix overflow shown in zlib, but this is easier |
| 474 |
* (for now), as done in bzip2. */ |
| 475 |
for (i = 1; i < asize+1; i += 1) |
| 476 |
{ |
| 477 |
ents[i].freq = ents[i].freq / 2 + 1; |
| 478 |
} |
| 479 |
|
| 480 |
goto again; |
| 481 |
} |
| 482 |
|
| 483 |
static void |
| 484 |
djw_build_codes (uint *codes, const uint8_t *clen, int asize DEBUG_ARG (int abs_max)) |
| 485 |
{ |
| 486 |
int i, l; |
| 487 |
int min_clen = DJW_MAX_CODELEN; |
| 488 |
int max_clen = 0; |
| 489 |
uint code = 0; |
| 490 |
|
| 491 |
for (i = 0; i < asize; i += 1) |
| 492 |
{ |
| 493 |
if (clen[i] > 0 && clen[i] < min_clen) |
| 494 |
{ |
| 495 |
min_clen = clen[i]; |
| 496 |
} |
| 497 |
|
| 498 |
max_clen = max (max_clen, (int) clen[i]); |
| 499 |
} |
| 500 |
|
| 501 |
XD3_ASSERT (max_clen <= abs_max); |
| 502 |
|
| 503 |
for (l = min_clen; l <= max_clen; l += 1) |
| 504 |
{ |
| 505 |
for (i = 0; i < asize; i += 1) |
| 506 |
{ |
| 507 |
if (clen[i] == l) { codes[i] = code++; } |
| 508 |
} |
| 509 |
|
| 510 |
code <<= 1; |
| 511 |
} |
| 512 |
} |
| 513 |
|
| 514 |
/*********************************************************************/ |
| 515 |
/* MOVE-TO-FRONT */ |
| 516 |
/*********************************************************************/ |
| 517 |
static void |
| 518 |
djw_compute_mtf_1_2 (djw_prefix *prefix, |
| 519 |
uint8_t *mtf, |
| 520 |
djw_weight *freq_out, /* freak out! */ |
| 521 |
usize_t nsym) |
| 522 |
{ |
| 523 |
int i, j, k; |
| 524 |
usize_t sym; |
| 525 |
usize_t size = prefix->scount; |
| 526 |
usize_t mtf_i = 0; |
| 527 |
int mtf_run = 0; |
| 528 |
|
| 529 |
memset (freq_out, 0, sizeof (freq_out[0]) * (nsym+1)); |
| 530 |
|
| 531 |
for (i = 0; i < size; ) |
| 532 |
{ |
| 533 |
/* OPT: Bzip optimizes this algorithm a little by effectively checking j==0 before |
| 534 |
* the MTF update. */ |
| 535 |
sym = prefix->symbol[i++]; |
| 536 |
|
| 537 |
for (j = 0; mtf[j] != sym; j += 1) { } |
| 538 |
|
| 539 |
XD3_ASSERT (j < nsym); |
| 540 |
|
| 541 |
for (k = j; k >= 1; k -= 1) { mtf[k] = mtf[k-1]; } |
| 542 |
|
| 543 |
mtf[0] = sym; |
| 544 |
|
| 545 |
if (j == 0) |
| 546 |
{ |
| 547 |
mtf_run += 1; |
| 548 |
continue; |
| 549 |
} |
| 550 |
|
| 551 |
if (mtf_run > 0) |
| 552 |
{ |
| 553 |
djw_update_1_2 (& mtf_run, & mtf_i, prefix->mtfsym, freq_out); |
| 554 |
} |
| 555 |
|
| 556 |
/* Non-zero symbols are offset by RUN_1 */ |
| 557 |
prefix->mtfsym[mtf_i++] = j+RUN_1; |
| 558 |
freq_out[j+RUN_1] += 1; |
| 559 |
} |
| 560 |
|
| 561 |
if (mtf_run > 0) |
| 562 |
{ |
| 563 |
djw_update_1_2 (& mtf_run, & mtf_i, prefix->mtfsym, freq_out); |
| 564 |
} |
| 565 |
|
| 566 |
prefix->mcount = mtf_i; |
| 567 |
} |
| 568 |
|
| 569 |
static usize_t |
| 570 |
djw_count_freqs (djw_weight *freq, xd3_output *input) |
| 571 |
{ |
| 572 |
xd3_output *in; |
| 573 |
usize_t size = 0; |
| 574 |
|
| 575 |
memset (freq, 0, sizeof (freq[0]) * ALPHABET_SIZE); |
| 576 |
|
| 577 |
/* Freqency counting. OPT: can be accomplished beforehand. */ |
| 578 |
for (in = input; in; in = in->next_page) |
| 579 |
{ |
| 580 |
const uint8_t *p = in->base; |
| 581 |
const uint8_t *p_max = p + in->next; |
| 582 |
|
| 583 |
size += in->next; |
| 584 |
|
| 585 |
do { freq[*p++] += 1; } while (p < p_max); |
| 586 |
} |
| 587 |
|
| 588 |
IF_DEBUG1 ({int i; |
| 589 |
DP(RINT "freqs: "); |
| 590 |
for (i = 0; i < ALPHABET_SIZE; i += 1) { DP(RINT "%u ", freq[i]); } |
| 591 |
DP(RINT "\n");}); |
| 592 |
|
| 593 |
return size; |
| 594 |
} |
| 595 |
|
| 596 |
static void |
| 597 |
djw_compute_multi_prefix (int groups, |
| 598 |
uint8_t clen[DJW_MAX_GROUPS][ALPHABET_SIZE], |
| 599 |
djw_prefix *prefix) |
| 600 |
{ |
| 601 |
int gp, i; |
| 602 |
|
| 603 |
prefix->scount = ALPHABET_SIZE; |
| 604 |
memcpy (prefix->symbol, clen[0], ALPHABET_SIZE); |
| 605 |
|
| 606 |
for (gp = 1; gp < groups; gp += 1) |
| 607 |
{ |
| 608 |
for (i = 0; i < ALPHABET_SIZE; i += 1) |
| 609 |
{ |
| 610 |
if (clen[gp][i] == 0) |
| 611 |
{ |
| 612 |
continue; |
| 613 |
} |
| 614 |
|
| 615 |
prefix->symbol[prefix->scount++] = clen[gp][i]; |
| 616 |
} |
| 617 |
} |
| 618 |
} |
| 619 |
|
| 620 |
static void |
| 621 |
djw_compute_prefix_1_2 (djw_prefix *prefix, djw_weight *freq) |
| 622 |
{ |
| 623 |
uint8_t clmtf[DJW_MAX_CODELEN+1]; |
| 624 |
|
| 625 |
djw_init_clen_mtf_1_2 (clmtf); |
| 626 |
|
| 627 |
djw_compute_mtf_1_2 (prefix, clmtf, freq, DJW_MAX_CODELEN+1); |
| 628 |
} |
| 629 |
|
| 630 |
static int |
| 631 |
djw_encode_prefix (xd3_stream *stream, |
| 632 |
xd3_output **output, |
| 633 |
bit_state *bstate, |
| 634 |
djw_prefix *prefix) |
| 635 |
{ |
| 636 |
int ret, i; |
| 637 |
uint num_to_encode; |
| 638 |
djw_weight clfreq[DJW_TOTAL_CODES]; |
| 639 |
uint8_t clclen[DJW_TOTAL_CODES]; |
| 640 |
uint clcode[DJW_TOTAL_CODES]; |
| 641 |
|
| 642 |
IF_TUNE (memset (clfreq, 0, sizeof (clfreq))); |
| 643 |
|
| 644 |
/* Move-to-front encode prefix symbols, count frequencies */ |
| 645 |
djw_compute_prefix_1_2 (prefix, clfreq); |
| 646 |
|
| 647 |
/* Compute codes */ |
| 648 |
djw_build_prefix (clfreq, clclen, DJW_TOTAL_CODES, DJW_MAX_CLCLEN); |
| 649 |
djw_build_codes (clcode, clclen, DJW_TOTAL_CODES DEBUG_ARG (DJW_MAX_CLCLEN)); |
| 650 |
|
| 651 |
/* Compute number of extra codes beyond basic ones for this template. */ |
| 652 |
num_to_encode = DJW_TOTAL_CODES; |
| 653 |
while (num_to_encode > DJW_EXTRA_12OFFSET && clclen[num_to_encode-1] == 0) { num_to_encode -= 1; } |
| 654 |
XD3_ASSERT (num_to_encode - DJW_EXTRA_12OFFSET < (1 << DJW_EXTRA_CODE_BITS)); |
| 655 |
|
| 656 |
/* Encode: # of extra codes */ |
| 657 |
if ((ret = xd3_encode_bits (stream, output, bstate, DJW_EXTRA_CODE_BITS, |
| 658 |
num_to_encode - DJW_EXTRA_12OFFSET))) { return ret; } |
| 659 |
|
| 660 |
/* Encode: MTF code lengths */ |
| 661 |
for (i = 0; i < num_to_encode; i += 1) |
| 662 |
{ |
| 663 |
if ((ret = xd3_encode_bits (stream, output, bstate, DJW_CLCLEN_BITS, clclen[i]))) { return ret; } |
| 664 |
} |
| 665 |
|
| 666 |
/* Encode: CLEN code lengths */ |
| 667 |
for (i = 0; i < prefix->mcount; i += 1) |
| 668 |
{ |
| 669 |
usize_t mtf_sym = prefix->mtfsym[i]; |
| 670 |
usize_t bits = clclen[mtf_sym]; |
| 671 |
usize_t code = clcode[mtf_sym]; |
| 672 |
|
| 673 |
if ((ret = xd3_encode_bits (stream, output, bstate, bits, code))) { return ret; } |
| 674 |
} |
| 675 |
|
| 676 |
IF_TUNE (memcpy (tune_freq, clfreq, sizeof (clfreq))); |
| 677 |
|
| 678 |
return 0; |
| 679 |
} |
| 680 |
|
| 681 |
static void |
| 682 |
djw_compute_selector_1_2 (djw_prefix *prefix, |
| 683 |
usize_t groups, |
| 684 |
djw_weight *gbest_freq) |
| 685 |
{ |
| 686 |
uint8_t grmtf[DJW_MAX_GROUPS]; |
| 687 |
usize_t i; |
| 688 |
|
| 689 |
for (i = 0; i < groups; i += 1) { grmtf[i] = i; } |
| 690 |
|
| 691 |
djw_compute_mtf_1_2 (prefix, grmtf, gbest_freq, groups); |
| 692 |
} |
| 693 |
|
| 694 |
static int |
| 695 |
xd3_encode_howmany_groups (xd3_stream *stream, |
| 696 |
xd3_sec_cfg *cfg, |
| 697 |
usize_t input_size, |
| 698 |
usize_t *ret_groups, |
| 699 |
usize_t *ret_sector_size) |
| 700 |
{ |
| 701 |
usize_t cfg_groups = 0; |
| 702 |
usize_t cfg_sector_size = 0; |
| 703 |
usize_t sugg_groups = 0; |
| 704 |
usize_t sugg_sector_size = 0; |
| 705 |
|
| 706 |
if (cfg->ngroups != 0) |
| 707 |
{ |
| 708 |
if (cfg->ngroups < 0 || cfg->ngroups > DJW_MAX_GROUPS) |
| 709 |
{ |
| 710 |
stream->msg = "invalid secondary encoder group number"; |
| 711 |
return XD3_INTERNAL; |
| 712 |
} |
| 713 |
|
| 714 |
cfg_groups = cfg->ngroups; |
| 715 |
} |
| 716 |
|
| 717 |
if (cfg->sector_size != 0) |
| 718 |
{ |
| 719 |
if (cfg->sector_size < DJW_SECTORSZ_MULT || cfg->sector_size > DJW_SECTORSZ_MAX || (cfg->sector_size % DJW_SECTORSZ_MULT) != 0) |
| 720 |
{ |
| 721 |
stream->msg = "invalid secondary encoder sector size"; |
| 722 |
return XD3_INTERNAL; |
| 723 |
} |
| 724 |
|
| 725 |
cfg_sector_size = cfg->sector_size; |
| 726 |
} |
| 727 |
|
| 728 |
if (cfg_groups == 0 || cfg_sector_size == 0) |
| 729 |
{ |
| 730 |
/* These values were found empirically using xdelta3-tune around version |
| 731 |
* xdfs-0.256. */ |
| 732 |
switch (cfg->data_type) |
| 733 |
{ |
| 734 |
case DATA_SECTION: |
| 735 |
if (input_size < 1000) { sugg_groups = 1; sugg_sector_size = 0; } |
| 736 |
else if (input_size < 4000) { sugg_groups = 2; sugg_sector_size = 10; } |
| 737 |
else if (input_size < 7000) { sugg_groups = 3; sugg_sector_size = 10; } |
| 738 |
else if (input_size < 10000) { sugg_groups = 4; sugg_sector_size = 10; } |
| 739 |
else if (input_size < 25000) { sugg_groups = 5; sugg_sector_size = 10; } |
| 740 |
else if (input_size < 50000) { sugg_groups = 7; sugg_sector_size = 20; } |
| 741 |
else if (input_size < 100000) { sugg_groups = 8; sugg_sector_size = 30; } |
| 742 |
else { sugg_groups = 8; sugg_sector_size = 70; } |
| 743 |
break; |
| 744 |
case INST_SECTION: |
| 745 |
if (input_size < 7000) { sugg_groups = 1; sugg_sector_size = 0; } |
| 746 |
else if (input_size < 10000) { sugg_groups = 2; sugg_sector_size = 50; } |
| 747 |
else if (input_size < 25000) { sugg_groups = 3; sugg_sector_size = 50; } |
| 748 |
else if (input_size < 50000) { sugg_groups = 6; sugg_sector_size = 40; } |
| 749 |
else if (input_size < 100000) { sugg_groups = 8; sugg_sector_size = 40; } |
| 750 |
else { sugg_groups = 8; sugg_sector_size = 40; } |
| 751 |
break; |
| 752 |
case ADDR_SECTION: |
| 753 |
if (input_size < 9000) { sugg_groups = 1; sugg_sector_size = 0; } |
| 754 |
else if (input_size < 25000) { sugg_groups = 2; sugg_sector_size = 130; } |
| 755 |
else if (input_size < 50000) { sugg_groups = 3; sugg_sector_size = 130; } |
| 756 |
else if (input_size < 100000) { sugg_groups = 5; sugg_sector_size = 130; } |
| 757 |
else { sugg_groups = 7; sugg_sector_size = 130; } |
| 758 |
break; |
| 759 |
} |
| 760 |
|
| 761 |
if (cfg_groups == 0) |
| 762 |
{ |
| 763 |
cfg_groups = sugg_groups; |
| 764 |
} |
| 765 |
|
| 766 |
if (cfg_sector_size == 0) |
| 767 |
{ |
| 768 |
cfg_sector_size = sugg_sector_size; |
| 769 |
} |
| 770 |
} |
| 771 |
|
| 772 |
if (cfg_groups != 1 && cfg_sector_size == 0) |
| 773 |
{ |
| 774 |
switch (cfg->data_type) |
| 775 |
{ |
| 776 |
case DATA_SECTION: |
| 777 |
cfg_sector_size = 20; |
| 778 |
break; |
| 779 |
case INST_SECTION: |
| 780 |
cfg_sector_size = 50; |
| 781 |
break; |
| 782 |
case ADDR_SECTION: |
| 783 |
cfg_sector_size = 130; |
| 784 |
break; |
| 785 |
} |
| 786 |
} |
| 787 |
|
| 788 |
(*ret_groups) = cfg_groups; |
| 789 |
(*ret_sector_size) = cfg_sector_size; |
| 790 |
|
| 791 |
XD3_ASSERT (cfg_groups > 0 && cfg_groups <= DJW_MAX_GROUPS); |
| 792 |
XD3_ASSERT (cfg_groups == 1 || (cfg_sector_size >= DJW_SECTORSZ_MULT && cfg_sector_size <= DJW_SECTORSZ_MAX)); |
| 793 |
|
| 794 |
return 0; |
| 795 |
} |
| 796 |
|
| 797 |
static int |
| 798 |
xd3_real_encode_huff (xd3_stream *stream, |
| 799 |
djw_stream *h, |
| 800 |
xd3_output *input, |
| 801 |
xd3_output *output, |
| 802 |
xd3_sec_cfg *cfg) |
| 803 |
{ |
| 804 |
int ret; |
| 805 |
usize_t groups, sector_size; |
| 806 |
bit_state bstate = BIT_STATE_ENCODE_INIT; |
| 807 |
xd3_output *in; |
| 808 |
int encode_bits; |
| 809 |
usize_t input_bits; |
| 810 |
usize_t input_bytes; |
| 811 |
usize_t initial_offset = output->next; |
| 812 |
djw_weight real_freq[ALPHABET_SIZE]; |
| 813 |
uint8_t *gbest = NULL; /* Dynamic allocations: could put these in djw_stream. */ |
| 814 |
uint8_t *gbest_mtf = NULL; |
| 815 |
|
| 816 |
input_bytes = djw_count_freqs (real_freq, input); |
| 817 |
input_bits = input_bytes * 8; |
| 818 |
|
| 819 |
XD3_ASSERT (input_bytes > 0); |
| 820 |
|
| 821 |
if ((ret = xd3_encode_howmany_groups (stream, cfg, input_bytes, & groups, & sector_size))) |
| 822 |
{ |
| 823 |
return ret; |
| 824 |
} |
| 825 |
|
| 826 |
if (0) |
| 827 |
{ |
| 828 |
regroup: |
| 829 |
/* Sometimes we dynamically decide there are too many groups. Arrive here. */ |
| 830 |
output->next = initial_offset; |
| 831 |
xd3_bit_state_encode_init (& bstate); |
| 832 |
} |
| 833 |
|
| 834 |
/* Encode: # of groups (3 bits) */ |
| 835 |
if ((ret = xd3_encode_bits (stream, & output, & bstate, DJW_GROUP_BITS, groups-1))) { goto failure; } |
| 836 |
|
| 837 |
if (groups == 1) |
| 838 |
{ |
| 839 |
/* Single Huffman group. */ |
| 840 |
uint code[ALPHABET_SIZE]; /* Codes */ |
| 841 |
IF_TUNE (uint8_t *clen = tune_clen[0];) |
| 842 |
IF_NTUNE (uint8_t clen[ALPHABET_SIZE];) |
| 843 |
uint8_t prefix_mtfsym[ALPHABET_SIZE]; |
| 844 |
djw_prefix prefix; |
| 845 |
|
| 846 |
encode_bits = |
| 847 |
djw_build_prefix (real_freq, clen, ALPHABET_SIZE, DJW_MAX_CODELEN); |
| 848 |
djw_build_codes (code, clen, ALPHABET_SIZE DEBUG_ARG (DJW_MAX_CODELEN)); |
| 849 |
|
| 850 |
if (encode_bits + EFFICIENCY_BITS >= input_bits && ! cfg->inefficient) { goto nosecond; } |
| 851 |
|
| 852 |
/* Encode: prefix */ |
| 853 |
prefix.mtfsym = prefix_mtfsym; |
| 854 |
prefix.symbol = clen; |
| 855 |
prefix.scount = ALPHABET_SIZE; |
| 856 |
|
| 857 |
if ((ret = djw_encode_prefix (stream, & output, & bstate, & prefix))) { goto failure; } |
| 858 |
|
| 859 |
if (encode_bits + (8 * output->next) + EFFICIENCY_BITS >= input_bits && ! cfg->inefficient) { goto nosecond; } |
| 860 |
|
| 861 |
IF_TUNE (tune_prefix_bits = xd3_bitsof_output (output, & bstate)); |
| 862 |
IF_TUNE (tune_select_bits = 0); |
| 863 |
IF_TUNE (tune_encode_bits = encode_bits); |
| 864 |
|
| 865 |
/* Encode: data */ |
| 866 |
for (in = input; in; in = in->next_page) |
| 867 |
{ |
| 868 |
const uint8_t *p = in->base; |
| 869 |
const uint8_t *p_max = p + in->next; |
| 870 |
|
| 871 |
do |
| 872 |
{ |
| 873 |
usize_t sym = *p++; |
| 874 |
usize_t bits = clen[sym]; |
| 875 |
|
| 876 |
IF_DEBUG (encode_bits -= bits); |
| 877 |
|
| 878 |
if ((ret = xd3_encode_bits (stream, & output, & bstate, bits, code[sym]))) { goto failure; } |
| 879 |
} |
| 880 |
while (p < p_max); |
| 881 |
} |
| 882 |
|
| 883 |
XD3_ASSERT (encode_bits == 0); |
| 884 |
} |
| 885 |
else |
| 886 |
{ |
| 887 |
/* DJW Huffman */ |
| 888 |
djw_weight evolve_freq[DJW_MAX_GROUPS][ALPHABET_SIZE]; |
| 889 |
#if TUNE_HUFFMAN == 0 |
| 890 |
uint8_t evolve_clen[DJW_MAX_GROUPS][ALPHABET_SIZE]; |
| 891 |
#else |
| 892 |
#define evolve_clen tune_clen |
| 893 |
#endif |
| 894 |
djw_weight left = input_bytes; |
| 895 |
int gp; |
| 896 |
int niter = 0; |
| 897 |
usize_t select_bits; |
| 898 |
usize_t sym1 = 0, sym2 = 0, s; |
| 899 |
usize_t gcost[DJW_MAX_GROUPS]; |
| 900 |
uint gbest_code[DJW_MAX_GROUPS+2]; |
| 901 |
uint8_t gbest_clen[DJW_MAX_GROUPS+2]; |
| 902 |
usize_t gbest_max = 1 + (input_bytes - 1) / sector_size; |
| 903 |
int best_bits = 0; |
| 904 |
usize_t gbest_no; |
| 905 |
usize_t gpcnt; |
| 906 |
const uint8_t *p; |
| 907 |
IF_DEBUG1 (usize_t gcount[DJW_MAX_GROUPS]); |
| 908 |
|
| 909 |
/* Encode: sector size (5 bits) */ |
| 910 |
if ((ret = xd3_encode_bits (stream, & output, & bstate, |
| 911 |
DJW_SECTORSZ_BITS, (sector_size/DJW_SECTORSZ_MULT)-1))) { goto failure; } |
| 912 |
|
| 913 |
/* Dynamic allocation. */ |
| 914 |
if (gbest == NULL) |
| 915 |
{ |
| 916 |
if ((gbest = xd3_alloc (stream, gbest_max, 1)) == NULL) { ret = ENOMEM; goto failure; } |
| 917 |
} |
| 918 |
|
| 919 |
if (gbest_mtf == NULL) |
| 920 |
{ |
| 921 |
if ((gbest_mtf = xd3_alloc (stream, gbest_max, 1)) == NULL) { ret = ENOMEM; goto failure; } |
| 922 |
} |
| 923 |
|
| 924 |
/* OPT: Some of the inner loops can be optimized, as shown in bzip2 */ |
| 925 |
|
| 926 |
/* Generate initial code length tables. */ |
| 927 |
for (gp = 0; gp < groups; gp += 1) |
| 928 |
{ |
| 929 |
djw_weight sum = 0; |
| 930 |
djw_weight goal = left / (groups - gp); |
| 931 |
|
| 932 |
IF_DEBUG1 (usize_t nz = 0); |
| 933 |
|
| 934 |
/* Due to the single-code granularity of this distribution, it may be that we |
| 935 |
* can't generate a distribution for each group. In that case subtract one |
| 936 |
* group and try again. If (inefficient), we're testing group behavior, so |
| 937 |
* don't mess things up. */ |
| 938 |
if (goal == 0 && !cfg->inefficient) |
| 939 |
{ |
| 940 |
IF_DEBUG1 (DP(RINT "too many groups (%u), dropping one\n", groups)); |
| 941 |
groups -= 1; |
| 942 |
goto regroup; |
| 943 |
} |
| 944 |
|
| 945 |
/* Sum == goal is possible when (cfg->inefficient)... */ |
| 946 |
while (sum < goal) |
| 947 |
{ |
| 948 |
XD3_ASSERT (sym2 < ALPHABET_SIZE); |
| 949 |
IF_DEBUG1 (nz += real_freq[sym2] != 0); |
| 950 |
sum += real_freq[sym2++]; |
| 951 |
} |
| 952 |
|
| 953 |
IF_DEBUG1(DP(RINT "group %u has symbols %u..%u (%u non-zero) (%u/%u = %.3f)\n", |
| 954 |
gp, sym1, sym2, nz, sum, input_bytes, sum / (double)input_bytes);); |
| 955 |
|
| 956 |
for (s = 0; s < ALPHABET_SIZE; s += 1) |
| 957 |
{ |
| 958 |
evolve_clen[gp][s] = (s >= sym1 && s <= sym2) ? 1 : 16; |
| 959 |
} |
| 960 |
|
| 961 |
left -= sum; |
| 962 |
sym1 = sym2+1; |
| 963 |
} |
| 964 |
|
| 965 |
repeat: |
| 966 |
|
| 967 |
niter += 1; |
| 968 |
gbest_no = 0; |
| 969 |
memset (evolve_freq, 0, sizeof (evolve_freq[0]) * groups); |
| 970 |
IF_DEBUG1 (memset (gcount, 0, sizeof (gcount[0]) * groups)); |
| 971 |
|
| 972 |
/* For each input page (loop is irregular to allow non-pow2-size group size. */ |
| 973 |
in = input; |
| 974 |
p = in->base; |
| 975 |
|
| 976 |
/* For each group-size sector. */ |
| 977 |
do |
| 978 |
{ |
| 979 |
const uint8_t *p0 = p; |
| 980 |
xd3_output *in0 = in; |
| 981 |
usize_t best = 0; |
| 982 |
usize_t winner = 0; |
| 983 |
|
| 984 |
/* Select best group for each sector, update evolve_freq. */ |
| 985 |
memset (gcost, 0, sizeof (gcost[0]) * groups); |
| 986 |
|
| 987 |
/* For each byte in sector. */ |
| 988 |
for (gpcnt = 0; gpcnt < sector_size; gpcnt += 1) |
| 989 |
{ |
| 990 |
/* For each group. */ |
| 991 |
for (gp = 0; gp < groups; gp += 1) |
| 992 |
{ |
| 993 |
gcost[gp] += evolve_clen[gp][*p]; |
| 994 |
} |
| 995 |
|
| 996 |
/* Check end-of-input-page. */ |
| 997 |
# define GP_PAGE() \ |
| 998 |
if (++p - in->base == in->next) \ |
| 999 |
{ \ |
| 1000 |
in = in->next_page; \ |
| 1001 |
if (in == NULL) { break; } \ |
| 1002 |
p = in->base; \ |
| 1003 |
} |
| 1004 |
|
| 1005 |
GP_PAGE (); |
| 1006 |
} |
| 1007 |
|
| 1008 |
/* Find min cost group for this sector */ |
| 1009 |
best = -1U; |
| 1010 |
for (gp = 0; gp < groups; gp += 1) |
| 1011 |
{ |
| 1012 |
if (gcost[gp] < best) { best = gcost[gp]; winner = gp; } |
| 1013 |
} |
| 1014 |
|
| 1015 |
XD3_ASSERT(gbest_no < gbest_max); |
| 1016 |
gbest[gbest_no++] = winner; |
| 1017 |
IF_DEBUG1 (gcount[winner] += 1); |
| 1018 |
|
| 1019 |
p = p0; |
| 1020 |
in = in0; |
| 1021 |
|
| 1022 |
/* Update group frequencies. */ |
| 1023 |
for (gpcnt = 0; gpcnt < sector_size; gpcnt += 1) |
| 1024 |
{ |
| 1025 |
evolve_freq[winner][*p] += 1; |
| 1026 |
|
| 1027 |
GP_PAGE (); |
| 1028 |
} |
| 1029 |
} |
| 1030 |
while (in != NULL); |
| 1031 |
|
| 1032 |
XD3_ASSERT (gbest_no == gbest_max); |
| 1033 |
|
| 1034 |
/* Recompute code lengths. */ |
| 1035 |
encode_bits = 0; |
| 1036 |
for (gp = 0; gp < groups; gp += 1) |
| 1037 |
{ |
| 1038 |
int i; |
| 1039 |
uint8_t evolve_zero[ALPHABET_SIZE]; |
| 1040 |
int any_zeros = 0; |
| 1041 |
|
| 1042 |
memset (evolve_zero, 0, sizeof (evolve_zero)); |
| 1043 |
|
| 1044 |
/* Cannot allow a zero clen when the real frequency is non-zero. Note: this |
| 1045 |
* means we are going to encode a fairly long code for these unused entries. An |
| 1046 |
* improvement would be to implement a NOTUSED code for when these are actually |
| 1047 |
* zero, but this requires another data structure (evolve_zero) since we don't |
| 1048 |
* know when evolve_freq[i] == 0... Briefly tested, looked worse. */ |
| 1049 |
for (i = 0; i < ALPHABET_SIZE; i += 1) |
| 1050 |
{ |
| 1051 |
if (evolve_freq[gp][i] == 0 && real_freq[i] != 0) |
| 1052 |
{ |
| 1053 |
evolve_freq[gp][i] = 1; |
| 1054 |
evolve_zero[i] = 1; |
| 1055 |
any_zeros = 1; |
| 1056 |
} |
| 1057 |
} |
| 1058 |
|
| 1059 |
encode_bits += djw_build_prefix (evolve_freq[gp], evolve_clen[gp], ALPHABET_SIZE, DJW_MAX_CODELEN); |
| 1060 |
|
| 1061 |
/* The above faking of frequencies does not matter for the last iteration, but |
| 1062 |
* we don't know when that is yet. However, it also breaks the encode_bits |
| 1063 |
* computation. Necessary for accuracy, and for the (encode_bits==0) assert |
| 1064 |
* after all bits are output. */ |
| 1065 |
if (any_zeros) |
| 1066 |
{ |
| 1067 |
IF_DEBUG1 (usize_t save_total = encode_bits); |
| 1068 |
|
| 1069 |
for (i = 0; i < ALPHABET_SIZE; i += 1) |
| 1070 |
{ |
| 1071 |
if (evolve_zero[i]) { encode_bits -= evolve_clen[gp][i]; } |
| 1072 |
} |
| 1073 |
|
| 1074 |
IF_DEBUG1 (DP(RINT "evolve_zero reduced %u bits in group %u\n", save_total - encode_bits, gp)); |
| 1075 |
} |
| 1076 |
} |
| 1077 |
|
| 1078 |
IF_DEBUG1( |
| 1079 |
DP(RINT "pass %u total bits: %u group uses: ", niter, encode_bits); |
| 1080 |
for (gp = 0; gp < groups; gp += 1) { DP(RINT "%u ", gcount[gp]); } |
| 1081 |
DP(RINT "\n");); |
| 1082 |
|
| 1083 |
/* End iteration. (The following assertion proved invalid.) */ |
| 1084 |
/*XD3_ASSERT (niter == 1 || best_bits >= encode_bits);*/ |
| 1085 |
|
| 1086 |
IF_DEBUG1 (if (niter > 1 && best_bits < encode_bits) { |
| 1087 |
DP(RINT "iteration lost %u bits\n", encode_bits - best_bits); }); |
| 1088 |
|
| 1089 |
if (niter == 1 || (niter < DJW_MAX_ITER && (best_bits - encode_bits) >= DJW_MIN_IMPROVEMENT)) |
| 1090 |
{ |
| 1091 |
best_bits = encode_bits; |
| 1092 |
goto repeat; |
| 1093 |
} |
| 1094 |
|
| 1095 |
/* Efficiency check. */ |
| 1096 |
if (encode_bits + EFFICIENCY_BITS >= input_bits && ! cfg->inefficient) { goto nosecond; } |
| 1097 |
|
| 1098 |
IF_DEBUG1 (DP(RINT "djw compression: %u -> %0.3f\n", input_bytes, encode_bits / 8.0)); |
| 1099 |
|
| 1100 |
/* Encode: prefix */ |
| 1101 |
{ |
| 1102 |
uint8_t prefix_symbol[DJW_MAX_GROUPS * ALPHABET_SIZE]; |
| 1103 |
uint8_t prefix_mtfsym[DJW_MAX_GROUPS * ALPHABET_SIZE]; |
| 1104 |
uint8_t prefix_repcnt[DJW_MAX_GROUPS * ALPHABET_SIZE]; |
| 1105 |
djw_prefix prefix; |
| 1106 |
|
| 1107 |
prefix.symbol = prefix_symbol; |
| 1108 |
prefix.mtfsym = prefix_mtfsym; |
| 1109 |
prefix.repcnt = prefix_repcnt; |
| 1110 |
|
| 1111 |
djw_compute_multi_prefix (groups, evolve_clen, & prefix); |
| 1112 |
if ((ret = djw_encode_prefix (stream, & output, & bstate, & prefix))) { goto failure; } |
| 1113 |
} |
| 1114 |
|
| 1115 |
/* Encode: selector frequencies */ |
| 1116 |
{ |
| 1117 |
djw_weight gbest_freq[DJW_MAX_GROUPS+1]; |
| 1118 |
djw_prefix gbest_prefix; |
| 1119 |
usize_t i; |
| 1120 |
|
| 1121 |
gbest_prefix.scount = gbest_no; |
| 1122 |
gbest_prefix.symbol = gbest; |
| 1123 |
gbest_prefix.mtfsym = gbest_mtf; |
| 1124 |
|
| 1125 |
djw_compute_selector_1_2 (& gbest_prefix, groups, gbest_freq); |
| 1126 |
|
| 1127 |
select_bits = |
| 1128 |
djw_build_prefix (gbest_freq, gbest_clen, groups+1, DJW_MAX_GBCLEN); |
| 1129 |
djw_build_codes (gbest_code, gbest_clen, groups+1 DEBUG_ARG (DJW_MAX_GBCLEN)); |
| 1130 |
|
| 1131 |
IF_TUNE (tune_prefix_bits = xd3_bitsof_output (output, & bstate)); |
| 1132 |
IF_TUNE (tune_select_bits = select_bits); |
| 1133 |
IF_TUNE (tune_encode_bits = encode_bits); |
| 1134 |
|
| 1135 |
for (i = 0; i < groups+1; i += 1) |
| 1136 |
{ |
| 1137 |
if ((ret = xd3_encode_bits (stream, & output, & bstate, DJW_GBCLEN_BITS, gbest_clen[i]))) { goto failure; } |
| 1138 |
} |
| 1139 |
|
| 1140 |
for (i = 0; i < gbest_prefix.mcount; i += 1) |
| 1141 |
{ |
| 1142 |
usize_t gp_mtf = gbest_mtf[i]; |
| 1143 |
usize_t gp_sel_bits = gbest_clen[gp_mtf]; |
| 1144 |
usize_t gp_sel_code = gbest_code[gp_mtf]; |
| 1145 |
|
| 1146 |
XD3_ASSERT (gp_mtf < groups+1); |
| 1147 |
|
| 1148 |
if ((ret = xd3_encode_bits (stream, & output, & bstate, gp_sel_bits, gp_sel_code))) { goto failure; } |
| 1149 |
|
| 1150 |
IF_DEBUG (select_bits -= gp_sel_bits); |
| 1151 |
} |
| 1152 |
|
| 1153 |
XD3_ASSERT (select_bits == 0); |
| 1154 |
} |
| 1155 |
|
| 1156 |
/* Efficiency check. */ |
| 1157 |
if (encode_bits + select_bits + (8 * output->next) + EFFICIENCY_BITS >= input_bits && ! cfg->inefficient) { goto nosecond; } |
| 1158 |
|
| 1159 |
/* Encode: data */ |
| 1160 |
{ |
| 1161 |
uint evolve_code[DJW_MAX_GROUPS][ALPHABET_SIZE]; |
| 1162 |
usize_t sector = 0; |
| 1163 |
|
| 1164 |
/* Build code tables for each group. */ |
| 1165 |
for (gp = 0; gp < groups; gp += 1) |
| 1166 |
{ |
| 1167 |
djw_build_codes (evolve_code[gp], evolve_clen[gp], ALPHABET_SIZE DEBUG_ARG (DJW_MAX_CODELEN)); |
| 1168 |
} |
| 1169 |
|
| 1170 |
/* Now loop over the input. */ |
| 1171 |
in = input; |
| 1172 |
p = in->base; |
| 1173 |
|
| 1174 |
do |
| 1175 |
{ |
| 1176 |
/* For each sector. */ |
| 1177 |
usize_t gp_best = gbest[sector]; |
| 1178 |
uint *gp_codes = evolve_code[gp_best]; |
| 1179 |
uint8_t *gp_clens = evolve_clen[gp_best]; |
| 1180 |
|
| 1181 |
XD3_ASSERT (sector < gbest_no); |
| 1182 |
|
| 1183 |
sector += 1; |
| 1184 |
|
| 1185 |
/* Encode the sector data. */ |
| 1186 |
for (gpcnt = 0; gpcnt < sector_size; gpcnt += 1) |
| 1187 |
{ |
| 1188 |
usize_t sym = *p; |
| 1189 |
usize_t bits = gp_clens[sym]; |
| 1190 |
usize_t code = gp_codes[sym]; |
| 1191 |
|
| 1192 |
IF_DEBUG (encode_bits -= bits); |
| 1193 |
|
| 1194 |
if ((ret = xd3_encode_bits (stream, & output, & bstate, bits, code))) { goto failure; } |
| 1195 |
|
| 1196 |
GP_PAGE (); |
| 1197 |
} |
| 1198 |
} |
| 1199 |
while (in != NULL); |
| 1200 |
|
| 1201 |
XD3_ASSERT (select_bits == 0); |
| 1202 |
XD3_ASSERT (encode_bits == 0); |
| 1203 |
|
| 1204 |
#undef evolve_clen |
| 1205 |
} |
| 1206 |
} |
| 1207 |
|
| 1208 |
ret = xd3_flush_bits (stream, & output, & bstate); |
| 1209 |
|
| 1210 |
if (0) |
| 1211 |
{ |
| 1212 |
nosecond: |
| 1213 |
stream->msg = "secondary compression was inefficient"; |
| 1214 |
ret = XD3_NOSECOND; |
| 1215 |
} |
| 1216 |
|
| 1217 |
failure: |
| 1218 |
|
| 1219 |
xd3_free (stream, gbest); |
| 1220 |
xd3_free (stream, gbest_mtf); |
| 1221 |
return ret; |
| 1222 |
} |
| 1223 |
#endif /* XD3_ENCODER */ |
| 1224 |
|
| 1225 |
/*********************************************************************/ |
| 1226 |
/* DECODE */ |
| 1227 |
/*********************************************************************/ |
| 1228 |
|
| 1229 |
static void |
| 1230 |
djw_build_decoder (xd3_stream *stream, |
| 1231 |
usize_t asize, |
| 1232 |
usize_t abs_max, |
| 1233 |
const uint8_t *clen, |
| 1234 |
uint8_t *inorder, |
| 1235 |
uint *base, |
| 1236 |
uint *limit, |
| 1237 |
uint *min_clenp, |
| 1238 |
uint *max_clenp) |
| 1239 |
{ |
| 1240 |
int i, l; |
| 1241 |
const uint8_t *ci; |
| 1242 |
uint nr_clen [DJW_MAX_CODELEN+2]; |
| 1243 |
uint tmp_base[DJW_MAX_CODELEN+2]; |
| 1244 |
int min_clen; |
| 1245 |
int max_clen; |
| 1246 |
|
| 1247 |
/* Assumption: the two temporary arrays are large enough to hold abs_max. */ |
| 1248 |
XD3_ASSERT (abs_max <= DJW_MAX_CODELEN); |
| 1249 |
|
| 1250 |
/* This looks something like the start of zlib's inftrees.c */ |
| 1251 |
memset (nr_clen, 0, sizeof (nr_clen[0]) * (abs_max+1)); |
| 1252 |
|
| 1253 |
/* Count number of each code length */ |
| 1254 |
i = asize; |
| 1255 |
ci = clen; |
| 1256 |
do |
| 1257 |
{ |
| 1258 |
/* Caller _must_ check that values are in-range. Most of the time |
| 1259 |
* the caller decodes a specific number of bits, which imply the max value, and the |
| 1260 |
* other time the caller decodes a huffman value, which must be in-range. Therefore, |
| 1261 |
* its an assertion and this function cannot otherwise fail. */ |
| 1262 |
XD3_ASSERT (*ci <= abs_max); |
| 1263 |
|
| 1264 |
nr_clen[*ci++]++; |
| 1265 |
} |
| 1266 |
while (--i != 0); |
| 1267 |
|
| 1268 |
/* Compute min, max. */ |
| 1269 |
for (i = 1; i <= abs_max; i += 1) { if (nr_clen[i]) { break; } } |
| 1270 |
min_clen = i; |
| 1271 |
for (i = abs_max; i != 0; i -= 1) { if (nr_clen[i]) { break; } } |
| 1272 |
max_clen = i; |
| 1273 |
|
| 1274 |
/* Fill the BASE, LIMIT table. */ |
| 1275 |
tmp_base[min_clen] = 0; |
| 1276 |
base[min_clen] = 0; |
| 1277 |
limit[min_clen] = nr_clen[min_clen] - 1; |
| 1278 |
for (i = min_clen + 1; i <= max_clen; i += 1) |
| 1279 |
{ |
| 1280 |
uint last_limit = ((limit[i-1] + 1) << 1); |
| 1281 |
tmp_base[i] = tmp_base[i-1] + nr_clen[i-1]; |
| 1282 |
limit[i] = last_limit + nr_clen[i] - 1; |
| 1283 |
base[i] = last_limit - tmp_base[i]; |
| 1284 |
} |
| 1285 |
|
| 1286 |
/* Fill the inorder array, canonically ordered codes. */ |
| 1287 |
ci = clen; |
| 1288 |
for (i = 0; i < asize; i += 1) |
| 1289 |
{ |
| 1290 |
if ((l = *ci++) != 0) |
| 1291 |
{ |
| 1292 |
inorder[tmp_base[l]++] = i; |
| 1293 |
} |
| 1294 |
} |
| 1295 |
|
| 1296 |
*min_clenp = min_clen; |
| 1297 |
*max_clenp = max_clen; |
| 1298 |
} |
| 1299 |
|
| 1300 |
static INLINE int |
| 1301 |
djw_decode_symbol (xd3_stream *stream, |
| 1302 |
bit_state *bstate, |
| 1303 |
const uint8_t **input, |
| 1304 |
const uint8_t *input_end, |
| 1305 |
const uint8_t *inorder, |
| 1306 |
const uint *base, |
| 1307 |
const uint *limit, |
| 1308 |
uint min_clen, |
| 1309 |
uint max_clen, |
| 1310 |
usize_t *sym, |
| 1311 |
usize_t max_sym) |
| 1312 |
{ |
| 1313 |
usize_t code = 0; |
| 1314 |
usize_t bits = 0; |
| 1315 |
|
| 1316 |
/* OPT: Supposedly a small lookup table improves speed here... */ |
| 1317 |
|
| 1318 |
/* Code outline is similar to xd3_decode_bits... */ |
| 1319 |
if (bstate->cur_mask == 0x100) { goto next_byte; } |
| 1320 |
|
| 1321 |
for (;;) |
| 1322 |
{ |
| 1323 |
do |
| 1324 |
{ |
| 1325 |
if (bits == max_clen) { goto corrupt; } |
| 1326 |
|
| 1327 |
bits += 1; |
| 1328 |
code = (code << 1); |
| 1329 |
|
| 1330 |
if (bstate->cur_byte & bstate->cur_mask) { code |= 1; } |
| 1331 |
|
| 1332 |
bstate->cur_mask <<= 1; |
| 1333 |
|
| 1334 |
if (bits >= min_clen && code <= limit[bits]) { goto done; } |
| 1335 |
} |
| 1336 |
while (bstate->cur_mask != 0x100); |
| 1337 |
|
| 1338 |
next_byte: |
| 1339 |
|
| 1340 |
if (*input == input_end) |
| 1341 |
{ |
| 1342 |
stream->msg = "secondary decoder end of input"; |
| 1343 |
return XD3_INTERNAL; |
| 1344 |
} |
| 1345 |
|
| 1346 |
bstate->cur_byte = *(*input)++; |
| 1347 |
bstate->cur_mask = 1; |
| 1348 |
} |
| 1349 |
|
| 1350 |
done: |
| 1351 |
|
| 1352 |
if (base[bits] <= code) |
| 1353 |
{ |
| 1354 |
usize_t offset = code - base[bits]; |
| 1355 |
|
| 1356 |
if (offset <= max_sym) |
| 1357 |
{ |
| 1358 |
IF_DEBUG2 (DP(RINT "(j) %u ", code)); |
| 1359 |
*sym = inorder[offset]; |
| 1360 |
return 0; |
| 1361 |
} |
| 1362 |
} |
| 1363 |
|
| 1364 |
corrupt: |
| 1365 |
stream->msg = "secondary decoder invalid code"; |
| 1366 |
return XD3_INTERNAL; |
| 1367 |
} |
| 1368 |
|
| 1369 |
static int |
| 1370 |
djw_decode_clclen (xd3_stream *stream, |
| 1371 |
bit_state *bstate, |
| 1372 |
const uint8_t **input, |
| 1373 |
const uint8_t *input_end, |
| 1374 |
uint8_t *cl_inorder, |
| 1375 |
uint *cl_base, |
| 1376 |
uint *cl_limit, |
| 1377 |
uint *cl_minlen, |
| 1378 |
uint *cl_maxlen, |
| 1379 |
uint8_t *cl_mtf) |
| 1380 |
{ |
| 1381 |
int ret; |
| 1382 |
uint8_t cl_clen[DJW_TOTAL_CODES]; |
| 1383 |
usize_t num_codes, value; |
| 1384 |
int i; |
| 1385 |
|
| 1386 |
/* How many extra code lengths to encode. */ |
| 1387 |
if ((ret = xd3_decode_bits (stream, bstate, input, input_end, DJW_EXTRA_CODE_BITS, & num_codes))) { return ret; } |
| 1388 |
|
| 1389 |
num_codes += DJW_EXTRA_12OFFSET; |
| 1390 |
|
| 1391 |
/* Read num_codes. */ |
| 1392 |
for (i = 0; i < num_codes; i += 1) |
| 1393 |
{ |
| 1394 |
if ((ret = xd3_decode_bits (stream, bstate, input, input_end, DJW_CLCLEN_BITS, & value))) { return ret; } |
| 1395 |
|
| 1396 |
cl_clen[i] = value; |
| 1397 |
} |
| 1398 |
|
| 1399 |
/* Set the rest to zero. */ |
| 1400 |
for (; i < DJW_TOTAL_CODES; i += 1) { cl_clen[i] = 0; } |
| 1401 |
|
| 1402 |
/* No need to check for in-range clen values, because: */ |
| 1403 |
XD3_ASSERT (1 << DJW_CLCLEN_BITS == DJW_MAX_CLCLEN + 1); |
| 1404 |
|
| 1405 |
/* Build the code-length decoder. */ |
| 1406 |
djw_build_decoder (stream, DJW_TOTAL_CODES, DJW_MAX_CLCLEN, |
| 1407 |
cl_clen, cl_inorder, cl_base, cl_limit, cl_minlen, cl_maxlen); |
| 1408 |
|
| 1409 |
/* Initialize the MTF state. */ |
| 1410 |
djw_init_clen_mtf_1_2 (cl_mtf); |
| 1411 |
|
| 1412 |
return 0; |
| 1413 |
} |
| 1414 |
|
| 1415 |
static INLINE int |
| 1416 |
djw_decode_1_2 (xd3_stream *stream, |
| 1417 |
bit_state *bstate, |
| 1418 |
const uint8_t **input, |
| 1419 |
const uint8_t *input_end, |
| 1420 |
const uint8_t *inorder, |
| 1421 |
const uint *base, |
| 1422 |
const uint *limit, |
| 1423 |
const uint *minlen, |
| 1424 |
const uint *maxlen, |
| 1425 |
uint8_t *mtfvals, |
| 1426 |
usize_t elts, |
| 1427 |
usize_t skip_offset, |
| 1428 |
uint8_t *values) |
| 1429 |
{ |
| 1430 |
usize_t n = 0, rep = 0, mtf = 0, s = 0; |
| 1431 |
int ret; |
| 1432 |
|
| 1433 |
while (n < elts) |
| 1434 |
{ |
| 1435 |
/* Special case inside generic code: CLEN only: If not the first group, we already |
| 1436 |
* know the zero frequencies. */ |
| 1437 |
if (skip_offset != 0 && n >= skip_offset && values[n-skip_offset] == 0) |
| 1438 |
{ |
| 1439 |
values[n++] = 0; |
| 1440 |
continue; |
| 1441 |
} |
| 1442 |
|
| 1443 |
/* Repeat last symbol. */ |
| 1444 |
if (rep != 0) |
| 1445 |
{ |
| 1446 |
values[n++] = mtfvals[0]; |
| 1447 |
rep -= 1; |
| 1448 |
continue; |
| 1449 |
} |
| 1450 |
|
| 1451 |
/* Symbol following last repeat code. */ |
| 1452 |
if (mtf != 0) |
| 1453 |
{ |
| 1454 |
usize_t sym = djw_update_mtf (mtfvals, mtf); |
| 1455 |
values[n++] = sym; |
| 1456 |
mtf = 0; |
| 1457 |
continue; |
| 1458 |
} |
| 1459 |
|
| 1460 |
/* Decode next symbol/repeat code. */ |
| 1461 |
if ((ret = djw_decode_symbol (stream, bstate, input, input_end, |
| 1462 |
inorder, base, limit, *minlen, *maxlen, |
| 1463 |
& mtf, DJW_TOTAL_CODES))) { return ret; } |
| 1464 |
|
| 1465 |
if (mtf <= RUN_1) |
| 1466 |
{ |
| 1467 |
/* Repetition. */ |
| 1468 |
rep = ((mtf + 1) << s); |
| 1469 |
mtf = 0; |
| 1470 |
s += 1; |
| 1471 |
} |
| 1472 |
else |
| 1473 |
{ |
| 1474 |
/* Remove the RUN_1 MTF offset. */ |
| 1475 |
mtf -= 1; |
| 1476 |
s = 0; |
| 1477 |
} |
| 1478 |
} |
| 1479 |
|
| 1480 |
/* If (rep != 0) there were too many codes received. */ |
| 1481 |
if (rep != 0) |
| 1482 |
{ |
| 1483 |
stream->msg = "secondary decoder invalid repeat code"; |
| 1484 |
return XD3_INTERNAL; |
| 1485 |
} |
| 1486 |
|
| 1487 |
return 0; |
| 1488 |
} |
| 1489 |
|
| 1490 |
static INLINE int |
| 1491 |
djw_decode_prefix (xd3_stream *stream, |
| 1492 |
bit_state *bstate, |
| 1493 |
const uint8_t **input, |
| 1494 |
const uint8_t *input_end, |
| 1495 |
const uint8_t *cl_inorder, |
| 1496 |
const uint *cl_base, |
| 1497 |
const uint *cl_limit, |
| 1498 |
const uint *cl_minlen, |
| 1499 |
const uint *cl_maxlen, |
| 1500 |
uint8_t *cl_mtf, |
| 1501 |
usize_t groups, |
| 1502 |
uint8_t *clen) |
| 1503 |
{ |
| 1504 |
return djw_decode_1_2 (stream, bstate, input, input_end, |
| 1505 |
cl_inorder, cl_base, cl_limit, cl_minlen, cl_maxlen, cl_mtf, |
| 1506 |
ALPHABET_SIZE * groups, ALPHABET_SIZE, clen); |
| 1507 |
} |
| 1508 |
|
| 1509 |
static int |
| 1510 |
xd3_decode_huff (xd3_stream *stream, |
| 1511 |
djw_stream *h, |
| 1512 |
const uint8_t **input_pos, |
| 1513 |
const uint8_t *const input_end, |
| 1514 |
uint8_t **output_pos, |
| 1515 |
const uint8_t *const output_end) |
| 1516 |
{ |
| 1517 |
const uint8_t *input = *input_pos; |
| 1518 |
uint8_t *output = *output_pos; |
| 1519 |
bit_state bstate = BIT_STATE_DECODE_INIT; |
| 1520 |
uint8_t *sel_group = NULL; |
| 1521 |
usize_t groups, gp; |
| 1522 |
usize_t output_bytes = (output_end - output); |
| 1523 |
usize_t sector_size; |
| 1524 |
usize_t sectors; |
| 1525 |
int ret; |
| 1526 |
|
| 1527 |
/* Invalid input. */ |
| 1528 |
if (output_bytes == 0) |
| 1529 |
{ |
| 1530 |
stream->msg = "secondary decoder invalid input"; |
| 1531 |
return XD3_INTERNAL; |
| 1532 |
} |
| 1533 |
|
| 1534 |
/* Decode: number of groups */ |
| 1535 |
if ((ret = xd3_decode_bits (stream, & bstate, & input, input_end, DJW_GROUP_BITS, & groups))) { goto fail; } |
| 1536 |
|
| 1537 |
groups += 1; |
| 1538 |
|
| 1539 |
if (groups > 1) |
| 1540 |
{ |
| 1541 |
/* Decode: group size */ |
| 1542 |
if ((ret = xd3_decode_bits (stream, & bstate, & input, input_end, DJW_SECTORSZ_BITS, & sector_size))) { goto fail; } |
| 1543 |
|
| 1544 |
sector_size = (sector_size + 1) * DJW_SECTORSZ_MULT; |
| 1545 |
} |
| 1546 |
else |
| 1547 |
{ |
| 1548 |
/* Default for groups == 1 */ |
| 1549 |
sector_size = output_bytes; |
| 1550 |
} |
| 1551 |
|
| 1552 |
sectors = 1 + (output_bytes - 1) / sector_size; |
| 1553 |
|
| 1554 |
/* @!@ In the case of groups==1, lots of extra stack space gets used here. Could |
| 1555 |
* dynamically allocate this memory, which would help with excess parameter passing, |
| 1556 |
* too. Passing too many parameters in this file, simplify it! */ |
| 1557 |
|
| 1558 |
/* Outer scope: per-group symbol decoder tables. */ |
| 1559 |
{ |
| 1560 |
uint8_t inorder[DJW_MAX_GROUPS][ALPHABET_SIZE]; |
| 1561 |
uint base [DJW_MAX_GROUPS][DJW_MAX_CODELEN+2]; |
| 1562 |
uint limit [DJW_MAX_GROUPS][DJW_MAX_CODELEN+2]; |
| 1563 |
uint minlen [DJW_MAX_GROUPS]; |
| 1564 |
uint maxlen [DJW_MAX_GROUPS]; |
| 1565 |
|
| 1566 |
/* Nested scope: code length decoder tables. */ |
| 1567 |
{ |
| 1568 |
uint8_t clen [DJW_MAX_GROUPS][ALPHABET_SIZE]; |
| 1569 |
uint8_t cl_inorder[DJW_TOTAL_CODES]; |
| 1570 |
uint cl_base [DJW_MAX_CLCLEN+2]; |
| 1571 |
uint cl_limit [DJW_MAX_CLCLEN+2]; |
| 1572 |
uint8_t cl_mtf [DJW_TOTAL_CODES]; |
| 1573 |
uint cl_minlen; |
| 1574 |
uint cl_maxlen; |
| 1575 |
|
| 1576 |
/* Compute the code length decoder. */ |
| 1577 |
if ((ret = djw_decode_clclen (stream, & bstate, & input, input_end, |
| 1578 |
cl_inorder, cl_base, cl_limit, & cl_minlen, |
| 1579 |
& cl_maxlen, cl_mtf))) { goto fail; } |
| 1580 |
|
| 1581 |
/* Now decode each group decoder. */ |
| 1582 |
if ((ret = djw_decode_prefix (stream, & bstate, & input, input_end, |
| 1583 |
cl_inorder, cl_base, cl_limit, |
| 1584 |
& cl_minlen, & cl_maxlen, cl_mtf, |
| 1585 |
groups, clen[0]))) { goto fail; } |
| 1586 |
|
| 1587 |
/* Prepare the actual decoding tables. */ |
| 1588 |
for (gp = 0; gp < groups; gp += 1) |
| 1589 |
{ |
| 1590 |
djw_build_decoder (stream, ALPHABET_SIZE, DJW_MAX_CODELEN, |
| 1591 |
clen[gp], inorder[gp], base[gp], limit[gp], |
| 1592 |
& minlen[gp], & maxlen[gp]); |
| 1593 |
} |
| 1594 |
} |
| 1595 |
|
| 1596 |
/* Decode: selector clens. */ |
| 1597 |
{ |
| 1598 |
uint8_t sel_inorder[DJW_MAX_GROUPS+2]; |
| 1599 |
uint sel_base [DJW_MAX_GBCLEN+2]; |
| 1600 |
uint sel_limit [DJW_MAX_GBCLEN+2]; |
| 1601 |
uint8_t sel_mtf [DJW_MAX_GROUPS+2]; |
| 1602 |
uint sel_minlen; |
| 1603 |
uint sel_maxlen; |
| 1604 |
|
| 1605 |
/* Setup group selection. */ |
| 1606 |
if (groups > 1) |
| 1607 |
{ |
| 1608 |
uint8_t sel_clen[DJW_MAX_GROUPS+1]; |
| 1609 |
|
| 1610 |
for (gp = 0; gp < groups+1; gp += 1) |
| 1611 |
{ |
| 1612 |
usize_t value; |
| 1613 |
|
| 1614 |
if ((ret = xd3_decode_bits (stream, & bstate, & input, input_end, DJW_GBCLEN_BITS, & value))) { goto fail; } |
| 1615 |
|
| 1616 |
sel_clen[gp] = value; |
| 1617 |
sel_mtf[gp] = gp; |
| 1618 |
} |
| 1619 |
|
| 1620 |
if ((sel_group = xd3_alloc (stream, sectors, 1)) == NULL) { ret = ENOMEM; goto fail; } |
| 1621 |
|
| 1622 |
djw_build_decoder (stream, groups+1, DJW_MAX_GBCLEN, sel_clen, |
| 1623 |
sel_inorder, sel_base, sel_limit, & sel_minlen, & sel_maxlen); |
| 1624 |
|
| 1625 |
if ((ret = djw_decode_1_2 (stream, & bstate, & input, input_end, |
| 1626 |
sel_inorder, sel_base, sel_limit, & sel_minlen, & sel_maxlen, sel_mtf, |
| 1627 |
sectors, 0, sel_group))) { goto fail; } |
| 1628 |
} |
| 1629 |
|
| 1630 |
/* Now decode each sector. */ |
| 1631 |
{ |
| 1632 |
uint8_t *gp_inorder = inorder[0]; /* Initialize for (groups==1) case. */ |
| 1633 |
uint *gp_base = base[0]; |
| 1634 |
uint *gp_limit = limit[0]; |
| 1635 |
uint gp_minlen = minlen[0]; |
| 1636 |
uint gp_maxlen = maxlen[0]; |
| 1637 |
usize_t c; |
| 1638 |
|
| 1639 |
for (c = 0; c < sectors; c += 1) |
| 1640 |
{ |
| 1641 |
usize_t n; |
| 1642 |
|
| 1643 |
if (groups >= 2) |
| 1644 |
{ |
| 1645 |
gp = sel_group[c]; |
| 1646 |
|
| 1647 |
XD3_ASSERT (gp < groups); |
| 1648 |
|
| 1649 |
gp_inorder = inorder[gp]; |
| 1650 |
gp_base = base[gp]; |
| 1651 |
gp_limit = limit[gp]; |
| 1652 |
gp_minlen = minlen[gp]; |
| 1653 |
gp_maxlen = maxlen[gp]; |
| 1654 |
} |
| 1655 |
|
| 1656 |
XD3_ASSERT (output_end - output > 0); |
| 1657 |
|
| 1658 |
/* Decode next sector. */ |
| 1659 |
n = min (sector_size, (usize_t) (output_end - output)); |
| 1660 |
|
| 1661 |
do |
| 1662 |
{ |
| 1663 |
usize_t sym; |
| 1664 |
|
| 1665 |
if ((ret = djw_decode_symbol (stream, & bstate, & input, input_end, |
| 1666 |
gp_inorder, gp_base, gp_limit, gp_minlen, gp_maxlen, |
| 1667 |
& sym, ALPHABET_SIZE))) { goto fail; } |
| 1668 |
|
| 1669 |
*output++ = sym; |
| 1670 |
} |
| 1671 |
while (--n); |
| 1672 |
} |
| 1673 |
} |
| 1674 |
} |
| 1675 |
} |
| 1676 |
|
| 1677 |
IF_REGRESSION (if ((ret = xd3_test_clean_bits (stream, & bstate))) { goto fail; }); |
| 1678 |
XD3_ASSERT (ret == 0); |
| 1679 |
|
| 1680 |
fail: |
| 1681 |
xd3_free (stream, sel_group); |
| 1682 |
|
| 1683 |
(*input_pos) = input; |
| 1684 |
(*output_pos) = output; |
| 1685 |
return ret; |
| 1686 |
} |
| 1687 |
|
| 1688 |
/*********************************************************************/ |
| 1689 |
/* TUNING */ |
| 1690 |
/*********************************************************************/ |
| 1691 |
|
| 1692 |
#if TUNE_HUFFMAN && XD3_ENCODER |
| 1693 |
#include <stdio.h> |
| 1694 |
#include "xdelta3-fgk.h" |
| 1695 |
|
| 1696 |
static uint |
| 1697 |
xd3_bitsof_output (xd3_output *output, bit_state *bstate) |
| 1698 |
{ |
| 1699 |
uint x = 0; |
| 1700 |
uint m = bstate->cur_mask; |
| 1701 |
|
| 1702 |
while (m != 1) |
| 1703 |
{ |
| 1704 |
x += 1; |
| 1705 |
m >>= 1; |
| 1706 |
} |
| 1707 |
|
| 1708 |
return x + 8 * xd3_sizeof_output (output); |
| 1709 |
} |
| 1710 |
|
| 1711 |
static const char* xd3_sect_type (xd3_section_type type) |
| 1712 |
{ |
| 1713 |
switch (type) |
| 1714 |
{ |
| 1715 |
case DATA_SECTION: return "DATA"; |
| 1716 |
case INST_SECTION: return "INST"; |
| 1717 |
case ADDR_SECTION: return "ADDR"; |
| 1718 |
} |
| 1719 |
abort (); |
| 1720 |
} |
| 1721 |
|
| 1722 |
static int |
| 1723 |
xd3_encode_huff (xd3_stream *stream, |
| 1724 |
djw_stream *h, |
| 1725 |
xd3_output *input, |
| 1726 |
xd3_output *unused_output, |
| 1727 |
xd3_sec_cfg *cfg) |
| 1728 |
{ |
| 1729 |
int ret = 0; |
| 1730 |
int input_size = xd3_sizeof_output (input); |
| 1731 |
static int hdr = 0; |
| 1732 |
const char *sect_type = xd3_sect_type (cfg->data_type); |
| 1733 |
xd3_output *output; |
| 1734 |
usize_t output_size; |
| 1735 |
|
| 1736 |
if (hdr == 0) { hdr = 1; DP(RINT "____ SECT INSZ SECTORSZ GPNO OUTSZ PREFIX SELECT ENCODE\n"); } |
| 1737 |
|
| 1738 |
DP(RINT "SECTION %s %u\n", sect_type, input_size); |
| 1739 |
|
| 1740 |
{ |
| 1741 |
int gp, i; |
| 1742 |
int best_size = 99999999; |
| 1743 |
usize_t best_prefix = 0, best_select = 0, best_encode = 0, best_sector_size = 0; |
| 1744 |
int best_gpno = -1; |
| 1745 |
const char *t12 = "12"; |
| 1746 |
usize_t clen_count[DJW_MAX_CODELEN+1]; |
| 1747 |
djw_weight best_freq[DJW_TOTAL_CODES]; |
| 1748 |
|
| 1749 |
for (cfg->ngroups = 1; cfg->ngroups <= /*1*/ DJW_MAX_GROUPS; cfg->ngroups += 1) |
| 1750 |
{ |
| 1751 |
for (cfg->sector_size = 10; cfg->sector_size <= DJW_SECTORSZ_MAX; cfg->sector_size += 10) |
| 1752 |
{ |
| 1753 |
output = xd3_alloc_output (stream, NULL); |
| 1754 |
|
| 1755 |
if ((ret = xd3_real_encode_huff (stream, h, input, output, cfg))) { goto fail; } |
| 1756 |
|
| 1757 |
output_size = xd3_sizeof_output (output); |
| 1758 |
|
| 1759 |
if (output_size < best_size) |
| 1760 |
{ |
| 1761 |
best_size = output_size; |
| 1762 |
best_gpno = cfg->ngroups; |
| 1763 |
best_prefix = tune_prefix_bits; |
| 1764 |
best_select = tune_select_bits; |
| 1765 |
best_encode = tune_encode_bits; |
| 1766 |
best_sector_size = cfg->sector_size; |
| 1767 |
memset (clen_count, 0, sizeof (clen_count)); |
| 1768 |
|
| 1769 |
for (gp = 0; gp < cfg->ngroups; gp += 1) |
| 1770 |
{ |
| 1771 |
for (i = 0; i < ALPHABET_SIZE; i += 1) |
| 1772 |
{ |
| 1773 |
clen_count[tune_clen[gp][i]] += 1; |
| 1774 |
} |
| 1775 |
} |
| 1776 |
|
| 1777 |
memcpy (best_freq, tune_freq, sizeof (tune_freq)); |
| 1778 |
|
| 1779 |
XD3_ASSERT (sizeof (tune_freq) == sizeof (mtf_freq)); |
| 1780 |
} |
| 1781 |
|
| 1782 |
if (1) |
| 1783 |
{ |
| 1784 |
DP(RINT "COMP%s %u %u %u %u %u %u\n", |
| 1785 |
t12, cfg->ngroups, cfg->sector_size, |
| 1786 |
output_size, tune_prefix_bits, tune_select_bits, tune_encode_bits); |
| 1787 |
} |
| 1788 |
else |
| 1789 |
{ |
| 1790 |
fail: |
| 1791 |
DP(RINT "COMP%s %u %u %u %u %u %u\n", |
| 1792 |
t12, cfg->ngroups, cfg->sector_size, |
| 1793 |
input_size, 0, 0, 0); |
| 1794 |
} |
| 1795 |
|
| 1796 |
xd3_free_output (stream, output); |
| 1797 |
|
| 1798 |
XD3_ASSERT (ret == 0 || ret == XD3_NOSECOND); |
| 1799 |
|
| 1800 |
if (cfg->ngroups == 1) { break; } |
| 1801 |
} |
| 1802 |
} |
| 1803 |
|
| 1804 |
if (best_gpno > 0) |
| 1805 |
{ |
| 1806 |
DP(RINT "BEST%s %u %u %u %u %u %u\n", |
| 1807 |
t12, best_gpno, best_sector_size, |
| 1808 |
best_size, best_prefix, best_select, best_encode); |
| 1809 |
|
| 1810 |
#if 0 |
| 1811 |
DP(RINT "CLEN%s ", t12); |
| 1812 |
for (i = 1; i <= DJW_MAX_CODELEN; i += 1) |
| 1813 |
{ |
| 1814 |
DP(RINT "%u ", clen_count[i]); |
| 1815 |
} |
| 1816 |
DP(RINT "\n"); |
| 1817 |
|
| 1818 |
DP(RINT "FREQ%s ", t12); |
| 1819 |
for (i = 0; i < DJW_TOTAL_CODES; i += 1) |
| 1820 |
{ |
| 1821 |
DP(RINT "%u ", tune_freq[i]); |
| 1822 |
} |
| 1823 |
DP(RINT "\n"); |
| 1824 |
#endif |
| 1825 |
} |
| 1826 |
} |
| 1827 |
|
| 1828 |
/* Compare to split single-table windows. */ |
| 1829 |
{ |
| 1830 |
int parts, i; |
| 1831 |
|
| 1832 |
cfg->ngroups = 1; |
| 1833 |
|
| 1834 |
for (parts = 2; parts <= DJW_MAX_GROUPS; parts += 1) |
| 1835 |
{ |
| 1836 |
usize_t part_size = input_size / parts; |
| 1837 |
xd3_output *inp = input, *partin, *partin_head; |
| 1838 |
usize_t off = 0; |
| 1839 |
usize_t part_total = 0; |
| 1840 |
|
| 1841 |
if (part_size < 1000) { break; } |
| 1842 |
|
| 1843 |
for (i = 0; i < parts; i += 1) |
| 1844 |
{ |
| 1845 |
usize_t inc; |
| 1846 |
|
| 1847 |
partin = partin_head = xd3_alloc_output (stream, NULL); |
| 1848 |
output = xd3_alloc_output (stream, NULL); |
| 1849 |
|
| 1850 |
for (inc = 0; ((i < parts-1) && inc < part_size) || |
| 1851 |
((i == parts-1) && inp != NULL); ) |
| 1852 |
{ |
| 1853 |
usize_t take; |
| 1854 |
|
| 1855 |
if (i < parts-1) |
| 1856 |
{ |
| 1857 |
take = min (part_size - inc, inp->next - off); |
| 1858 |
} |
| 1859 |
else |
| 1860 |
{ |
| 1861 |
take = inp->next - off; |
| 1862 |
} |
| 1863 |
|
| 1864 |
ret = xd3_emit_bytes (stream, & partin, inp->base + off, take); |
| 1865 |
|
| 1866 |
off += take; |
| 1867 |
inc += take; |
| 1868 |
|
| 1869 |
if (off == inp->next) |
| 1870 |
{ |
| 1871 |
inp = inp->next_page; |
| 1872 |
off = 0; |
| 1873 |
} |
| 1874 |
} |
| 1875 |
|
| 1876 |
ret = xd3_real_encode_huff (stream, h, partin_head, output, cfg); |
| 1877 |
|
| 1878 |
part_total += xd3_sizeof_output (output); |
| 1879 |
|
| 1880 |
xd3_free_output (stream, partin_head); |
| 1881 |
xd3_free_output (stream, output); |
| 1882 |
|
| 1883 |
XD3_ASSERT (ret == 0 || ret == XD3_NOSECOND); |
| 1884 |
|
| 1885 |
if (ret == XD3_NOSECOND) |
| 1886 |
{ |
| 1887 |
break; |
| 1888 |
} |
| 1889 |
} |
| 1890 |
|
| 1891 |
if (ret != XD3_NOSECOND) |
| 1892 |
{ |
| 1893 |
DP(RINT "PART %u %u\n", parts, part_total); |
| 1894 |
} |
| 1895 |
} |
| 1896 |
} |
| 1897 |
|
| 1898 |
/* Compare to FGK */ |
| 1899 |
{ |
| 1900 |
fgk_stream *fgk = fgk_alloc (stream); |
| 1901 |
|
| 1902 |
fgk_init (fgk); |
| 1903 |
|
| 1904 |
output = xd3_alloc_output (stream, NULL); |
| 1905 |
|
| 1906 |
ret = xd3_encode_fgk (stream, fgk, input, output, NULL); |
| 1907 |
|
| 1908 |
output_size = xd3_sizeof_output (output); |
| 1909 |
xd3_free_output (stream, output); |
| 1910 |
fgk_destroy (stream, fgk); |
| 1911 |
|
| 1912 |
XD3_ASSERT (ret == 0); |
| 1913 |
|
| 1914 |
DP(RINT "FGK %u\n", output_size); |
| 1915 |
} |
| 1916 |
|
| 1917 |
DP(RINT "END_SECTION %s %u\n", sect_type, input_size); |
| 1918 |
|
| 1919 |
return 0; |
| 1920 |
} |
| 1921 |
#endif |
| 1922 |
|
| 1923 |
#endif |