1 |
/* deflate.c -- compress data using the deflation algorithm |
2 |
* Copyright (C) 1995-2013 Jean-loup Gailly and Mark Adler |
3 |
* For conditions of distribution and use, see copyright notice in zlib.h |
4 |
*/ |
5 |
|
6 |
/* |
7 |
* ALGORITHM |
8 |
* |
9 |
* The "deflation" process depends on being able to identify portions |
10 |
* of the input text which are identical to earlier input (within a |
11 |
* sliding window trailing behind the input currently being processed). |
12 |
* |
13 |
* The most straightforward technique turns out to be the fastest for |
14 |
* most input files: try all possible matches and select the longest. |
15 |
* The key feature of this algorithm is that insertions into the string |
16 |
* dictionary are very simple and thus fast, and deletions are avoided |
17 |
* completely. Insertions are performed at each input character, whereas |
18 |
* string matches are performed only when the previous match ends. So it |
19 |
* is preferable to spend more time in matches to allow very fast string |
20 |
* insertions and avoid deletions. The matching algorithm for small |
21 |
* strings is inspired from that of Rabin & Karp. A brute force approach |
22 |
* is used to find longer strings when a small match has been found. |
23 |
* A similar algorithm is used in comic (by Jan-Mark Wams) and freeze |
24 |
* (by Leonid Broukhis). |
25 |
* A previous version of this file used a more sophisticated algorithm |
26 |
* (by Fiala and Greene) which is guaranteed to run in linear amortized |
27 |
* time, but has a larger average cost, uses more memory and is patented. |
28 |
* However the F&G algorithm may be faster for some highly redundant |
29 |
* files if the parameter max_chain_length (described below) is too large. |
30 |
* |
31 |
* ACKNOWLEDGEMENTS |
32 |
* |
33 |
* The idea of lazy evaluation of matches is due to Jan-Mark Wams, and |
34 |
* I found it in 'freeze' written by Leonid Broukhis. |
35 |
* Thanks to many people for bug reports and testing. |
36 |
* |
37 |
* REFERENCES |
38 |
* |
39 |
* Deutsch, L.P.,"DEFLATE Compressed Data Format Specification". |
40 |
* Available in http://tools.ietf.org/html/rfc1951 |
41 |
* |
42 |
* A description of the Rabin and Karp algorithm is given in the book |
43 |
* "Algorithms" by R. Sedgewick, Addison-Wesley, p252. |
44 |
* |
45 |
* Fiala,E.R., and Greene,D.H. |
46 |
* Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595 |
47 |
* |
48 |
*/ |
49 |
|
50 |
/* @(#) $Id$ */ |
51 |
|
52 |
#include "deflate.h" |
53 |
|
54 |
const char deflate_copyright[] = |
55 |
" deflate 1.2.8 Copyright 1995-2013 Jean-loup Gailly and Mark Adler "; |
56 |
/* |
57 |
If you use the zlib library in a product, an acknowledgment is welcome |
58 |
in the documentation of your product. If for some reason you cannot |
59 |
include such an acknowledgment, I would appreciate that you keep this |
60 |
copyright string in the executable of your product. |
61 |
*/ |
62 |
|
63 |
/* =========================================================================== |
64 |
* Function prototypes. |
65 |
*/ |
66 |
typedef enum { |
67 |
need_more, /* block not completed, need more input or more output */ |
68 |
block_done, /* block flush performed */ |
69 |
finish_started, /* finish started, need only more output at next deflate */ |
70 |
finish_done /* finish done, accept no more input or output */ |
71 |
} block_state; |
72 |
|
73 |
typedef block_state (*compress_func) OF((deflate_state *s, int flush)); |
74 |
/* Compression function. Returns the block state after the call. */ |
75 |
|
76 |
local void fill_window OF((deflate_state *s)); |
77 |
local block_state deflate_stored OF((deflate_state *s, int flush)); |
78 |
local block_state deflate_fast OF((deflate_state *s, int flush)); |
79 |
#ifndef FASTEST |
80 |
local block_state deflate_slow OF((deflate_state *s, int flush)); |
81 |
#endif |
82 |
local block_state deflate_rle OF((deflate_state *s, int flush)); |
83 |
local block_state deflate_huff OF((deflate_state *s, int flush)); |
84 |
local void lm_init OF((deflate_state *s)); |
85 |
local void putShortMSB OF((deflate_state *s, uInt b)); |
86 |
local void flush_pending OF((z_streamp strm)); |
87 |
local int read_buf OF((z_streamp strm, Bytef *buf, unsigned size)); |
88 |
#ifdef ASMV |
89 |
void match_init OF((void)); /* asm code initialization */ |
90 |
uInt longest_match OF((deflate_state *s, IPos cur_match)); |
91 |
#else |
92 |
local uInt longest_match OF((deflate_state *s, IPos cur_match)); |
93 |
#endif |
94 |
|
95 |
#ifdef DEBUG |
96 |
local void check_match OF((deflate_state *s, IPos start, IPos match, |
97 |
int length)); |
98 |
#endif |
99 |
|
100 |
/* =========================================================================== |
101 |
* Local data |
102 |
*/ |
103 |
|
104 |
#define NIL 0 |
105 |
/* Tail of hash chains */ |
106 |
|
107 |
#ifndef TOO_FAR |
108 |
# define TOO_FAR 4096 |
109 |
#endif |
110 |
/* Matches of length 3 are discarded if their distance exceeds TOO_FAR */ |
111 |
|
112 |
/* Values for max_lazy_match, good_match and max_chain_length, depending on |
113 |
* the desired pack level (0..9). The values given below have been tuned to |
114 |
* exclude worst case performance for pathological files. Better values may be |
115 |
* found for specific files. |
116 |
*/ |
117 |
typedef struct config_s { |
118 |
ush good_length; /* reduce lazy search above this match length */ |
119 |
ush max_lazy; /* do not perform lazy search above this match length */ |
120 |
ush nice_length; /* quit search above this match length */ |
121 |
ush max_chain; |
122 |
compress_func func; |
123 |
} config; |
124 |
|
125 |
#ifdef FASTEST |
126 |
local const config configuration_table[2] = { |
127 |
/* good lazy nice chain */ |
128 |
/* 0 */ {0, 0, 0, 0, deflate_stored}, /* store only */ |
129 |
/* 1 */ {4, 4, 8, 4, deflate_fast}}; /* max speed, no lazy matches */ |
130 |
#else |
131 |
local const config configuration_table[10] = { |
132 |
/* good lazy nice chain */ |
133 |
/* 0 */ {0, 0, 0, 0, deflate_stored}, /* store only */ |
134 |
/* 1 */ {4, 4, 8, 4, deflate_fast}, /* max speed, no lazy matches */ |
135 |
/* 2 */ {4, 5, 16, 8, deflate_fast}, |
136 |
/* 3 */ {4, 6, 32, 32, deflate_fast}, |
137 |
|
138 |
/* 4 */ {4, 4, 16, 16, deflate_slow}, /* lazy matches */ |
139 |
/* 5 */ {8, 16, 32, 32, deflate_slow}, |
140 |
/* 6 */ {8, 16, 128, 128, deflate_slow}, |
141 |
/* 7 */ {8, 32, 128, 256, deflate_slow}, |
142 |
/* 8 */ {32, 128, 258, 1024, deflate_slow}, |
143 |
/* 9 */ {32, 258, 258, 4096, deflate_slow}}; /* max compression */ |
144 |
#endif |
145 |
|
146 |
/* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4 |
147 |
* For deflate_fast() (levels <= 3) good is ignored and lazy has a different |
148 |
* meaning. |
149 |
*/ |
150 |
|
151 |
#define EQUAL 0 |
152 |
/* result of memcmp for equal strings */ |
153 |
|
154 |
#ifndef NO_DUMMY_DECL |
155 |
struct static_tree_desc_s {int dummy;}; /* for buggy compilers */ |
156 |
#endif |
157 |
|
158 |
/* rank Z_BLOCK between Z_NO_FLUSH and Z_PARTIAL_FLUSH */ |
159 |
#define RANK(f) (((f) << 1) - ((f) > 4 ? 9 : 0)) |
160 |
|
161 |
/* =========================================================================== |
162 |
* Update a hash value with the given input byte |
163 |
* IN assertion: all calls to to UPDATE_HASH are made with consecutive |
164 |
* input characters, so that a running hash key can be computed from the |
165 |
* previous key instead of complete recalculation each time. |
166 |
*/ |
167 |
#define UPDATE_HASH(s,h,c) (h = (((h)<<s->hash_shift) ^ (c)) & s->hash_mask) |
168 |
|
169 |
|
170 |
/* =========================================================================== |
171 |
* Insert string str in the dictionary and set match_head to the previous head |
172 |
* of the hash chain (the most recent string with same hash key). Return |
173 |
* the previous length of the hash chain. |
174 |
* If this file is compiled with -DFASTEST, the compression level is forced |
175 |
* to 1, and no hash chains are maintained. |
176 |
* IN assertion: all calls to to INSERT_STRING are made with consecutive |
177 |
* input characters and the first MIN_MATCH bytes of str are valid |
178 |
* (except for the last MIN_MATCH-1 bytes of the input file). |
179 |
*/ |
180 |
#ifdef FASTEST |
181 |
#define INSERT_STRING(s, str, match_head) \ |
182 |
(UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \ |
183 |
match_head = s->head[s->ins_h], \ |
184 |
s->head[s->ins_h] = (Pos)(str)) |
185 |
#else |
186 |
#define INSERT_STRING(s, str, match_head) \ |
187 |
(UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \ |
188 |
match_head = s->prev[(str) & s->w_mask] = s->head[s->ins_h], \ |
189 |
s->head[s->ins_h] = (Pos)(str)) |
190 |
#endif |
191 |
|
192 |
/* =========================================================================== |
193 |
* Initialize the hash table (avoiding 64K overflow for 16 bit systems). |
194 |
* prev[] will be initialized on the fly. |
195 |
*/ |
196 |
#define CLEAR_HASH(s) \ |
197 |
s->head[s->hash_size-1] = NIL; \ |
198 |
zmemzero((Bytef *)s->head, (unsigned)(s->hash_size-1)*sizeof(*s->head)); |
199 |
|
200 |
/* ========================================================================= */ |
201 |
int ZEXPORT deflateInit_(strm, level, version, stream_size) |
202 |
z_streamp strm; |
203 |
int level; |
204 |
const char *version; |
205 |
int stream_size; |
206 |
{ |
207 |
return deflateInit2_(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL, |
208 |
Z_DEFAULT_STRATEGY, version, stream_size); |
209 |
/* To do: ignore strm->next_in if we use it as window */ |
210 |
} |
211 |
|
212 |
/* ========================================================================= */ |
213 |
int ZEXPORT deflateInit2_(strm, level, method, windowBits, memLevel, strategy, |
214 |
version, stream_size) |
215 |
z_streamp strm; |
216 |
int level; |
217 |
int method; |
218 |
int windowBits; |
219 |
int memLevel; |
220 |
int strategy; |
221 |
const char *version; |
222 |
int stream_size; |
223 |
{ |
224 |
deflate_state *s; |
225 |
int wrap = 1; |
226 |
static const char my_version[] = ZLIB_VERSION; |
227 |
|
228 |
ushf *overlay; |
229 |
/* We overlay pending_buf and d_buf+l_buf. This works since the average |
230 |
* output size for (length,distance) codes is <= 24 bits. |
231 |
*/ |
232 |
|
233 |
if (version == Z_NULL || version[0] != my_version[0] || |
234 |
stream_size != sizeof(z_stream)) { |
235 |
return Z_VERSION_ERROR; |
236 |
} |
237 |
if (strm == Z_NULL) return Z_STREAM_ERROR; |
238 |
|
239 |
strm->msg = Z_NULL; |
240 |
if (strm->zalloc == (alloc_func)0) { |
241 |
#ifdef Z_SOLO |
242 |
return Z_STREAM_ERROR; |
243 |
#else |
244 |
strm->zalloc = zcalloc; |
245 |
strm->opaque = (voidpf)0; |
246 |
#endif |
247 |
} |
248 |
if (strm->zfree == (free_func)0) |
249 |
#ifdef Z_SOLO |
250 |
return Z_STREAM_ERROR; |
251 |
#else |
252 |
strm->zfree = zcfree; |
253 |
#endif |
254 |
|
255 |
#ifdef FASTEST |
256 |
if (level != 0) level = 1; |
257 |
#else |
258 |
if (level == Z_DEFAULT_COMPRESSION) level = 6; |
259 |
#endif |
260 |
|
261 |
if (windowBits < 0) { /* suppress zlib wrapper */ |
262 |
wrap = 0; |
263 |
windowBits = -windowBits; |
264 |
} |
265 |
#ifdef GZIP |
266 |
else if (windowBits > 15) { |
267 |
wrap = 2; /* write gzip wrapper instead */ |
268 |
windowBits -= 16; |
269 |
} |
270 |
#endif |
271 |
if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != Z_DEFLATED || |
272 |
windowBits < 8 || windowBits > 15 || level < 0 || level > 9 || |
273 |
strategy < 0 || strategy > Z_FIXED) { |
274 |
return Z_STREAM_ERROR; |
275 |
} |
276 |
if (windowBits == 8) windowBits = 9; /* until 256-byte window bug fixed */ |
277 |
s = (deflate_state *) ZALLOC(strm, 1, sizeof(deflate_state)); |
278 |
if (s == Z_NULL) return Z_MEM_ERROR; |
279 |
strm->state = (struct internal_state FAR *)s; |
280 |
s->strm = strm; |
281 |
|
282 |
s->wrap = wrap; |
283 |
s->gzhead = Z_NULL; |
284 |
s->w_bits = windowBits; |
285 |
s->w_size = 1 << s->w_bits; |
286 |
s->w_mask = s->w_size - 1; |
287 |
|
288 |
s->hash_bits = memLevel + 7; |
289 |
s->hash_size = 1 << s->hash_bits; |
290 |
s->hash_mask = s->hash_size - 1; |
291 |
s->hash_shift = ((s->hash_bits+MIN_MATCH-1)/MIN_MATCH); |
292 |
|
293 |
s->window = (Bytef *) ZALLOC(strm, s->w_size, 2*sizeof(Byte)); |
294 |
s->prev = (Posf *) ZALLOC(strm, s->w_size, sizeof(Pos)); |
295 |
s->head = (Posf *) ZALLOC(strm, s->hash_size, sizeof(Pos)); |
296 |
|
297 |
s->high_water = 0; /* nothing written to s->window yet */ |
298 |
|
299 |
s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */ |
300 |
|
301 |
overlay = (ushf *) ZALLOC(strm, s->lit_bufsize, sizeof(ush)+2); |
302 |
s->pending_buf = (uchf *) overlay; |
303 |
s->pending_buf_size = (ulg)s->lit_bufsize * (sizeof(ush)+2L); |
304 |
|
305 |
if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL || |
306 |
s->pending_buf == Z_NULL) { |
307 |
s->status = FINISH_STATE; |
308 |
strm->msg = ERR_MSG(Z_MEM_ERROR); |
309 |
deflateEnd (strm); |
310 |
return Z_MEM_ERROR; |
311 |
} |
312 |
s->d_buf = overlay + s->lit_bufsize/sizeof(ush); |
313 |
s->l_buf = s->pending_buf + (1+sizeof(ush))*s->lit_bufsize; |
314 |
|
315 |
s->level = level; |
316 |
s->strategy = strategy; |
317 |
s->method = (Byte)method; |
318 |
|
319 |
return deflateReset(strm); |
320 |
} |
321 |
|
322 |
/* ========================================================================= */ |
323 |
int ZEXPORT deflateSetDictionary (strm, dictionary, dictLength) |
324 |
z_streamp strm; |
325 |
const Bytef *dictionary; |
326 |
uInt dictLength; |
327 |
{ |
328 |
deflate_state *s; |
329 |
uInt str, n; |
330 |
int wrap; |
331 |
unsigned avail; |
332 |
z_const unsigned char *next; |
333 |
|
334 |
if (strm == Z_NULL || strm->state == Z_NULL || dictionary == Z_NULL) |
335 |
return Z_STREAM_ERROR; |
336 |
s = strm->state; |
337 |
wrap = s->wrap; |
338 |
if (wrap == 2 || (wrap == 1 && s->status != INIT_STATE) || s->lookahead) |
339 |
return Z_STREAM_ERROR; |
340 |
|
341 |
/* when using zlib wrappers, compute Adler-32 for provided dictionary */ |
342 |
if (wrap == 1) |
343 |
strm->adler = adler32(strm->adler, dictionary, dictLength); |
344 |
s->wrap = 0; /* avoid computing Adler-32 in read_buf */ |
345 |
|
346 |
/* if dictionary would fill window, just replace the history */ |
347 |
if (dictLength >= s->w_size) { |
348 |
if (wrap == 0) { /* already empty otherwise */ |
349 |
CLEAR_HASH(s); |
350 |
s->strstart = 0; |
351 |
s->block_start = 0L; |
352 |
s->insert = 0; |
353 |
} |
354 |
dictionary += dictLength - s->w_size; /* use the tail */ |
355 |
dictLength = s->w_size; |
356 |
} |
357 |
|
358 |
/* insert dictionary into window and hash */ |
359 |
avail = strm->avail_in; |
360 |
next = strm->next_in; |
361 |
strm->avail_in = dictLength; |
362 |
strm->next_in = (z_const Bytef *)dictionary; |
363 |
fill_window(s); |
364 |
while (s->lookahead >= MIN_MATCH) { |
365 |
str = s->strstart; |
366 |
n = s->lookahead - (MIN_MATCH-1); |
367 |
do { |
368 |
UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]); |
369 |
#ifndef FASTEST |
370 |
s->prev[str & s->w_mask] = s->head[s->ins_h]; |
371 |
#endif |
372 |
s->head[s->ins_h] = (Pos)str; |
373 |
str++; |
374 |
} while (--n); |
375 |
s->strstart = str; |
376 |
s->lookahead = MIN_MATCH-1; |
377 |
fill_window(s); |
378 |
} |
379 |
s->strstart += s->lookahead; |
380 |
s->block_start = (long)s->strstart; |
381 |
s->insert = s->lookahead; |
382 |
s->lookahead = 0; |
383 |
s->match_length = s->prev_length = MIN_MATCH-1; |
384 |
s->match_available = 0; |
385 |
strm->next_in = next; |
386 |
strm->avail_in = avail; |
387 |
s->wrap = wrap; |
388 |
return Z_OK; |
389 |
} |
390 |
|
391 |
/* ========================================================================= */ |
392 |
int ZEXPORT deflateResetKeep (strm) |
393 |
z_streamp strm; |
394 |
{ |
395 |
deflate_state *s; |
396 |
|
397 |
if (strm == Z_NULL || strm->state == Z_NULL || |
398 |
strm->zalloc == (alloc_func)0 || strm->zfree == (free_func)0) { |
399 |
return Z_STREAM_ERROR; |
400 |
} |
401 |
|
402 |
strm->total_in = strm->total_out = 0; |
403 |
strm->msg = Z_NULL; /* use zfree if we ever allocate msg dynamically */ |
404 |
strm->data_type = Z_UNKNOWN; |
405 |
|
406 |
s = (deflate_state *)strm->state; |
407 |
s->pending = 0; |
408 |
s->pending_out = s->pending_buf; |
409 |
|
410 |
if (s->wrap < 0) { |
411 |
s->wrap = -s->wrap; /* was made negative by deflate(..., Z_FINISH); */ |
412 |
} |
413 |
s->status = s->wrap ? INIT_STATE : BUSY_STATE; |
414 |
strm->adler = |
415 |
#ifdef GZIP |
416 |
s->wrap == 2 ? crc32(0L, Z_NULL, 0) : |
417 |
#endif |
418 |
adler32(0L, Z_NULL, 0); |
419 |
s->last_flush = Z_NO_FLUSH; |
420 |
|
421 |
_tr_init(s); |
422 |
|
423 |
return Z_OK; |
424 |
} |
425 |
|
426 |
/* ========================================================================= */ |
427 |
int ZEXPORT deflateReset (strm) |
428 |
z_streamp strm; |
429 |
{ |
430 |
int ret; |
431 |
|
432 |
ret = deflateResetKeep(strm); |
433 |
if (ret == Z_OK) |
434 |
lm_init(strm->state); |
435 |
return ret; |
436 |
} |
437 |
|
438 |
/* ========================================================================= */ |
439 |
int ZEXPORT deflateSetHeader (strm, head) |
440 |
z_streamp strm; |
441 |
gz_headerp head; |
442 |
{ |
443 |
if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; |
444 |
if (strm->state->wrap != 2) return Z_STREAM_ERROR; |
445 |
strm->state->gzhead = head; |
446 |
return Z_OK; |
447 |
} |
448 |
|
449 |
/* ========================================================================= */ |
450 |
int ZEXPORT deflatePending (strm, pending, bits) |
451 |
unsigned *pending; |
452 |
int *bits; |
453 |
z_streamp strm; |
454 |
{ |
455 |
if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; |
456 |
if (pending != Z_NULL) |
457 |
*pending = strm->state->pending; |
458 |
if (bits != Z_NULL) |
459 |
*bits = strm->state->bi_valid; |
460 |
return Z_OK; |
461 |
} |
462 |
|
463 |
/* ========================================================================= */ |
464 |
int ZEXPORT deflatePrime (strm, bits, value) |
465 |
z_streamp strm; |
466 |
int bits; |
467 |
int value; |
468 |
{ |
469 |
deflate_state *s; |
470 |
int put; |
471 |
|
472 |
if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; |
473 |
s = strm->state; |
474 |
if ((Bytef *)(s->d_buf) < s->pending_out + ((Buf_size + 7) >> 3)) |
475 |
return Z_BUF_ERROR; |
476 |
do { |
477 |
put = Buf_size - s->bi_valid; |
478 |
if (put > bits) |
479 |
put = bits; |
480 |
s->bi_buf |= (ush)((value & ((1 << put) - 1)) << s->bi_valid); |
481 |
s->bi_valid += put; |
482 |
_tr_flush_bits(s); |
483 |
value >>= put; |
484 |
bits -= put; |
485 |
} while (bits); |
486 |
return Z_OK; |
487 |
} |
488 |
|
489 |
/* ========================================================================= */ |
490 |
int ZEXPORT deflateParams(strm, level, strategy) |
491 |
z_streamp strm; |
492 |
int level; |
493 |
int strategy; |
494 |
{ |
495 |
deflate_state *s; |
496 |
compress_func func; |
497 |
int err = Z_OK; |
498 |
|
499 |
if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; |
500 |
s = strm->state; |
501 |
|
502 |
#ifdef FASTEST |
503 |
if (level != 0) level = 1; |
504 |
#else |
505 |
if (level == Z_DEFAULT_COMPRESSION) level = 6; |
506 |
#endif |
507 |
if (level < 0 || level > 9 || strategy < 0 || strategy > Z_FIXED) { |
508 |
return Z_STREAM_ERROR; |
509 |
} |
510 |
func = configuration_table[s->level].func; |
511 |
|
512 |
if ((strategy != s->strategy || func != configuration_table[level].func) && |
513 |
strm->total_in != 0) { |
514 |
/* Flush the last buffer: */ |
515 |
err = deflate(strm, Z_BLOCK); |
516 |
if (err == Z_BUF_ERROR && s->pending == 0) |
517 |
err = Z_OK; |
518 |
} |
519 |
if (s->level != level) { |
520 |
s->level = level; |
521 |
s->max_lazy_match = configuration_table[level].max_lazy; |
522 |
s->good_match = configuration_table[level].good_length; |
523 |
s->nice_match = configuration_table[level].nice_length; |
524 |
s->max_chain_length = configuration_table[level].max_chain; |
525 |
} |
526 |
s->strategy = strategy; |
527 |
return err; |
528 |
} |
529 |
|
530 |
/* ========================================================================= */ |
531 |
int ZEXPORT deflateTune(strm, good_length, max_lazy, nice_length, max_chain) |
532 |
z_streamp strm; |
533 |
int good_length; |
534 |
int max_lazy; |
535 |
int nice_length; |
536 |
int max_chain; |
537 |
{ |
538 |
deflate_state *s; |
539 |
|
540 |
if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; |
541 |
s = strm->state; |
542 |
s->good_match = good_length; |
543 |
s->max_lazy_match = max_lazy; |
544 |
s->nice_match = nice_length; |
545 |
s->max_chain_length = max_chain; |
546 |
return Z_OK; |
547 |
} |
548 |
|
549 |
/* ========================================================================= |
550 |
* For the default windowBits of 15 and memLevel of 8, this function returns |
551 |
* a close to exact, as well as small, upper bound on the compressed size. |
552 |
* They are coded as constants here for a reason--if the #define's are |
553 |
* changed, then this function needs to be changed as well. The return |
554 |
* value for 15 and 8 only works for those exact settings. |
555 |
* |
556 |
* For any setting other than those defaults for windowBits and memLevel, |
557 |
* the value returned is a conservative worst case for the maximum expansion |
558 |
* resulting from using fixed blocks instead of stored blocks, which deflate |
559 |
* can emit on compressed data for some combinations of the parameters. |
560 |
* |
561 |
* This function could be more sophisticated to provide closer upper bounds for |
562 |
* every combination of windowBits and memLevel. But even the conservative |
563 |
* upper bound of about 14% expansion does not seem onerous for output buffer |
564 |
* allocation. |
565 |
*/ |
566 |
uLong ZEXPORT deflateBound(strm, sourceLen) |
567 |
z_streamp strm; |
568 |
uLong sourceLen; |
569 |
{ |
570 |
deflate_state *s; |
571 |
uLong complen, wraplen; |
572 |
Bytef *str; |
573 |
|
574 |
/* conservative upper bound for compressed data */ |
575 |
complen = sourceLen + |
576 |
((sourceLen + 7) >> 3) + ((sourceLen + 63) >> 6) + 5; |
577 |
|
578 |
/* if can't get parameters, return conservative bound plus zlib wrapper */ |
579 |
if (strm == Z_NULL || strm->state == Z_NULL) |
580 |
return complen + 6; |
581 |
|
582 |
/* compute wrapper length */ |
583 |
s = strm->state; |
584 |
switch (s->wrap) { |
585 |
case 0: /* raw deflate */ |
586 |
wraplen = 0; |
587 |
break; |
588 |
case 1: /* zlib wrapper */ |
589 |
wraplen = 6 + (s->strstart ? 4 : 0); |
590 |
break; |
591 |
case 2: /* gzip wrapper */ |
592 |
wraplen = 18; |
593 |
if (s->gzhead != Z_NULL) { /* user-supplied gzip header */ |
594 |
if (s->gzhead->extra != Z_NULL) |
595 |
wraplen += 2 + s->gzhead->extra_len; |
596 |
str = s->gzhead->name; |
597 |
if (str != Z_NULL) |
598 |
do { |
599 |
wraplen++; |
600 |
} while (*str++); |
601 |
str = s->gzhead->comment; |
602 |
if (str != Z_NULL) |
603 |
do { |
604 |
wraplen++; |
605 |
} while (*str++); |
606 |
if (s->gzhead->hcrc) |
607 |
wraplen += 2; |
608 |
} |
609 |
break; |
610 |
default: /* for compiler happiness */ |
611 |
wraplen = 6; |
612 |
} |
613 |
|
614 |
/* if not default parameters, return conservative bound */ |
615 |
if (s->w_bits != 15 || s->hash_bits != 8 + 7) |
616 |
return complen + wraplen; |
617 |
|
618 |
/* default settings: return tight bound for that case */ |
619 |
return sourceLen + (sourceLen >> 12) + (sourceLen >> 14) + |
620 |
(sourceLen >> 25) + 13 - 6 + wraplen; |
621 |
} |
622 |
|
623 |
/* ========================================================================= |
624 |
* Put a short in the pending buffer. The 16-bit value is put in MSB order. |
625 |
* IN assertion: the stream state is correct and there is enough room in |
626 |
* pending_buf. |
627 |
*/ |
628 |
local void putShortMSB (s, b) |
629 |
deflate_state *s; |
630 |
uInt b; |
631 |
{ |
632 |
put_byte(s, (Byte)(b >> 8)); |
633 |
put_byte(s, (Byte)(b & 0xff)); |
634 |
} |
635 |
|
636 |
/* ========================================================================= |
637 |
* Flush as much pending output as possible. All deflate() output goes |
638 |
* through this function so some applications may wish to modify it |
639 |
* to avoid allocating a large strm->next_out buffer and copying into it. |
640 |
* (See also read_buf()). |
641 |
*/ |
642 |
local void flush_pending(strm) |
643 |
z_streamp strm; |
644 |
{ |
645 |
unsigned len; |
646 |
deflate_state *s = strm->state; |
647 |
|
648 |
_tr_flush_bits(s); |
649 |
len = s->pending; |
650 |
if (len > strm->avail_out) len = strm->avail_out; |
651 |
if (len == 0) return; |
652 |
|
653 |
zmemcpy(strm->next_out, s->pending_out, len); |
654 |
strm->next_out += len; |
655 |
s->pending_out += len; |
656 |
strm->total_out += len; |
657 |
strm->avail_out -= len; |
658 |
s->pending -= len; |
659 |
if (s->pending == 0) { |
660 |
s->pending_out = s->pending_buf; |
661 |
} |
662 |
} |
663 |
|
664 |
/* ========================================================================= */ |
665 |
int ZEXPORT deflate (strm, flush) |
666 |
z_streamp strm; |
667 |
int flush; |
668 |
{ |
669 |
int old_flush; /* value of flush param for previous deflate call */ |
670 |
deflate_state *s; |
671 |
|
672 |
if (strm == Z_NULL || strm->state == Z_NULL || |
673 |
flush > Z_BLOCK || flush < 0) { |
674 |
return Z_STREAM_ERROR; |
675 |
} |
676 |
s = strm->state; |
677 |
|
678 |
if (strm->next_out == Z_NULL || |
679 |
(strm->next_in == Z_NULL && strm->avail_in != 0) || |
680 |
(s->status == FINISH_STATE && flush != Z_FINISH)) { |
681 |
ERR_RETURN(strm, Z_STREAM_ERROR); |
682 |
} |
683 |
if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR); |
684 |
|
685 |
s->strm = strm; /* just in case */ |
686 |
old_flush = s->last_flush; |
687 |
s->last_flush = flush; |
688 |
|
689 |
/* Write the header */ |
690 |
if (s->status == INIT_STATE) { |
691 |
#ifdef GZIP |
692 |
if (s->wrap == 2) { |
693 |
strm->adler = crc32(0L, Z_NULL, 0); |
694 |
put_byte(s, 31); |
695 |
put_byte(s, 139); |
696 |
put_byte(s, 8); |
697 |
if (s->gzhead == Z_NULL) { |
698 |
put_byte(s, 0); |
699 |
put_byte(s, 0); |
700 |
put_byte(s, 0); |
701 |
put_byte(s, 0); |
702 |
put_byte(s, 0); |
703 |
put_byte(s, s->level == 9 ? 2 : |
704 |
(s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ? |
705 |
4 : 0)); |
706 |
put_byte(s, OS_CODE); |
707 |
s->status = BUSY_STATE; |
708 |
} |
709 |
else { |
710 |
put_byte(s, (s->gzhead->text ? 1 : 0) + |
711 |
(s->gzhead->hcrc ? 2 : 0) + |
712 |
(s->gzhead->extra == Z_NULL ? 0 : 4) + |
713 |
(s->gzhead->name == Z_NULL ? 0 : 8) + |
714 |
(s->gzhead->comment == Z_NULL ? 0 : 16) |
715 |
); |
716 |
put_byte(s, (Byte)(s->gzhead->time & 0xff)); |
717 |
put_byte(s, (Byte)((s->gzhead->time >> 8) & 0xff)); |
718 |
put_byte(s, (Byte)((s->gzhead->time >> 16) & 0xff)); |
719 |
put_byte(s, (Byte)((s->gzhead->time >> 24) & 0xff)); |
720 |
put_byte(s, s->level == 9 ? 2 : |
721 |
(s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ? |
722 |
4 : 0)); |
723 |
put_byte(s, s->gzhead->os & 0xff); |
724 |
if (s->gzhead->extra != Z_NULL) { |
725 |
put_byte(s, s->gzhead->extra_len & 0xff); |
726 |
put_byte(s, (s->gzhead->extra_len >> 8) & 0xff); |
727 |
} |
728 |
if (s->gzhead->hcrc) |
729 |
strm->adler = crc32(strm->adler, s->pending_buf, |
730 |
s->pending); |
731 |
s->gzindex = 0; |
732 |
s->status = EXTRA_STATE; |
733 |
} |
734 |
} |
735 |
else |
736 |
#endif |
737 |
{ |
738 |
uInt header = (Z_DEFLATED + ((s->w_bits-8)<<4)) << 8; |
739 |
uInt level_flags; |
740 |
|
741 |
if (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2) |
742 |
level_flags = 0; |
743 |
else if (s->level < 6) |
744 |
level_flags = 1; |
745 |
else if (s->level == 6) |
746 |
level_flags = 2; |
747 |
else |
748 |
level_flags = 3; |
749 |
header |= (level_flags << 6); |
750 |
if (s->strstart != 0) header |= PRESET_DICT; |
751 |
header += 31 - (header % 31); |
752 |
|
753 |
s->status = BUSY_STATE; |
754 |
putShortMSB(s, header); |
755 |
|
756 |
/* Save the adler32 of the preset dictionary: */ |
757 |
if (s->strstart != 0) { |
758 |
putShortMSB(s, (uInt)(strm->adler >> 16)); |
759 |
putShortMSB(s, (uInt)(strm->adler & 0xffff)); |
760 |
} |
761 |
strm->adler = adler32(0L, Z_NULL, 0); |
762 |
} |
763 |
} |
764 |
#ifdef GZIP |
765 |
if (s->status == EXTRA_STATE) { |
766 |
if (s->gzhead->extra != Z_NULL) { |
767 |
uInt beg = s->pending; /* start of bytes to update crc */ |
768 |
|
769 |
while (s->gzindex < (s->gzhead->extra_len & 0xffff)) { |
770 |
if (s->pending == s->pending_buf_size) { |
771 |
if (s->gzhead->hcrc && s->pending > beg) |
772 |
strm->adler = crc32(strm->adler, s->pending_buf + beg, |
773 |
s->pending - beg); |
774 |
flush_pending(strm); |
775 |
beg = s->pending; |
776 |
if (s->pending == s->pending_buf_size) |
777 |
break; |
778 |
} |
779 |
put_byte(s, s->gzhead->extra[s->gzindex]); |
780 |
s->gzindex++; |
781 |
} |
782 |
if (s->gzhead->hcrc && s->pending > beg) |
783 |
strm->adler = crc32(strm->adler, s->pending_buf + beg, |
784 |
s->pending - beg); |
785 |
if (s->gzindex == s->gzhead->extra_len) { |
786 |
s->gzindex = 0; |
787 |
s->status = NAME_STATE; |
788 |
} |
789 |
} |
790 |
else |
791 |
s->status = NAME_STATE; |
792 |
} |
793 |
if (s->status == NAME_STATE) { |
794 |
if (s->gzhead->name != Z_NULL) { |
795 |
uInt beg = s->pending; /* start of bytes to update crc */ |
796 |
int val; |
797 |
|
798 |
do { |
799 |
if (s->pending == s->pending_buf_size) { |
800 |
if (s->gzhead->hcrc && s->pending > beg) |
801 |
strm->adler = crc32(strm->adler, s->pending_buf + beg, |
802 |
s->pending - beg); |
803 |
flush_pending(strm); |
804 |
beg = s->pending; |
805 |
if (s->pending == s->pending_buf_size) { |
806 |
val = 1; |
807 |
break; |
808 |
} |
809 |
} |
810 |
val = s->gzhead->name[s->gzindex++]; |
811 |
put_byte(s, val); |
812 |
} while (val != 0); |
813 |
if (s->gzhead->hcrc && s->pending > beg) |
814 |
strm->adler = crc32(strm->adler, s->pending_buf + beg, |
815 |
s->pending - beg); |
816 |
if (val == 0) { |
817 |
s->gzindex = 0; |
818 |
s->status = COMMENT_STATE; |
819 |
} |
820 |
} |
821 |
else |
822 |
s->status = COMMENT_STATE; |
823 |
} |
824 |
if (s->status == COMMENT_STATE) { |
825 |
if (s->gzhead->comment != Z_NULL) { |
826 |
uInt beg = s->pending; /* start of bytes to update crc */ |
827 |
int val; |
828 |
|
829 |
do { |
830 |
if (s->pending == s->pending_buf_size) { |
831 |
if (s->gzhead->hcrc && s->pending > beg) |
832 |
strm->adler = crc32(strm->adler, s->pending_buf + beg, |
833 |
s->pending - beg); |
834 |
flush_pending(strm); |
835 |
beg = s->pending; |
836 |
if (s->pending == s->pending_buf_size) { |
837 |
val = 1; |
838 |
break; |
839 |
} |
840 |
} |
841 |
val = s->gzhead->comment[s->gzindex++]; |
842 |
put_byte(s, val); |
843 |
} while (val != 0); |
844 |
if (s->gzhead->hcrc && s->pending > beg) |
845 |
strm->adler = crc32(strm->adler, s->pending_buf + beg, |
846 |
s->pending - beg); |
847 |
if (val == 0) |
848 |
s->status = HCRC_STATE; |
849 |
} |
850 |
else |
851 |
s->status = HCRC_STATE; |
852 |
} |
853 |
if (s->status == HCRC_STATE) { |
854 |
if (s->gzhead->hcrc) { |
855 |
if (s->pending + 2 > s->pending_buf_size) |
856 |
flush_pending(strm); |
857 |
if (s->pending + 2 <= s->pending_buf_size) { |
858 |
put_byte(s, (Byte)(strm->adler & 0xff)); |
859 |
put_byte(s, (Byte)((strm->adler >> 8) & 0xff)); |
860 |
strm->adler = crc32(0L, Z_NULL, 0); |
861 |
s->status = BUSY_STATE; |
862 |
} |
863 |
} |
864 |
else |
865 |
s->status = BUSY_STATE; |
866 |
} |
867 |
#endif |
868 |
|
869 |
/* Flush as much pending output as possible */ |
870 |
if (s->pending != 0) { |
871 |
flush_pending(strm); |
872 |
if (strm->avail_out == 0) { |
873 |
/* Since avail_out is 0, deflate will be called again with |
874 |
* more output space, but possibly with both pending and |
875 |
* avail_in equal to zero. There won't be anything to do, |
876 |
* but this is not an error situation so make sure we |
877 |
* return OK instead of BUF_ERROR at next call of deflate: |
878 |
*/ |
879 |
s->last_flush = -1; |
880 |
return Z_OK; |
881 |
} |
882 |
|
883 |
/* Make sure there is something to do and avoid duplicate consecutive |
884 |
* flushes. For repeated and useless calls with Z_FINISH, we keep |
885 |
* returning Z_STREAM_END instead of Z_BUF_ERROR. |
886 |
*/ |
887 |
} else if (strm->avail_in == 0 && RANK(flush) <= RANK(old_flush) && |
888 |
flush != Z_FINISH) { |
889 |
ERR_RETURN(strm, Z_BUF_ERROR); |
890 |
} |
891 |
|
892 |
/* User must not provide more input after the first FINISH: */ |
893 |
if (s->status == FINISH_STATE && strm->avail_in != 0) { |
894 |
ERR_RETURN(strm, Z_BUF_ERROR); |
895 |
} |
896 |
|
897 |
/* Start a new block or continue the current one. |
898 |
*/ |
899 |
if (strm->avail_in != 0 || s->lookahead != 0 || |
900 |
(flush != Z_NO_FLUSH && s->status != FINISH_STATE)) { |
901 |
block_state bstate; |
902 |
|
903 |
bstate = s->strategy == Z_HUFFMAN_ONLY ? deflate_huff(s, flush) : |
904 |
(s->strategy == Z_RLE ? deflate_rle(s, flush) : |
905 |
(*(configuration_table[s->level].func))(s, flush)); |
906 |
|
907 |
if (bstate == finish_started || bstate == finish_done) { |
908 |
s->status = FINISH_STATE; |
909 |
} |
910 |
if (bstate == need_more || bstate == finish_started) { |
911 |
if (strm->avail_out == 0) { |
912 |
s->last_flush = -1; /* avoid BUF_ERROR next call, see above */ |
913 |
} |
914 |
return Z_OK; |
915 |
/* If flush != Z_NO_FLUSH && avail_out == 0, the next call |
916 |
* of deflate should use the same flush parameter to make sure |
917 |
* that the flush is complete. So we don't have to output an |
918 |
* empty block here, this will be done at next call. This also |
919 |
* ensures that for a very small output buffer, we emit at most |
920 |
* one empty block. |
921 |
*/ |
922 |
} |
923 |
if (bstate == block_done) { |
924 |
if (flush == Z_PARTIAL_FLUSH) { |
925 |
_tr_align(s); |
926 |
} else if (flush != Z_BLOCK) { /* FULL_FLUSH or SYNC_FLUSH */ |
927 |
_tr_stored_block(s, (char*)0, 0L, 0); |
928 |
/* For a full flush, this empty block will be recognized |
929 |
* as a special marker by inflate_sync(). |
930 |
*/ |
931 |
if (flush == Z_FULL_FLUSH) { |
932 |
CLEAR_HASH(s); /* forget history */ |
933 |
if (s->lookahead == 0) { |
934 |
s->strstart = 0; |
935 |
s->block_start = 0L; |
936 |
s->insert = 0; |
937 |
} |
938 |
} |
939 |
} |
940 |
flush_pending(strm); |
941 |
if (strm->avail_out == 0) { |
942 |
s->last_flush = -1; /* avoid BUF_ERROR at next call, see above */ |
943 |
return Z_OK; |
944 |
} |
945 |
} |
946 |
} |
947 |
Assert(strm->avail_out > 0, "bug2"); |
948 |
|
949 |
if (flush != Z_FINISH) return Z_OK; |
950 |
if (s->wrap <= 0) return Z_STREAM_END; |
951 |
|
952 |
/* Write the trailer */ |
953 |
#ifdef GZIP |
954 |
if (s->wrap == 2) { |
955 |
put_byte(s, (Byte)(strm->adler & 0xff)); |
956 |
put_byte(s, (Byte)((strm->adler >> 8) & 0xff)); |
957 |
put_byte(s, (Byte)((strm->adler >> 16) & 0xff)); |
958 |
put_byte(s, (Byte)((strm->adler >> 24) & 0xff)); |
959 |
put_byte(s, (Byte)(strm->total_in & 0xff)); |
960 |
put_byte(s, (Byte)((strm->total_in >> 8) & 0xff)); |
961 |
put_byte(s, (Byte)((strm->total_in >> 16) & 0xff)); |
962 |
put_byte(s, (Byte)((strm->total_in >> 24) & 0xff)); |
963 |
} |
964 |
else |
965 |
#endif |
966 |
{ |
967 |
putShortMSB(s, (uInt)(strm->adler >> 16)); |
968 |
putShortMSB(s, (uInt)(strm->adler & 0xffff)); |
969 |
} |
970 |
flush_pending(strm); |
971 |
/* If avail_out is zero, the application will call deflate again |
972 |
* to flush the rest. |
973 |
*/ |
974 |
if (s->wrap > 0) s->wrap = -s->wrap; /* write the trailer only once! */ |
975 |
return s->pending != 0 ? Z_OK : Z_STREAM_END; |
976 |
} |
977 |
|
978 |
/* ========================================================================= */ |
979 |
int ZEXPORT deflateEnd (strm) |
980 |
z_streamp strm; |
981 |
{ |
982 |
int status; |
983 |
|
984 |
if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; |
985 |
|
986 |
status = strm->state->status; |
987 |
if (status != INIT_STATE && |
988 |
status != EXTRA_STATE && |
989 |
status != NAME_STATE && |
990 |
status != COMMENT_STATE && |
991 |
status != HCRC_STATE && |
992 |
status != BUSY_STATE && |
993 |
status != FINISH_STATE) { |
994 |
return Z_STREAM_ERROR; |
995 |
} |
996 |
|
997 |
/* Deallocate in reverse order of allocations: */ |
998 |
TRY_FREE(strm, strm->state->pending_buf); |
999 |
TRY_FREE(strm, strm->state->head); |
1000 |
TRY_FREE(strm, strm->state->prev); |
1001 |
TRY_FREE(strm, strm->state->window); |
1002 |
|
1003 |
ZFREE(strm, strm->state); |
1004 |
strm->state = Z_NULL; |
1005 |
|
1006 |
return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK; |
1007 |
} |
1008 |
|
1009 |
/* ========================================================================= |
1010 |
* Copy the source state to the destination state. |
1011 |
* To simplify the source, this is not supported for 16-bit MSDOS (which |
1012 |
* doesn't have enough memory anyway to duplicate compression states). |
1013 |
*/ |
1014 |
int ZEXPORT deflateCopy (dest, source) |
1015 |
z_streamp dest; |
1016 |
z_streamp source; |
1017 |
{ |
1018 |
#ifdef MAXSEG_64K |
1019 |
return Z_STREAM_ERROR; |
1020 |
#else |
1021 |
deflate_state *ds; |
1022 |
deflate_state *ss; |
1023 |
ushf *overlay; |
1024 |
|
1025 |
|
1026 |
if (source == Z_NULL || dest == Z_NULL || source->state == Z_NULL) { |
1027 |
return Z_STREAM_ERROR; |
1028 |
} |
1029 |
|
1030 |
ss = source->state; |
1031 |
|
1032 |
zmemcpy((voidpf)dest, (voidpf)source, sizeof(z_stream)); |
1033 |
|
1034 |
ds = (deflate_state *) ZALLOC(dest, 1, sizeof(deflate_state)); |
1035 |
if (ds == Z_NULL) return Z_MEM_ERROR; |
1036 |
dest->state = (struct internal_state FAR *) ds; |
1037 |
zmemcpy((voidpf)ds, (voidpf)ss, sizeof(deflate_state)); |
1038 |
ds->strm = dest; |
1039 |
|
1040 |
ds->window = (Bytef *) ZALLOC(dest, ds->w_size, 2*sizeof(Byte)); |
1041 |
ds->prev = (Posf *) ZALLOC(dest, ds->w_size, sizeof(Pos)); |
1042 |
ds->head = (Posf *) ZALLOC(dest, ds->hash_size, sizeof(Pos)); |
1043 |
overlay = (ushf *) ZALLOC(dest, ds->lit_bufsize, sizeof(ush)+2); |
1044 |
ds->pending_buf = (uchf *) overlay; |
1045 |
|
1046 |
if (ds->window == Z_NULL || ds->prev == Z_NULL || ds->head == Z_NULL || |
1047 |
ds->pending_buf == Z_NULL) { |
1048 |
deflateEnd (dest); |
1049 |
return Z_MEM_ERROR; |
1050 |
} |
1051 |
/* following zmemcpy do not work for 16-bit MSDOS */ |
1052 |
zmemcpy(ds->window, ss->window, ds->w_size * 2 * sizeof(Byte)); |
1053 |
zmemcpy((voidpf)ds->prev, (voidpf)ss->prev, ds->w_size * sizeof(Pos)); |
1054 |
zmemcpy((voidpf)ds->head, (voidpf)ss->head, ds->hash_size * sizeof(Pos)); |
1055 |
zmemcpy(ds->pending_buf, ss->pending_buf, (uInt)ds->pending_buf_size); |
1056 |
|
1057 |
ds->pending_out = ds->pending_buf + (ss->pending_out - ss->pending_buf); |
1058 |
ds->d_buf = overlay + ds->lit_bufsize/sizeof(ush); |
1059 |
ds->l_buf = ds->pending_buf + (1+sizeof(ush))*ds->lit_bufsize; |
1060 |
|
1061 |
ds->l_desc.dyn_tree = ds->dyn_ltree; |
1062 |
ds->d_desc.dyn_tree = ds->dyn_dtree; |
1063 |
ds->bl_desc.dyn_tree = ds->bl_tree; |
1064 |
|
1065 |
return Z_OK; |
1066 |
#endif /* MAXSEG_64K */ |
1067 |
} |
1068 |
|
1069 |
/* =========================================================================== |
1070 |
* Read a new buffer from the current input stream, update the adler32 |
1071 |
* and total number of bytes read. All deflate() input goes through |
1072 |
* this function so some applications may wish to modify it to avoid |
1073 |
* allocating a large strm->next_in buffer and copying from it. |
1074 |
* (See also flush_pending()). |
1075 |
*/ |
1076 |
local int read_buf(strm, buf, size) |
1077 |
z_streamp strm; |
1078 |
Bytef *buf; |
1079 |
unsigned size; |
1080 |
{ |
1081 |
unsigned len = strm->avail_in; |
1082 |
|
1083 |
if (len > size) len = size; |
1084 |
if (len == 0) return 0; |
1085 |
|
1086 |
strm->avail_in -= len; |
1087 |
|
1088 |
zmemcpy(buf, strm->next_in, len); |
1089 |
if (strm->state->wrap == 1) { |
1090 |
strm->adler = adler32(strm->adler, buf, len); |
1091 |
} |
1092 |
#ifdef GZIP |
1093 |
else if (strm->state->wrap == 2) { |
1094 |
strm->adler = crc32(strm->adler, buf, len); |
1095 |
} |
1096 |
#endif |
1097 |
strm->next_in += len; |
1098 |
strm->total_in += len; |
1099 |
|
1100 |
return (int)len; |
1101 |
} |
1102 |
|
1103 |
/* =========================================================================== |
1104 |
* Initialize the "longest match" routines for a new zlib stream |
1105 |
*/ |
1106 |
local void lm_init (s) |
1107 |
deflate_state *s; |
1108 |
{ |
1109 |
s->window_size = (ulg)2L*s->w_size; |
1110 |
|
1111 |
CLEAR_HASH(s); |
1112 |
|
1113 |
/* Set the default configuration parameters: |
1114 |
*/ |
1115 |
s->max_lazy_match = configuration_table[s->level].max_lazy; |
1116 |
s->good_match = configuration_table[s->level].good_length; |
1117 |
s->nice_match = configuration_table[s->level].nice_length; |
1118 |
s->max_chain_length = configuration_table[s->level].max_chain; |
1119 |
|
1120 |
s->strstart = 0; |
1121 |
s->block_start = 0L; |
1122 |
s->lookahead = 0; |
1123 |
s->insert = 0; |
1124 |
s->match_length = s->prev_length = MIN_MATCH-1; |
1125 |
s->match_available = 0; |
1126 |
s->ins_h = 0; |
1127 |
#ifndef FASTEST |
1128 |
#ifdef ASMV |
1129 |
match_init(); /* initialize the asm code */ |
1130 |
#endif |
1131 |
#endif |
1132 |
} |
1133 |
|
1134 |
#ifndef FASTEST |
1135 |
/* =========================================================================== |
1136 |
* Set match_start to the longest match starting at the given string and |
1137 |
* return its length. Matches shorter or equal to prev_length are discarded, |
1138 |
* in which case the result is equal to prev_length and match_start is |
1139 |
* garbage. |
1140 |
* IN assertions: cur_match is the head of the hash chain for the current |
1141 |
* string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1 |
1142 |
* OUT assertion: the match length is not greater than s->lookahead. |
1143 |
*/ |
1144 |
#ifndef ASMV |
1145 |
/* For 80x86 and 680x0, an optimized version will be provided in match.asm or |
1146 |
* match.S. The code will be functionally equivalent. |
1147 |
*/ |
1148 |
local uInt longest_match(s, cur_match) |
1149 |
deflate_state *s; |
1150 |
IPos cur_match; /* current match */ |
1151 |
{ |
1152 |
unsigned chain_length = s->max_chain_length;/* max hash chain length */ |
1153 |
register Bytef *scan = s->window + s->strstart; /* current string */ |
1154 |
register Bytef *match; /* matched string */ |
1155 |
register int len; /* length of current match */ |
1156 |
int best_len = s->prev_length; /* best match length so far */ |
1157 |
int nice_match = s->nice_match; /* stop if match long enough */ |
1158 |
IPos limit = s->strstart > (IPos)MAX_DIST(s) ? |
1159 |
s->strstart - (IPos)MAX_DIST(s) : NIL; |
1160 |
/* Stop when cur_match becomes <= limit. To simplify the code, |
1161 |
* we prevent matches with the string of window index 0. |
1162 |
*/ |
1163 |
Posf *prev = s->prev; |
1164 |
uInt wmask = s->w_mask; |
1165 |
|
1166 |
#ifdef UNALIGNED_OK |
1167 |
/* Compare two bytes at a time. Note: this is not always beneficial. |
1168 |
* Try with and without -DUNALIGNED_OK to check. |
1169 |
*/ |
1170 |
register Bytef *strend = s->window + s->strstart + MAX_MATCH - 1; |
1171 |
register ush scan_start = *(ushf*)scan; |
1172 |
register ush scan_end = *(ushf*)(scan+best_len-1); |
1173 |
#else |
1174 |
register Bytef *strend = s->window + s->strstart + MAX_MATCH; |
1175 |
register Byte scan_end1 = scan[best_len-1]; |
1176 |
register Byte scan_end = scan[best_len]; |
1177 |
#endif |
1178 |
|
1179 |
/* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16. |
1180 |
* It is easy to get rid of this optimization if necessary. |
1181 |
*/ |
1182 |
Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever"); |
1183 |
|
1184 |
/* Do not waste too much time if we already have a good match: */ |
1185 |
if (s->prev_length >= s->good_match) { |
1186 |
chain_length >>= 2; |
1187 |
} |
1188 |
/* Do not look for matches beyond the end of the input. This is necessary |
1189 |
* to make deflate deterministic. |
1190 |
*/ |
1191 |
if ((uInt)nice_match > s->lookahead) nice_match = s->lookahead; |
1192 |
|
1193 |
Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead"); |
1194 |
|
1195 |
do { |
1196 |
Assert(cur_match < s->strstart, "no future"); |
1197 |
match = s->window + cur_match; |
1198 |
|
1199 |
/* Skip to next match if the match length cannot increase |
1200 |
* or if the match length is less than 2. Note that the checks below |
1201 |
* for insufficient lookahead only occur occasionally for performance |
1202 |
* reasons. Therefore uninitialized memory will be accessed, and |
1203 |
* conditional jumps will be made that depend on those values. |
1204 |
* However the length of the match is limited to the lookahead, so |
1205 |
* the output of deflate is not affected by the uninitialized values. |
1206 |
*/ |
1207 |
#if (defined(UNALIGNED_OK) && MAX_MATCH == 258) |
1208 |
/* This code assumes sizeof(unsigned short) == 2. Do not use |
1209 |
* UNALIGNED_OK if your compiler uses a different size. |
1210 |
*/ |
1211 |
if (*(ushf*)(match+best_len-1) != scan_end || |
1212 |
*(ushf*)match != scan_start) continue; |
1213 |
|
1214 |
/* It is not necessary to compare scan[2] and match[2] since they are |
1215 |
* always equal when the other bytes match, given that the hash keys |
1216 |
* are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at |
1217 |
* strstart+3, +5, ... up to strstart+257. We check for insufficient |
1218 |
* lookahead only every 4th comparison; the 128th check will be made |
1219 |
* at strstart+257. If MAX_MATCH-2 is not a multiple of 8, it is |
1220 |
* necessary to put more guard bytes at the end of the window, or |
1221 |
* to check more often for insufficient lookahead. |
1222 |
*/ |
1223 |
Assert(scan[2] == match[2], "scan[2]?"); |
1224 |
scan++, match++; |
1225 |
do { |
1226 |
} while (*(ushf*)(scan+=2) == *(ushf*)(match+=2) && |
1227 |
*(ushf*)(scan+=2) == *(ushf*)(match+=2) && |
1228 |
*(ushf*)(scan+=2) == *(ushf*)(match+=2) && |
1229 |
*(ushf*)(scan+=2) == *(ushf*)(match+=2) && |
1230 |
scan < strend); |
1231 |
/* The funny "do {}" generates better code on most compilers */ |
1232 |
|
1233 |
/* Here, scan <= window+strstart+257 */ |
1234 |
Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan"); |
1235 |
if (*scan == *match) scan++; |
1236 |
|
1237 |
len = (MAX_MATCH - 1) - (int)(strend-scan); |
1238 |
scan = strend - (MAX_MATCH-1); |
1239 |
|
1240 |
#else /* UNALIGNED_OK */ |
1241 |
|
1242 |
if (match[best_len] != scan_end || |
1243 |
match[best_len-1] != scan_end1 || |
1244 |
*match != *scan || |
1245 |
*++match != scan[1]) continue; |
1246 |
|
1247 |
/* The check at best_len-1 can be removed because it will be made |
1248 |
* again later. (This heuristic is not always a win.) |
1249 |
* It is not necessary to compare scan[2] and match[2] since they |
1250 |
* are always equal when the other bytes match, given that |
1251 |
* the hash keys are equal and that HASH_BITS >= 8. |
1252 |
*/ |
1253 |
scan += 2, match++; |
1254 |
Assert(*scan == *match, "match[2]?"); |
1255 |
|
1256 |
/* We check for insufficient lookahead only every 8th comparison; |
1257 |
* the 256th check will be made at strstart+258. |
1258 |
*/ |
1259 |
do { |
1260 |
} while (*++scan == *++match && *++scan == *++match && |
1261 |
*++scan == *++match && *++scan == *++match && |
1262 |
*++scan == *++match && *++scan == *++match && |
1263 |
*++scan == *++match && *++scan == *++match && |
1264 |
scan < strend); |
1265 |
|
1266 |
Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan"); |
1267 |
|
1268 |
len = MAX_MATCH - (int)(strend - scan); |
1269 |
scan = strend - MAX_MATCH; |
1270 |
|
1271 |
#endif /* UNALIGNED_OK */ |
1272 |
|
1273 |
if (len > best_len) { |
1274 |
s->match_start = cur_match; |
1275 |
best_len = len; |
1276 |
if (len >= nice_match) break; |
1277 |
#ifdef UNALIGNED_OK |
1278 |
scan_end = *(ushf*)(scan+best_len-1); |
1279 |
#else |
1280 |
scan_end1 = scan[best_len-1]; |
1281 |
scan_end = scan[best_len]; |
1282 |
#endif |
1283 |
} |
1284 |
} while ((cur_match = prev[cur_match & wmask]) > limit |
1285 |
&& --chain_length != 0); |
1286 |
|
1287 |
if ((uInt)best_len <= s->lookahead) return (uInt)best_len; |
1288 |
return s->lookahead; |
1289 |
} |
1290 |
#endif /* ASMV */ |
1291 |
|
1292 |
#else /* FASTEST */ |
1293 |
|
1294 |
/* --------------------------------------------------------------------------- |
1295 |
* Optimized version for FASTEST only |
1296 |
*/ |
1297 |
local uInt longest_match(s, cur_match) |
1298 |
deflate_state *s; |
1299 |
IPos cur_match; /* current match */ |
1300 |
{ |
1301 |
register Bytef *scan = s->window + s->strstart; /* current string */ |
1302 |
register Bytef *match; /* matched string */ |
1303 |
register int len; /* length of current match */ |
1304 |
register Bytef *strend = s->window + s->strstart + MAX_MATCH; |
1305 |
|
1306 |
/* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16. |
1307 |
* It is easy to get rid of this optimization if necessary. |
1308 |
*/ |
1309 |
Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever"); |
1310 |
|
1311 |
Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead"); |
1312 |
|
1313 |
Assert(cur_match < s->strstart, "no future"); |
1314 |
|
1315 |
match = s->window + cur_match; |
1316 |
|
1317 |
/* Return failure if the match length is less than 2: |
1318 |
*/ |
1319 |
if (match[0] != scan[0] || match[1] != scan[1]) return MIN_MATCH-1; |
1320 |
|
1321 |
/* The check at best_len-1 can be removed because it will be made |
1322 |
* again later. (This heuristic is not always a win.) |
1323 |
* It is not necessary to compare scan[2] and match[2] since they |
1324 |
* are always equal when the other bytes match, given that |
1325 |
* the hash keys are equal and that HASH_BITS >= 8. |
1326 |
*/ |
1327 |
scan += 2, match += 2; |
1328 |
Assert(*scan == *match, "match[2]?"); |
1329 |
|
1330 |
/* We check for insufficient lookahead only every 8th comparison; |
1331 |
* the 256th check will be made at strstart+258. |
1332 |
*/ |
1333 |
do { |
1334 |
} while (*++scan == *++match && *++scan == *++match && |
1335 |
*++scan == *++match && *++scan == *++match && |
1336 |
*++scan == *++match && *++scan == *++match && |
1337 |
*++scan == *++match && *++scan == *++match && |
1338 |
scan < strend); |
1339 |
|
1340 |
Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan"); |
1341 |
|
1342 |
len = MAX_MATCH - (int)(strend - scan); |
1343 |
|
1344 |
if (len < MIN_MATCH) return MIN_MATCH - 1; |
1345 |
|
1346 |
s->match_start = cur_match; |
1347 |
return (uInt)len <= s->lookahead ? (uInt)len : s->lookahead; |
1348 |
} |
1349 |
|
1350 |
#endif /* FASTEST */ |
1351 |
|
1352 |
#ifdef DEBUG |
1353 |
/* =========================================================================== |
1354 |
* Check that the match at match_start is indeed a match. |
1355 |
*/ |
1356 |
local void check_match(s, start, match, length) |
1357 |
deflate_state *s; |
1358 |
IPos start, match; |
1359 |
int length; |
1360 |
{ |
1361 |
/* check that the match is indeed a match */ |
1362 |
if (zmemcmp(s->window + match, |
1363 |
s->window + start, length) != EQUAL) { |
1364 |
fprintf(stderr, " start %u, match %u, length %d\n", |
1365 |
start, match, length); |
1366 |
do { |
1367 |
fprintf(stderr, "%c%c", s->window[match++], s->window[start++]); |
1368 |
} while (--length != 0); |
1369 |
z_error("invalid match"); |
1370 |
} |
1371 |
if (z_verbose > 1) { |
1372 |
fprintf(stderr,"\\[%d,%d]", start-match, length); |
1373 |
do { putc(s->window[start++], stderr); } while (--length != 0); |
1374 |
} |
1375 |
} |
1376 |
#else |
1377 |
# define check_match(s, start, match, length) |
1378 |
#endif /* DEBUG */ |
1379 |
|
1380 |
/* =========================================================================== |
1381 |
* Fill the window when the lookahead becomes insufficient. |
1382 |
* Updates strstart and lookahead. |
1383 |
* |
1384 |
* IN assertion: lookahead < MIN_LOOKAHEAD |
1385 |
* OUT assertions: strstart <= window_size-MIN_LOOKAHEAD |
1386 |
* At least one byte has been read, or avail_in == 0; reads are |
1387 |
* performed for at least two bytes (required for the zip translate_eol |
1388 |
* option -- not supported here). |
1389 |
*/ |
1390 |
local void fill_window(s) |
1391 |
deflate_state *s; |
1392 |
{ |
1393 |
register unsigned n, m; |
1394 |
register Posf *p; |
1395 |
unsigned more; /* Amount of free space at the end of the window. */ |
1396 |
uInt wsize = s->w_size; |
1397 |
|
1398 |
Assert(s->lookahead < MIN_LOOKAHEAD, "already enough lookahead"); |
1399 |
|
1400 |
do { |
1401 |
more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart); |
1402 |
|
1403 |
/* Deal with !@#$% 64K limit: */ |
1404 |
if (sizeof(int) <= 2) { |
1405 |
if (more == 0 && s->strstart == 0 && s->lookahead == 0) { |
1406 |
more = wsize; |
1407 |
|
1408 |
} else if (more == (unsigned)(-1)) { |
1409 |
/* Very unlikely, but possible on 16 bit machine if |
1410 |
* strstart == 0 && lookahead == 1 (input done a byte at time) |
1411 |
*/ |
1412 |
more--; |
1413 |
} |
1414 |
} |
1415 |
|
1416 |
/* If the window is almost full and there is insufficient lookahead, |
1417 |
* move the upper half to the lower one to make room in the upper half. |
1418 |
*/ |
1419 |
if (s->strstart >= wsize+MAX_DIST(s)) { |
1420 |
|
1421 |
zmemcpy(s->window, s->window+wsize, (unsigned)wsize); |
1422 |
s->match_start -= wsize; |
1423 |
s->strstart -= wsize; /* we now have strstart >= MAX_DIST */ |
1424 |
s->block_start -= (long) wsize; |
1425 |
|
1426 |
/* Slide the hash table (could be avoided with 32 bit values |
1427 |
at the expense of memory usage). We slide even when level == 0 |
1428 |
to keep the hash table consistent if we switch back to level > 0 |
1429 |
later. (Using level 0 permanently is not an optimal usage of |
1430 |
zlib, so we don't care about this pathological case.) |
1431 |
*/ |
1432 |
n = s->hash_size; |
1433 |
p = &s->head[n]; |
1434 |
do { |
1435 |
m = *--p; |
1436 |
*p = (Pos)(m >= wsize ? m-wsize : NIL); |
1437 |
} while (--n); |
1438 |
|
1439 |
n = wsize; |
1440 |
#ifndef FASTEST |
1441 |
p = &s->prev[n]; |
1442 |
do { |
1443 |
m = *--p; |
1444 |
*p = (Pos)(m >= wsize ? m-wsize : NIL); |
1445 |
/* If n is not on any hash chain, prev[n] is garbage but |
1446 |
* its value will never be used. |
1447 |
*/ |
1448 |
} while (--n); |
1449 |
#endif |
1450 |
more += wsize; |
1451 |
} |
1452 |
if (s->strm->avail_in == 0) break; |
1453 |
|
1454 |
/* If there was no sliding: |
1455 |
* strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 && |
1456 |
* more == window_size - lookahead - strstart |
1457 |
* => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1) |
1458 |
* => more >= window_size - 2*WSIZE + 2 |
1459 |
* In the BIG_MEM or MMAP case (not yet supported), |
1460 |
* window_size == input_size + MIN_LOOKAHEAD && |
1461 |
* strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD. |
1462 |
* Otherwise, window_size == 2*WSIZE so more >= 2. |
1463 |
* If there was sliding, more >= WSIZE. So in all cases, more >= 2. |
1464 |
*/ |
1465 |
Assert(more >= 2, "more < 2"); |
1466 |
|
1467 |
n = read_buf(s->strm, s->window + s->strstart + s->lookahead, more); |
1468 |
s->lookahead += n; |
1469 |
|
1470 |
/* Initialize the hash value now that we have some input: */ |
1471 |
if (s->lookahead + s->insert >= MIN_MATCH) { |
1472 |
uInt str = s->strstart - s->insert; |
1473 |
s->ins_h = s->window[str]; |
1474 |
UPDATE_HASH(s, s->ins_h, s->window[str + 1]); |
1475 |
#if MIN_MATCH != 3 |
1476 |
Call UPDATE_HASH() MIN_MATCH-3 more times |
1477 |
#endif |
1478 |
while (s->insert) { |
1479 |
UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]); |
1480 |
#ifndef FASTEST |
1481 |
s->prev[str & s->w_mask] = s->head[s->ins_h]; |
1482 |
#endif |
1483 |
s->head[s->ins_h] = (Pos)str; |
1484 |
str++; |
1485 |
s->insert--; |
1486 |
if (s->lookahead + s->insert < MIN_MATCH) |
1487 |
break; |
1488 |
} |
1489 |
} |
1490 |
/* If the whole input has less than MIN_MATCH bytes, ins_h is garbage, |
1491 |
* but this is not important since only literal bytes will be emitted. |
1492 |
*/ |
1493 |
|
1494 |
} while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0); |
1495 |
|
1496 |
/* If the WIN_INIT bytes after the end of the current data have never been |
1497 |
* written, then zero those bytes in order to avoid memory check reports of |
1498 |
* the use of uninitialized (or uninitialised as Julian writes) bytes by |
1499 |
* the longest match routines. Update the high water mark for the next |
1500 |
* time through here. WIN_INIT is set to MAX_MATCH since the longest match |
1501 |
* routines allow scanning to strstart + MAX_MATCH, ignoring lookahead. |
1502 |
*/ |
1503 |
if (s->high_water < s->window_size) { |
1504 |
ulg curr = s->strstart + (ulg)(s->lookahead); |
1505 |
ulg init; |
1506 |
|
1507 |
if (s->high_water < curr) { |
1508 |
/* Previous high water mark below current data -- zero WIN_INIT |
1509 |
* bytes or up to end of window, whichever is less. |
1510 |
*/ |
1511 |
init = s->window_size - curr; |
1512 |
if (init > WIN_INIT) |
1513 |
init = WIN_INIT; |
1514 |
zmemzero(s->window + curr, (unsigned)init); |
1515 |
s->high_water = curr + init; |
1516 |
} |
1517 |
else if (s->high_water < (ulg)curr + WIN_INIT) { |
1518 |
/* High water mark at or above current data, but below current data |
1519 |
* plus WIN_INIT -- zero out to current data plus WIN_INIT, or up |
1520 |
* to end of window, whichever is less. |
1521 |
*/ |
1522 |
init = (ulg)curr + WIN_INIT - s->high_water; |
1523 |
if (init > s->window_size - s->high_water) |
1524 |
init = s->window_size - s->high_water; |
1525 |
zmemzero(s->window + s->high_water, (unsigned)init); |
1526 |
s->high_water += init; |
1527 |
} |
1528 |
} |
1529 |
|
1530 |
Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD, |
1531 |
"not enough room for search"); |
1532 |
} |
1533 |
|
1534 |
/* =========================================================================== |
1535 |
* Flush the current block, with given end-of-file flag. |
1536 |
* IN assertion: strstart is set to the end of the current match. |
1537 |
*/ |
1538 |
#define FLUSH_BLOCK_ONLY(s, last) { \ |
1539 |
_tr_flush_block(s, (s->block_start >= 0L ? \ |
1540 |
(charf *)&s->window[(unsigned)s->block_start] : \ |
1541 |
(charf *)Z_NULL), \ |
1542 |
(ulg)((long)s->strstart - s->block_start), \ |
1543 |
(last)); \ |
1544 |
s->block_start = s->strstart; \ |
1545 |
flush_pending(s->strm); \ |
1546 |
Tracev((stderr,"[FLUSH]")); \ |
1547 |
} |
1548 |
|
1549 |
/* Same but force premature exit if necessary. */ |
1550 |
#define FLUSH_BLOCK(s, last) { \ |
1551 |
FLUSH_BLOCK_ONLY(s, last); \ |
1552 |
if (s->strm->avail_out == 0) return (last) ? finish_started : need_more; \ |
1553 |
} |
1554 |
|
1555 |
/* =========================================================================== |
1556 |
* Copy without compression as much as possible from the input stream, return |
1557 |
* the current block state. |
1558 |
* This function does not insert new strings in the dictionary since |
1559 |
* uncompressible data is probably not useful. This function is used |
1560 |
* only for the level=0 compression option. |
1561 |
* NOTE: this function should be optimized to avoid extra copying from |
1562 |
* window to pending_buf. |
1563 |
*/ |
1564 |
local block_state deflate_stored(s, flush) |
1565 |
deflate_state *s; |
1566 |
int flush; |
1567 |
{ |
1568 |
/* Stored blocks are limited to 0xffff bytes, pending_buf is limited |
1569 |
* to pending_buf_size, and each stored block has a 5 byte header: |
1570 |
*/ |
1571 |
ulg max_block_size = 0xffff; |
1572 |
ulg max_start; |
1573 |
|
1574 |
if (max_block_size > s->pending_buf_size - 5) { |
1575 |
max_block_size = s->pending_buf_size - 5; |
1576 |
} |
1577 |
|
1578 |
/* Copy as much as possible from input to output: */ |
1579 |
for (;;) { |
1580 |
/* Fill the window as much as possible: */ |
1581 |
if (s->lookahead <= 1) { |
1582 |
|
1583 |
Assert(s->strstart < s->w_size+MAX_DIST(s) || |
1584 |
s->block_start >= (long)s->w_size, "slide too late"); |
1585 |
|
1586 |
fill_window(s); |
1587 |
if (s->lookahead == 0 && flush == Z_NO_FLUSH) return need_more; |
1588 |
|
1589 |
if (s->lookahead == 0) break; /* flush the current block */ |
1590 |
} |
1591 |
Assert(s->block_start >= 0L, "block gone"); |
1592 |
|
1593 |
s->strstart += s->lookahead; |
1594 |
s->lookahead = 0; |
1595 |
|
1596 |
/* Emit a stored block if pending_buf will be full: */ |
1597 |
max_start = s->block_start + max_block_size; |
1598 |
if (s->strstart == 0 || (ulg)s->strstart >= max_start) { |
1599 |
/* strstart == 0 is possible when wraparound on 16-bit machine */ |
1600 |
s->lookahead = (uInt)(s->strstart - max_start); |
1601 |
s->strstart = (uInt)max_start; |
1602 |
FLUSH_BLOCK(s, 0); |
1603 |
} |
1604 |
/* Flush if we may have to slide, otherwise block_start may become |
1605 |
* negative and the data will be gone: |
1606 |
*/ |
1607 |
if (s->strstart - (uInt)s->block_start >= MAX_DIST(s)) { |
1608 |
FLUSH_BLOCK(s, 0); |
1609 |
} |
1610 |
} |
1611 |
s->insert = 0; |
1612 |
if (flush == Z_FINISH) { |
1613 |
FLUSH_BLOCK(s, 1); |
1614 |
return finish_done; |
1615 |
} |
1616 |
if ((long)s->strstart > s->block_start) |
1617 |
FLUSH_BLOCK(s, 0); |
1618 |
return block_done; |
1619 |
} |
1620 |
|
1621 |
/* =========================================================================== |
1622 |
* Compress as much as possible from the input stream, return the current |
1623 |
* block state. |
1624 |
* This function does not perform lazy evaluation of matches and inserts |
1625 |
* new strings in the dictionary only for unmatched strings or for short |
1626 |
* matches. It is used only for the fast compression options. |
1627 |
*/ |
1628 |
local block_state deflate_fast(s, flush) |
1629 |
deflate_state *s; |
1630 |
int flush; |
1631 |
{ |
1632 |
IPos hash_head; /* head of the hash chain */ |
1633 |
int bflush; /* set if current block must be flushed */ |
1634 |
|
1635 |
for (;;) { |
1636 |
/* Make sure that we always have enough lookahead, except |
1637 |
* at the end of the input file. We need MAX_MATCH bytes |
1638 |
* for the next match, plus MIN_MATCH bytes to insert the |
1639 |
* string following the next match. |
1640 |
*/ |
1641 |
if (s->lookahead < MIN_LOOKAHEAD) { |
1642 |
fill_window(s); |
1643 |
if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) { |
1644 |
return need_more; |
1645 |
} |
1646 |
if (s->lookahead == 0) break; /* flush the current block */ |
1647 |
} |
1648 |
|
1649 |
/* Insert the string window[strstart .. strstart+2] in the |
1650 |
* dictionary, and set hash_head to the head of the hash chain: |
1651 |
*/ |
1652 |
hash_head = NIL; |
1653 |
if (s->lookahead >= MIN_MATCH) { |
1654 |
INSERT_STRING(s, s->strstart, hash_head); |
1655 |
} |
1656 |
|
1657 |
/* Find the longest match, discarding those <= prev_length. |
1658 |
* At this point we have always match_length < MIN_MATCH |
1659 |
*/ |
1660 |
if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) { |
1661 |
/* To simplify the code, we prevent matches with the string |
1662 |
* of window index 0 (in particular we have to avoid a match |
1663 |
* of the string with itself at the start of the input file). |
1664 |
*/ |
1665 |
s->match_length = longest_match (s, hash_head); |
1666 |
/* longest_match() sets match_start */ |
1667 |
} |
1668 |
if (s->match_length >= MIN_MATCH) { |
1669 |
check_match(s, s->strstart, s->match_start, s->match_length); |
1670 |
|
1671 |
_tr_tally_dist(s, s->strstart - s->match_start, |
1672 |
s->match_length - MIN_MATCH, bflush); |
1673 |
|
1674 |
s->lookahead -= s->match_length; |
1675 |
|
1676 |
/* Insert new strings in the hash table only if the match length |
1677 |
* is not too large. This saves time but degrades compression. |
1678 |
*/ |
1679 |
#ifndef FASTEST |
1680 |
if (s->match_length <= s->max_insert_length && |
1681 |
s->lookahead >= MIN_MATCH) { |
1682 |
s->match_length--; /* string at strstart already in table */ |
1683 |
do { |
1684 |
s->strstart++; |
1685 |
INSERT_STRING(s, s->strstart, hash_head); |
1686 |
/* strstart never exceeds WSIZE-MAX_MATCH, so there are |
1687 |
* always MIN_MATCH bytes ahead. |
1688 |
*/ |
1689 |
} while (--s->match_length != 0); |
1690 |
s->strstart++; |
1691 |
} else |
1692 |
#endif |
1693 |
{ |
1694 |
s->strstart += s->match_length; |
1695 |
s->match_length = 0; |
1696 |
s->ins_h = s->window[s->strstart]; |
1697 |
UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]); |
1698 |
#if MIN_MATCH != 3 |
1699 |
Call UPDATE_HASH() MIN_MATCH-3 more times |
1700 |
#endif |
1701 |
/* If lookahead < MIN_MATCH, ins_h is garbage, but it does not |
1702 |
* matter since it will be recomputed at next deflate call. |
1703 |
*/ |
1704 |
} |
1705 |
} else { |
1706 |
/* No match, output a literal byte */ |
1707 |
Tracevv((stderr,"%c", s->window[s->strstart])); |
1708 |
_tr_tally_lit (s, s->window[s->strstart], bflush); |
1709 |
s->lookahead--; |
1710 |
s->strstart++; |
1711 |
} |
1712 |
if (bflush) FLUSH_BLOCK(s, 0); |
1713 |
} |
1714 |
s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1; |
1715 |
if (flush == Z_FINISH) { |
1716 |
FLUSH_BLOCK(s, 1); |
1717 |
return finish_done; |
1718 |
} |
1719 |
if (s->last_lit) |
1720 |
FLUSH_BLOCK(s, 0); |
1721 |
return block_done; |
1722 |
} |
1723 |
|
1724 |
#ifndef FASTEST |
1725 |
/* =========================================================================== |
1726 |
* Same as above, but achieves better compression. We use a lazy |
1727 |
* evaluation for matches: a match is finally adopted only if there is |
1728 |
* no better match at the next window position. |
1729 |
*/ |
1730 |
local block_state deflate_slow(s, flush) |
1731 |
deflate_state *s; |
1732 |
int flush; |
1733 |
{ |
1734 |
IPos hash_head; /* head of hash chain */ |
1735 |
int bflush; /* set if current block must be flushed */ |
1736 |
|
1737 |
/* Process the input block. */ |
1738 |
for (;;) { |
1739 |
/* Make sure that we always have enough lookahead, except |
1740 |
* at the end of the input file. We need MAX_MATCH bytes |
1741 |
* for the next match, plus MIN_MATCH bytes to insert the |
1742 |
* string following the next match. |
1743 |
*/ |
1744 |
if (s->lookahead < MIN_LOOKAHEAD) { |
1745 |
fill_window(s); |
1746 |
if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) { |
1747 |
return need_more; |
1748 |
} |
1749 |
if (s->lookahead == 0) break; /* flush the current block */ |
1750 |
} |
1751 |
|
1752 |
/* Insert the string window[strstart .. strstart+2] in the |
1753 |
* dictionary, and set hash_head to the head of the hash chain: |
1754 |
*/ |
1755 |
hash_head = NIL; |
1756 |
if (s->lookahead >= MIN_MATCH) { |
1757 |
INSERT_STRING(s, s->strstart, hash_head); |
1758 |
} |
1759 |
|
1760 |
/* Find the longest match, discarding those <= prev_length. |
1761 |
*/ |
1762 |
s->prev_length = s->match_length, s->prev_match = s->match_start; |
1763 |
s->match_length = MIN_MATCH-1; |
1764 |
|
1765 |
if (hash_head != NIL && s->prev_length < s->max_lazy_match && |
1766 |
s->strstart - hash_head <= MAX_DIST(s)) { |
1767 |
/* To simplify the code, we prevent matches with the string |
1768 |
* of window index 0 (in particular we have to avoid a match |
1769 |
* of the string with itself at the start of the input file). |
1770 |
*/ |
1771 |
s->match_length = longest_match (s, hash_head); |
1772 |
/* longest_match() sets match_start */ |
1773 |
|
1774 |
if (s->match_length <= 5 && (s->strategy == Z_FILTERED |
1775 |
#if TOO_FAR <= 32767 |
1776 |
|| (s->match_length == MIN_MATCH && |
1777 |
s->strstart - s->match_start > TOO_FAR) |
1778 |
#endif |
1779 |
)) { |
1780 |
|
1781 |
/* If prev_match is also MIN_MATCH, match_start is garbage |
1782 |
* but we will ignore the current match anyway. |
1783 |
*/ |
1784 |
s->match_length = MIN_MATCH-1; |
1785 |
} |
1786 |
} |
1787 |
/* If there was a match at the previous step and the current |
1788 |
* match is not better, output the previous match: |
1789 |
*/ |
1790 |
if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) { |
1791 |
uInt max_insert = s->strstart + s->lookahead - MIN_MATCH; |
1792 |
/* Do not insert strings in hash table beyond this. */ |
1793 |
|
1794 |
check_match(s, s->strstart-1, s->prev_match, s->prev_length); |
1795 |
|
1796 |
_tr_tally_dist(s, s->strstart -1 - s->prev_match, |
1797 |
s->prev_length - MIN_MATCH, bflush); |
1798 |
|
1799 |
/* Insert in hash table all strings up to the end of the match. |
1800 |
* strstart-1 and strstart are already inserted. If there is not |
1801 |
* enough lookahead, the last two strings are not inserted in |
1802 |
* the hash table. |
1803 |
*/ |
1804 |
s->lookahead -= s->prev_length-1; |
1805 |
s->prev_length -= 2; |
1806 |
do { |
1807 |
if (++s->strstart <= max_insert) { |
1808 |
INSERT_STRING(s, s->strstart, hash_head); |
1809 |
} |
1810 |
} while (--s->prev_length != 0); |
1811 |
s->match_available = 0; |
1812 |
s->match_length = MIN_MATCH-1; |
1813 |
s->strstart++; |
1814 |
|
1815 |
if (bflush) FLUSH_BLOCK(s, 0); |
1816 |
|
1817 |
} else if (s->match_available) { |
1818 |
/* If there was no match at the previous position, output a |
1819 |
* single literal. If there was a match but the current match |
1820 |
* is longer, truncate the previous match to a single literal. |
1821 |
*/ |
1822 |
Tracevv((stderr,"%c", s->window[s->strstart-1])); |
1823 |
_tr_tally_lit(s, s->window[s->strstart-1], bflush); |
1824 |
if (bflush) { |
1825 |
FLUSH_BLOCK_ONLY(s, 0); |
1826 |
} |
1827 |
s->strstart++; |
1828 |
s->lookahead--; |
1829 |
if (s->strm->avail_out == 0) return need_more; |
1830 |
} else { |
1831 |
/* There is no previous match to compare with, wait for |
1832 |
* the next step to decide. |
1833 |
*/ |
1834 |
s->match_available = 1; |
1835 |
s->strstart++; |
1836 |
s->lookahead--; |
1837 |
} |
1838 |
} |
1839 |
Assert (flush != Z_NO_FLUSH, "no flush?"); |
1840 |
if (s->match_available) { |
1841 |
Tracevv((stderr,"%c", s->window[s->strstart-1])); |
1842 |
_tr_tally_lit(s, s->window[s->strstart-1], bflush); |
1843 |
s->match_available = 0; |
1844 |
} |
1845 |
s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1; |
1846 |
if (flush == Z_FINISH) { |
1847 |
FLUSH_BLOCK(s, 1); |
1848 |
return finish_done; |
1849 |
} |
1850 |
if (s->last_lit) |
1851 |
FLUSH_BLOCK(s, 0); |
1852 |
return block_done; |
1853 |
} |
1854 |
#endif /* FASTEST */ |
1855 |
|
1856 |
/* =========================================================================== |
1857 |
* For Z_RLE, simply look for runs of bytes, generate matches only of distance |
1858 |
* one. Do not maintain a hash table. (It will be regenerated if this run of |
1859 |
* deflate switches away from Z_RLE.) |
1860 |
*/ |
1861 |
local block_state deflate_rle(s, flush) |
1862 |
deflate_state *s; |
1863 |
int flush; |
1864 |
{ |
1865 |
int bflush; /* set if current block must be flushed */ |
1866 |
uInt prev; /* byte at distance one to match */ |
1867 |
Bytef *scan, *strend; /* scan goes up to strend for length of run */ |
1868 |
|
1869 |
for (;;) { |
1870 |
/* Make sure that we always have enough lookahead, except |
1871 |
* at the end of the input file. We need MAX_MATCH bytes |
1872 |
* for the longest run, plus one for the unrolled loop. |
1873 |
*/ |
1874 |
if (s->lookahead <= MAX_MATCH) { |
1875 |
fill_window(s); |
1876 |
if (s->lookahead <= MAX_MATCH && flush == Z_NO_FLUSH) { |
1877 |
return need_more; |
1878 |
} |
1879 |
if (s->lookahead == 0) break; /* flush the current block */ |
1880 |
} |
1881 |
|
1882 |
/* See how many times the previous byte repeats */ |
1883 |
s->match_length = 0; |
1884 |
if (s->lookahead >= MIN_MATCH && s->strstart > 0) { |
1885 |
scan = s->window + s->strstart - 1; |
1886 |
prev = *scan; |
1887 |
if (prev == *++scan && prev == *++scan && prev == *++scan) { |
1888 |
strend = s->window + s->strstart + MAX_MATCH; |
1889 |
do { |
1890 |
} while (prev == *++scan && prev == *++scan && |
1891 |
prev == *++scan && prev == *++scan && |
1892 |
prev == *++scan && prev == *++scan && |
1893 |
prev == *++scan && prev == *++scan && |
1894 |
scan < strend); |
1895 |
s->match_length = MAX_MATCH - (int)(strend - scan); |
1896 |
if (s->match_length > s->lookahead) |
1897 |
s->match_length = s->lookahead; |
1898 |
} |
1899 |
Assert(scan <= s->window+(uInt)(s->window_size-1), "wild scan"); |
1900 |
} |
1901 |
|
1902 |
/* Emit match if have run of MIN_MATCH or longer, else emit literal */ |
1903 |
if (s->match_length >= MIN_MATCH) { |
1904 |
check_match(s, s->strstart, s->strstart - 1, s->match_length); |
1905 |
|
1906 |
_tr_tally_dist(s, 1, s->match_length - MIN_MATCH, bflush); |
1907 |
|
1908 |
s->lookahead -= s->match_length; |
1909 |
s->strstart += s->match_length; |
1910 |
s->match_length = 0; |
1911 |
} else { |
1912 |
/* No match, output a literal byte */ |
1913 |
Tracevv((stderr,"%c", s->window[s->strstart])); |
1914 |
_tr_tally_lit (s, s->window[s->strstart], bflush); |
1915 |
s->lookahead--; |
1916 |
s->strstart++; |
1917 |
} |
1918 |
if (bflush) FLUSH_BLOCK(s, 0); |
1919 |
} |
1920 |
s->insert = 0; |
1921 |
if (flush == Z_FINISH) { |
1922 |
FLUSH_BLOCK(s, 1); |
1923 |
return finish_done; |
1924 |
} |
1925 |
if (s->last_lit) |
1926 |
FLUSH_BLOCK(s, 0); |
1927 |
return block_done; |
1928 |
} |
1929 |
|
1930 |
/* =========================================================================== |
1931 |
* For Z_HUFFMAN_ONLY, do not look for matches. Do not maintain a hash table. |
1932 |
* (It will be regenerated if this run of deflate switches away from Huffman.) |
1933 |
*/ |
1934 |
local block_state deflate_huff(s, flush) |
1935 |
deflate_state *s; |
1936 |
int flush; |
1937 |
{ |
1938 |
int bflush; /* set if current block must be flushed */ |
1939 |
|
1940 |
for (;;) { |
1941 |
/* Make sure that we have a literal to write. */ |
1942 |
if (s->lookahead == 0) { |
1943 |
fill_window(s); |
1944 |
if (s->lookahead == 0) { |
1945 |
if (flush == Z_NO_FLUSH) |
1946 |
return need_more; |
1947 |
break; /* flush the current block */ |
1948 |
} |
1949 |
} |
1950 |
|
1951 |
/* Output a literal byte */ |
1952 |
s->match_length = 0; |
1953 |
Tracevv((stderr,"%c", s->window[s->strstart])); |
1954 |
_tr_tally_lit (s, s->window[s->strstart], bflush); |
1955 |
s->lookahead--; |
1956 |
s->strstart++; |
1957 |
if (bflush) FLUSH_BLOCK(s, 0); |
1958 |
} |
1959 |
s->insert = 0; |
1960 |
if (flush == Z_FINISH) { |
1961 |
FLUSH_BLOCK(s, 1); |
1962 |
return finish_done; |
1963 |
} |
1964 |
if (s->last_lit) |
1965 |
FLUSH_BLOCK(s, 0); |
1966 |
return block_done; |
1967 |
} |