1 |
using System; |
2 |
using System.Collections.Generic; |
3 |
|
4 |
namespace Oni.Motoko |
5 |
{ |
6 |
internal class Stripify |
7 |
{ |
8 |
private const int BeginStrip = int.MinValue; |
9 |
private int[] tlist; |
10 |
private int[] adjacency; |
11 |
private int[] degree; |
12 |
private List<int> strips; |
13 |
private bool[] used; |
14 |
|
15 |
public static int[] FromTriangleList(int[] triangleList) |
16 |
{ |
17 |
var triStrips = new Stripify(triangleList); |
18 |
return triStrips.Run(); |
19 |
} |
20 |
|
21 |
public static int[] ToTriangleList(int[] triangleStrips) |
22 |
{ |
23 |
int triangleCount = 0; |
24 |
|
25 |
for (int i = 0; i < triangleStrips.Length; i++) |
26 |
{ |
27 |
triangleCount++; |
28 |
|
29 |
if (triangleStrips[i] < 0) |
30 |
triangleCount -= 2; |
31 |
} |
32 |
|
33 |
var triangles = new int[triangleCount * 3]; |
34 |
int pos = 0; |
35 |
var face = new int[3]; |
36 |
int order = 0; |
37 |
|
38 |
for (int i = 0; i < triangleStrips.Length; i++) |
39 |
{ |
40 |
if (triangleStrips[i] < 0) |
41 |
{ |
42 |
face[0] = triangleStrips[i] & int.MaxValue; |
43 |
i++; |
44 |
face[1] = triangleStrips[i]; |
45 |
i++; |
46 |
order = 0; |
47 |
} |
48 |
else |
49 |
{ |
50 |
face[order] = face[2]; |
51 |
order = (order + 1) % 2; |
52 |
} |
53 |
|
54 |
face[2] = triangleStrips[i]; |
55 |
|
56 |
Array.Copy(face, 0, triangles, pos, 3); |
57 |
pos += 3; |
58 |
} |
59 |
|
60 |
return triangles; |
61 |
} |
62 |
|
63 |
private Stripify(int[] triangleList) |
64 |
{ |
65 |
tlist = triangleList; |
66 |
} |
67 |
|
68 |
private int[] Run() |
69 |
{ |
70 |
strips = new List<int>(); |
71 |
|
72 |
GenerateAdjacency(); |
73 |
|
74 |
while (GenerateStrip()) |
75 |
; |
76 |
|
77 |
// |
78 |
// Generate 1 triangle long strips for all triangles that were not included |
79 |
// in triangle strips |
80 |
// |
81 |
|
82 |
for (int i = 0; i < degree.Length; i++) |
83 |
{ |
84 |
if (!used[i]) |
85 |
{ |
86 |
int j = i * 3; |
87 |
|
88 |
strips.Add(tlist[j + 0] | BeginStrip); |
89 |
strips.Add(tlist[j + 1]); |
90 |
strips.Add(tlist[j + 2]); |
91 |
|
92 |
used[i] = true; |
93 |
} |
94 |
} |
95 |
|
96 |
return strips.ToArray(); |
97 |
} |
98 |
|
99 |
private bool GenerateStrip() |
100 |
{ |
101 |
int current = -1; |
102 |
|
103 |
int minDegree = 4; |
104 |
int minAdjacentDegree = 4; |
105 |
|
106 |
// |
107 |
// Find a triangle to start with. The triangle with the lowest degree |
108 |
// is picked as a start triangle. If multiple triangles have the same |
109 |
// degree then the adjacent triangles are checked for lowest degree. |
110 |
// |
111 |
|
112 |
for (int t = 0; t < degree.Length; t++) |
113 |
{ |
114 |
if (used[t] || degree[t] == 0) |
115 |
continue; |
116 |
|
117 |
if (degree[t] < minDegree) |
118 |
{ |
119 |
minDegree = degree[t]; |
120 |
minAdjacentDegree = 4; |
121 |
current = t; |
122 |
} |
123 |
else if (degree[t] == minDegree) |
124 |
{ |
125 |
// |
126 |
// We have 2 candidates for a start triangle with the same degree. |
127 |
// Check their neighbours for lowest degree to decide which candidate to use. |
128 |
// |
129 |
|
130 |
for (int k = 0; k < 3; k++) |
131 |
{ |
132 |
int a = adjacency[t * 3 + k]; |
133 |
|
134 |
if (a == -1 || used[a] || degree[a] == 0) |
135 |
continue; |
136 |
|
137 |
if (degree[a] < minAdjacentDegree) |
138 |
{ |
139 |
minAdjacentDegree = degree[a]; |
140 |
current = t; |
141 |
} |
142 |
} |
143 |
} |
144 |
} |
145 |
|
146 |
if (current == -1) |
147 |
{ |
148 |
// |
149 |
// A start triangle cannot be found. Either there are no more unused triangles left |
150 |
// or all remaining triangles have degree = 0. |
151 |
// |
152 |
|
153 |
return false; |
154 |
} |
155 |
|
156 |
UseTriangle(current); |
157 |
|
158 |
// |
159 |
// Find a triangle adjacent to the start triangle so we can decide |
160 |
// on a vertex order for the start triangle. If there are multiple |
161 |
// adjacent triangles the one with lowest degree is used. |
162 |
// |
163 |
|
164 |
int next = -1; |
165 |
int edge = 0; |
166 |
|
167 |
minDegree = 4; |
168 |
|
169 |
for (int e = 0; e < 3; e++) |
170 |
{ |
171 |
int a = adjacency[current * 3 + e]; |
172 |
|
173 |
if (a == -1 || used[a]) |
174 |
continue; |
175 |
|
176 |
// |
177 |
// NOTE: Don't check for degree = 0. The previous UseTriangle(current) can make |
178 |
// adjacent triangles have a 0 degree. It works because all we are interested in |
179 |
// is which adjacent triangle has the lowest degree. |
180 |
// |
181 |
|
182 |
if (degree[a] < minDegree) |
183 |
{ |
184 |
minDegree = degree[a]; |
185 |
next = a; |
186 |
edge = e; |
187 |
} |
188 |
} |
189 |
|
190 |
// |
191 |
// Begin a new triangle strip |
192 |
// |
193 |
|
194 |
var triangle = new int[3]; |
195 |
|
196 |
triangle[0] = tlist[(current * 3) + (edge + 2) % 3]; |
197 |
triangle[1] = tlist[(current * 3) + (edge + 0) % 3]; |
198 |
triangle[2] = tlist[(current * 3) + (edge + 1) % 3]; |
199 |
|
200 |
strips.Add(triangle[0] | BeginStrip); |
201 |
strips.Add(triangle[1]); |
202 |
strips.Add(triangle[2]); |
203 |
|
204 |
// |
205 |
// Continue the triangle strip as long as possible |
206 |
// |
207 |
|
208 |
int order = 0; |
209 |
|
210 |
while (next != -1) |
211 |
{ |
212 |
UseTriangle(next); |
213 |
|
214 |
triangle[0] = triangle[1 + order]; |
215 |
|
216 |
// |
217 |
// Search an edge in triangle "next" that matches the "exit" edge of triangle "current" |
218 |
// |
219 |
|
220 |
for (int v = 0; v < 3; v++) |
221 |
{ |
222 |
int t = next * 3; |
223 |
|
224 |
if (tlist[t + v] == triangle[(2 + order) % 3] && tlist[t + (v + 1) % 3] == triangle[order]) |
225 |
{ |
226 |
edge = (v + 2 - order) % 3; |
227 |
triangle[1 + order] = tlist[t + (v + 2) % 3]; |
228 |
break; |
229 |
} |
230 |
} |
231 |
|
232 |
strips.Add(triangle[1 + order]); |
233 |
|
234 |
// |
235 |
// Replace "current" with "next" and find a "next" triangle that is adjacent with "current" |
236 |
// |
237 |
|
238 |
current = next; |
239 |
next = adjacency[current * 3 + edge]; |
240 |
|
241 |
if (next == -1 || used[next]) |
242 |
break; |
243 |
|
244 |
UseTriangle(next); |
245 |
|
246 |
// |
247 |
// Alternate vertex ordering |
248 |
// |
249 |
|
250 |
order = (order + 1) % 2; |
251 |
} |
252 |
|
253 |
return true; |
254 |
} |
255 |
|
256 |
private void UseTriangle(int t) |
257 |
{ |
258 |
degree[t] = 0; |
259 |
used[t] = true; |
260 |
|
261 |
// |
262 |
// Decrease the degree of all adjacent triangles by 1. |
263 |
// |
264 |
|
265 |
for (int e = 0; e < 3; e++) |
266 |
{ |
267 |
int a = adjacency[t * 3 + e]; |
268 |
|
269 |
if (a != -1 && degree[a] > 0) |
270 |
degree[a]--; |
271 |
} |
272 |
} |
273 |
|
274 |
#region private struct Edge |
275 |
|
276 |
private struct Edge : IEquatable<Edge> |
277 |
{ |
278 |
public readonly int V1; |
279 |
public readonly int V2; |
280 |
|
281 |
public Edge(int V1, int V2) |
282 |
{ |
283 |
this.V1 = V1; |
284 |
this.V2 = V2; |
285 |
} |
286 |
|
287 |
public static bool operator ==(Edge e1, Edge e2) => e1.V1 == e2.V1 && e1.V2 == e2.V2; |
288 |
public static bool operator !=(Edge e1, Edge e2) => e1.V1 != e2.V1 || e1.V2 != e2.V2; |
289 |
public bool Equals(Edge edge) => V1 == edge.V1 && V2 == edge.V2; |
290 |
public override bool Equals(object obj) => obj is Edge && Equals((Edge)obj); |
291 |
public override int GetHashCode() => V1 ^ V2; |
292 |
} |
293 |
|
294 |
#endregion |
295 |
|
296 |
private void GenerateAdjacency() |
297 |
{ |
298 |
adjacency = new int[tlist.Length]; |
299 |
degree = new int[tlist.Length / 3]; |
300 |
used = new bool[tlist.Length / 3]; |
301 |
|
302 |
for (int i = 0; i < adjacency.Length; i++) |
303 |
adjacency[i] = -1; |
304 |
|
305 |
// |
306 |
// Store all the edges in a dictionary for easier lookup |
307 |
// |
308 |
|
309 |
var edges = new Dictionary<Edge, int>(); |
310 |
|
311 |
for (int t = 0; t < tlist.Length; t += 3) |
312 |
{ |
313 |
for (int v = 0; v < 3; v++) |
314 |
{ |
315 |
var edge = new Edge(tlist[t + v], tlist[t + (v + 1) % 3]); |
316 |
|
317 |
edges[edge] = t / 3; |
318 |
} |
319 |
} |
320 |
|
321 |
// |
322 |
// Fill the adjacency array |
323 |
// |
324 |
|
325 |
for (int t = 0; t < tlist.Length; t += 3) |
326 |
{ |
327 |
for (int e = 0; e < 3; e++) |
328 |
{ |
329 |
// |
330 |
// We already have an adjacent triangle for this edge. |
331 |
// This means that there are 3 or more triangles that have a |
332 |
// common edge but this is not very common and we'll just |
333 |
// ignore it. |
334 |
// |
335 |
|
336 |
if (adjacency[t + e] != -1) |
337 |
continue; |
338 |
|
339 |
// |
340 |
// Notice that the edge must be reversed compared to the |
341 |
// order they were stored in the dictionary to preserve |
342 |
// trinangle vertex ordering. |
343 |
// |
344 |
|
345 |
var edge = new Edge(tlist[t + (e + 1) % 3], tlist[t + e]); |
346 |
|
347 |
int k; |
348 |
|
349 |
// |
350 |
// Note the k != t / 3 check to avoid making degenerate triangles |
351 |
// adjacent to themselfs. |
352 |
// |
353 |
|
354 |
if (edges.TryGetValue(edge, out k) && k != t / 3) |
355 |
{ |
356 |
adjacency[t + e] = k; |
357 |
degree[t / 3]++; |
358 |
} |
359 |
} |
360 |
} |
361 |
} |
362 |
} |
363 |
} |