1 |
using System; |
2 |
using System.IO; |
3 |
|
4 |
namespace Oni.Sound |
5 |
{ |
6 |
internal class WavExporter : SoundExporter |
7 |
{ |
8 |
#region Private data |
9 |
private bool convert_to_PCM; |
10 |
|
11 |
private const int fcc_RIFF = 0x46464952; |
12 |
private const int fcc_WAVE = 0x45564157; |
13 |
private const int fcc_fmt = 0x20746d66; |
14 |
private const int fcc_fact = 0x74636166; |
15 |
private const int fcc_data = 0x61746164; |
16 |
|
17 |
private static readonly byte[] formatTemplate_ADPCM = new byte[50] |
18 |
{ |
19 |
0x02, 0, // format ID (2 for ADPCM) |
20 |
0, 0, // ChannelCount (overwritten) |
21 |
0x22, 0x56, 0, 0, // SampleRate (usually 22050, can be 44100) |
22 |
0, 0, 0, 0, // average data rate (computed and overwritten) |
23 |
0, 0x02, // block alignment (default 512, can be 1024) |
24 |
0x04, 0, // bits per sample (always 4) |
25 |
0x20, 0, // size of extended ADPCM header block |
26 |
0xf4, 0x03, // samples per block (usually 1012, can be 2036) |
27 |
0x07, 0, // standard ADPCM coefficient table (always the same) |
28 |
0, 0x01, 0, 0, |
29 |
0, 0x02, 0, 0xff, |
30 |
0, 0, 0, 0, |
31 |
0xc0, 0, 0x40, 0, |
32 |
0xf0, 0, 0, 0, |
33 |
0xcc, 0x01, 0x30, 0xff, |
34 |
0x88, 0x01, 0x18, 0xff |
35 |
}; |
36 |
|
37 |
private static readonly byte[] formatTemplate_PCM = new byte[16] |
38 |
{ |
39 |
0x01, 0, // format ID (1 for linear PCM) |
40 |
0, 0, // ChannelCount (overwritten) |
41 |
0x22, 0x56, 0, 0, // SampleRate (usually 22050, can be 44100) |
42 |
0, 0, 0, 0, // data rate in bytes/s (computed and overwritten) |
43 |
0x02, 0, // block size (2 bytes for mono, 4 for stereo) |
44 |
0x10, 0 // bits per sample (always 16) |
45 |
}; |
46 |
|
47 |
private static readonly byte[] factTemplate = new byte[4] |
48 |
{ |
49 |
0, 0, 0, 0 // sample count (computed and overwritten) |
50 |
}; |
51 |
|
52 |
private static readonly int[] ima_index_table = new int[16] |
53 |
{ |
54 |
-1, -1, -1, -1, 2, 4, 6, 8, |
55 |
-1, -1, -1, -1, 2, 4, 6, 8 |
56 |
}; |
57 |
|
58 |
private static readonly int[] ima_step_table = new int[89] |
59 |
{ |
60 |
7, 8, 9, 10, 11, 12, 13, 14, 16, 17, |
61 |
19, 21, 23, 25, 28, 31, 34, 37, 41, 45, |
62 |
50, 55, 60, 66, 73, 80, 88, 97, 107, 118, |
63 |
130, 143, 157, 173, 190, 209, 230, 253, 279, 307, |
64 |
337, 371, 408, 449, 494, 544, 598, 658, 724, 796, |
65 |
876, 963, 1060, 1166, 1282, 1411, 1552, 1707, 1878, 2066, |
66 |
2272, 2499, 2749, 3024, 3327, 3660, 4026, 4428, 4871, 5358, |
67 |
5894, 6484, 7132, 7845, 8630, 9493, 10442, 11487, 12635, 13899, |
68 |
15289, 16818, 18500, 20350, 22385, 24623, 27086, 29794, 32767 |
69 |
}; |
70 |
|
71 |
private static readonly int[] msadpcm_adapt_table = new int[16] |
72 |
{ |
73 |
230, 230, 230, 230, 307, 409, 512, 614, |
74 |
768, 614, 512, 409, 307, 230, 230, 230 |
75 |
}; |
76 |
|
77 |
private static readonly int[] msadpcm_coeff_table1 = new int[7] |
78 |
{ |
79 |
256, 512, 0, 192, 240, 460, 392 |
80 |
}; |
81 |
|
82 |
private static readonly int[] msadpcm_coeff_table2 = new int[7] |
83 |
{ |
84 |
0, -256, 0, 64, 0, -208, -232 |
85 |
}; |
86 |
#endregion |
87 |
|
88 |
public WavExporter(InstanceFileManager fileManager, string outputDirPath, bool convertToPCM = false) |
89 |
: base(fileManager, outputDirPath) |
90 |
{ |
91 |
convert_to_PCM = convertToPCM; |
92 |
} |
93 |
|
94 |
private static void ClampToRange(ref int value, int lower, int upper) |
95 |
{ |
96 |
if (value > upper) |
97 |
value = upper; |
98 |
if (value < lower) |
99 |
value = lower; |
100 |
} |
101 |
|
102 |
protected Int16 NibbletoSampleIMA4(ref int predictor, ref int step_index, Byte nibble) |
103 |
{ |
104 |
int step = ima_step_table[step_index]; |
105 |
|
106 |
step_index += ima_index_table[nibble]; |
107 |
ClampToRange(ref step_index, 0, 88); |
108 |
|
109 |
int diff = step >> 3; |
110 |
|
111 |
if ((nibble & 0x04) != 0) diff += step; |
112 |
if ((nibble & 0x02) != 0) diff += (step >> 1); |
113 |
if ((nibble & 0x01) != 0) diff += (step >> 2); |
114 |
if ((nibble & 0x08) != 0) |
115 |
predictor -= diff; |
116 |
else |
117 |
predictor += diff; |
118 |
|
119 |
ClampToRange(ref predictor, -32768, 32767); |
120 |
return (Int16)predictor; |
121 |
} |
122 |
|
123 |
protected Int16 NibbletoSampleMSADPCM(ref Int16 sample1, ref Int16 sample2, ref UInt16 delta, Byte pred_index, Byte nibble) |
124 |
{ |
125 |
int coeff1 = msadpcm_coeff_table1[pred_index]; |
126 |
int coeff2 = msadpcm_coeff_table2[pred_index]; |
127 |
|
128 |
int prediction = ((int)sample1 * (int)coeff1 + (int)sample2 * (int)coeff2) >> 8; |
129 |
|
130 |
int snibble = (nibble < 8) ? nibble : (nibble - 16); |
131 |
int correction = snibble * (int)delta; |
132 |
|
133 |
int sample = prediction + correction; |
134 |
ClampToRange(ref sample, -32768, 32767); |
135 |
|
136 |
sample2 = sample1; |
137 |
sample1 = (Int16)sample; |
138 |
|
139 |
int newDelta = delta * msadpcm_adapt_table[nibble]; |
140 |
newDelta >>= 8; |
141 |
ClampToRange(ref newDelta, 16, 65535); |
142 |
delta = (UInt16)newDelta; |
143 |
|
144 |
return (Int16)sample; |
145 |
} |
146 |
|
147 |
protected override void ExportInstance(InstanceDescriptor descriptor) |
148 |
{ |
149 |
var sound = SoundData.Read(descriptor); |
150 |
|
151 |
using (var stream = File.Create(Path.Combine(OutputDirPath, descriptor.FullName + ".wav"))) |
152 |
using (var writer = new BinaryWriter(stream)) |
153 |
{ |
154 |
var blockSizeADPCM = 512 * sound.ChannelCount * sound.SampleRate / 22050; |
155 |
int wholeBlocks = sound.Data.Length / blockSizeADPCM; |
156 |
int leftoverBytes = sound.Data.Length - (wholeBlocks * blockSizeADPCM); |
157 |
int leftoverSamples = 8 * (leftoverBytes - 7 * sound.ChannelCount) |
158 |
/ 4 / sound.ChannelCount + 2; // 4 bits per sample |
159 |
int paddingBytes = 0; |
160 |
if (leftoverBytes > 0) // incomplete trailing block |
161 |
paddingBytes = blockSizeADPCM - leftoverBytes; |
162 |
var samplesPerBlock = 2 + (blockSizeADPCM - sound.ChannelCount * 7) * 8 / sound.ChannelCount / 4; |
163 |
|
164 |
Int32 sampleCount = sampleCount = wholeBlocks * samplesPerBlock + leftoverSamples; |
165 |
|
166 |
if (sound.IsIMA4) // IMA4 ADPCM format |
167 |
{ |
168 |
blockSizeADPCM = 34 * sound.ChannelCount; |
169 |
samplesPerBlock = 64; |
170 |
sampleCount = (sound.Data.Length / blockSizeADPCM) * samplesPerBlock; |
171 |
} |
172 |
|
173 |
if (!convert_to_PCM) |
174 |
{ |
175 |
if (sound.IsIMA4) |
176 |
{ |
177 |
throw new NotSupportedException("Transcoding from Mac/demo ADPCM to PC ADPCM not supported! Please use -extract:pcm"); |
178 |
} |
179 |
var format = (byte[])formatTemplate_ADPCM.Clone(); |
180 |
var fact = (byte[])factTemplate.Clone(); // needed for ADPCM (to specify the actual sample count) |
181 |
|
182 |
var averageRate = sound.SampleRate * blockSizeADPCM / samplesPerBlock; |
183 |
Array.Copy(BitConverter.GetBytes(sound.ChannelCount), 0, format, 2, 2); |
184 |
Array.Copy(BitConverter.GetBytes(sound.SampleRate), 0, format, 4, 4); |
185 |
Array.Copy(BitConverter.GetBytes(averageRate), 0, format, 8, 4); |
186 |
Array.Copy(BitConverter.GetBytes(blockSizeADPCM), 0, format, 12, 2); |
187 |
Array.Copy(BitConverter.GetBytes(samplesPerBlock), 0, format, 18, 2); |
188 |
|
189 |
Array.Copy(BitConverter.GetBytes(sampleCount), 0, fact, 0, 4); |
190 |
|
191 |
writer.Write(fcc_RIFF); |
192 |
writer.Write(8 + format.Length + 8 + fact.Length + 8 + sound.Data.Length + paddingBytes); |
193 |
writer.Write(fcc_WAVE); |
194 |
|
195 |
// |
196 |
// write format chunk |
197 |
// |
198 |
writer.Write(fcc_fmt); |
199 |
writer.Write(format.Length); |
200 |
writer.Write(format); |
201 |
|
202 |
// |
203 |
// write fact chunk |
204 |
// |
205 |
writer.Write(fcc_fact); |
206 |
writer.Write(fact.Length); |
207 |
writer.Write(fact); |
208 |
|
209 |
// |
210 |
// write data chunk |
211 |
// |
212 |
writer.Write(fcc_data); |
213 |
writer.Write(sound.Data.Length + paddingBytes); |
214 |
writer.Write(sound.Data); |
215 |
|
216 |
Byte c = 0; |
217 |
for (int i = 0; i < paddingBytes; i++) |
218 |
writer.Write(c); |
219 |
} |
220 |
else |
221 |
{ |
222 |
var format = (byte[])formatTemplate_PCM.Clone(); |
223 |
|
224 |
var blockSizePCM = 2 * sound.ChannelCount; // 16-bit samples or sample pairs |
225 |
samplesPerBlock = 2; |
226 |
var averageRate = sound.SampleRate * blockSizePCM / samplesPerBlock; |
227 |
Array.Copy(BitConverter.GetBytes(sound.ChannelCount), 0, format, 2, 2); |
228 |
Array.Copy(BitConverter.GetBytes(sound.SampleRate), 0, format, 4, 4); |
229 |
Array.Copy(BitConverter.GetBytes(averageRate), 0, format, 8, 4); |
230 |
Array.Copy(BitConverter.GetBytes(blockSizePCM), 0, format, 12, 2); |
231 |
|
232 |
int dataSize = blockSizePCM * sampleCount; |
233 |
|
234 |
writer.Write(fcc_RIFF); |
235 |
writer.Write(8 + format.Length + 8 + dataSize); |
236 |
writer.Write(fcc_WAVE); |
237 |
|
238 |
// |
239 |
// write format chunk |
240 |
// |
241 |
|
242 |
writer.Write(fcc_fmt); |
243 |
writer.Write(format.Length); |
244 |
writer.Write(format); |
245 |
|
246 |
// |
247 |
// write data chunk |
248 |
// |
249 |
var samplesL = new Int16[sampleCount]; |
250 |
var samplesR = new Int16[sampleCount]; |
251 |
if (sound.IsIMA4) // decode IMA4 into linear signed 16-bit PCM |
252 |
{ |
253 |
int pos = 0; |
254 |
|
255 |
int iSampleL = 0; |
256 |
int predictorL = 0; |
257 |
int stepIndexL = 0; |
258 |
int iSampleR = 0; |
259 |
int predictorR = 0; |
260 |
int stepIndexR = 0; |
261 |
|
262 |
int nBlocks = sound.Data.Length / blockSizeADPCM; |
263 |
for (int block = 0; block < nBlocks; block++) |
264 |
{ |
265 |
byte headerHiL = sound.Data[pos++]; |
266 |
byte headerLoL = sound.Data[pos++]; |
267 |
if (block == 0) // non-standard decoding: predictor initialization ignored after start |
268 |
{ |
269 |
predictorL = ((((headerHiL << 1) | (headerLoL >> 7))) << 7); |
270 |
if (predictorL > 32767) predictorL -= 65536; |
271 |
} |
272 |
stepIndexL = headerLoL & 0x7f; |
273 |
for (int b = 0; b < 32; b++) |
274 |
{ |
275 |
Byte nibblesL = sound.Data[pos++]; |
276 |
Byte nibbleHiL = (Byte)(nibblesL >> 4); |
277 |
Byte nibbleLoL = (Byte)(nibblesL & 0xF); |
278 |
|
279 |
samplesL[iSampleL++] = NibbletoSampleIMA4(ref predictorL, ref stepIndexL, nibbleLoL); |
280 |
samplesL[iSampleL++] = NibbletoSampleIMA4(ref predictorL, ref stepIndexL, nibbleHiL); |
281 |
} |
282 |
|
283 |
if (sound.ChannelCount == 2) |
284 |
{ |
285 |
byte headerHiR = sound.Data[pos++]; |
286 |
byte headerLoR = sound.Data[pos++]; |
287 |
if (block == 0) // non-standard decoding: predictor initialization ignored after start |
288 |
{ |
289 |
predictorR = ((((headerHiR << 1) | (headerLoR >> 7))) << 7); |
290 |
if (predictorR > 32767) predictorR -= 65536; |
291 |
} |
292 |
stepIndexR = headerLoR & 0x7f; |
293 |
|
294 |
for (int b = 0; b < 32; b++) |
295 |
{ |
296 |
Byte nibblesR = sound.Data[pos++]; |
297 |
Byte nibbleHiR = (Byte)(nibblesR >> 4); |
298 |
Byte nibbleLoR = (Byte)(nibblesR & 0xF); |
299 |
|
300 |
samplesR[iSampleR++] = NibbletoSampleIMA4(ref predictorR, ref stepIndexR, nibbleLoR); |
301 |
samplesR[iSampleR++] = NibbletoSampleIMA4(ref predictorR, ref stepIndexR, nibbleHiR); |
302 |
} |
303 |
} |
304 |
} |
305 |
} |
306 |
else // decode MSADPCM into linear signed 16-bit PCM |
307 |
{ |
308 |
int pos = 0; |
309 |
Byte pred_indexL = 0, pred_indexR = 0; |
310 |
UInt16 deltaL = 0, deltaR = 0; |
311 |
int iSampleL = 0; |
312 |
int iSampleR = 0; |
313 |
Int16 sample1L = 0, sample2L = 0; |
314 |
Int16 sample1R = 0, sample2R = 0; |
315 |
|
316 |
while (pos < sound.Data.Length) |
317 |
{ |
318 |
if ((pos % blockSizeADPCM) == 0) // read block header |
319 |
{ |
320 |
pred_indexL = sound.Data[pos++]; |
321 |
if (sound.ChannelCount == 2) |
322 |
pred_indexR = sound.Data[pos++]; |
323 |
Byte deltaLo = sound.Data[pos++]; |
324 |
Byte deltaHi = sound.Data[pos++]; |
325 |
deltaL = (UInt16)(deltaLo + 256 * deltaHi); |
326 |
if (sound.ChannelCount == 2) |
327 |
{ |
328 |
deltaLo = sound.Data[pos++]; |
329 |
deltaHi = sound.Data[pos++]; |
330 |
deltaR = (UInt16)(deltaLo + 256 * deltaHi); |
331 |
} |
332 |
Byte sampleLo = sound.Data[pos++]; |
333 |
Byte sampleHi = sound.Data[pos++]; |
334 |
UInt16 usample = (UInt16)(sampleLo + 256 * sampleHi); |
335 |
sample1L = (Int16)((usample < 32767) ? usample : (usample - 65536)); |
336 |
if (sound.ChannelCount == 2) |
337 |
{ |
338 |
sampleLo = sound.Data[pos++]; |
339 |
sampleHi = sound.Data[pos++]; |
340 |
usample = (UInt16)(sampleLo + 256 * sampleHi); |
341 |
sample1R = (Int16)((usample < 32767) ? usample : (usample - 65536)); |
342 |
} |
343 |
sampleLo = sound.Data[pos++]; |
344 |
sampleHi = sound.Data[pos++]; |
345 |
usample = (UInt16)(sampleLo + 256 * sampleHi); |
346 |
sample2L = (Int16)((usample < 32767) ? usample : (usample - 65536)); |
347 |
if (sound.ChannelCount == 2) |
348 |
{ |
349 |
sampleLo = sound.Data[pos++]; |
350 |
sampleHi = sound.Data[pos++]; |
351 |
usample = (UInt16)(sampleLo + 256 * sampleHi); |
352 |
sample2R = (Int16)((usample < 32767) ? usample : (usample - 65536)); |
353 |
} |
354 |
samplesL[iSampleL++] = sample2L; |
355 |
samplesL[iSampleL++] = sample1L; |
356 |
if (sound.ChannelCount == 2) |
357 |
{ |
358 |
samplesR[iSampleR++] = sample2R; |
359 |
samplesR[iSampleR++] = sample1R; |
360 |
} |
361 |
} |
362 |
// read pair of nibbles |
363 |
Byte nibbles = sound.Data[pos++]; |
364 |
Byte nibbleHi = (Byte)(nibbles >> 4); |
365 |
Byte nibbleLo = (Byte)(nibbles & 0xF); |
366 |
samplesL[iSampleL++] = NibbletoSampleMSADPCM(ref sample1L, ref sample2L, ref deltaL, pred_indexL, nibbleHi); |
367 |
if (sound.ChannelCount == 2) |
368 |
samplesR[iSampleR++] = NibbletoSampleMSADPCM(ref sample1R, ref sample2R, ref deltaR, pred_indexR, nibbleLo); |
369 |
else |
370 |
samplesL[iSampleL++] = NibbletoSampleMSADPCM(ref sample1L, ref sample2L, ref deltaL, pred_indexL, nibbleLo); |
371 |
} |
372 |
} |
373 |
writer.Write(fcc_data); |
374 |
writer.Write(dataSize); |
375 |
for (int smp = 0; smp < sampleCount; smp++) |
376 |
{ |
377 |
writer.Write(samplesL[smp]); |
378 |
if(sound.ChannelCount == 2) |
379 |
writer.Write(samplesR[smp]); |
380 |
} |
381 |
} |
382 |
} |
383 |
} |
384 |
} |
385 |
} |