| 1 |
using System; |
| 2 |
using System.Collections.Generic; |
| 3 |
|
| 4 |
namespace Oni.Motoko |
| 5 |
{ |
| 6 |
internal class Stripify |
| 7 |
{ |
| 8 |
private const int BeginStrip = int.MinValue; |
| 9 |
private int[] tlist; |
| 10 |
private int[] adjacency; |
| 11 |
private int[] degree; |
| 12 |
private List<int> strips; |
| 13 |
private bool[] used; |
| 14 |
|
| 15 |
public static int[] FromTriangleList(int[] triangleList) |
| 16 |
{ |
| 17 |
var triStrips = new Stripify(triangleList); |
| 18 |
return triStrips.Run(); |
| 19 |
} |
| 20 |
|
| 21 |
public static int[] ToTriangleList(int[] triangleStrips) |
| 22 |
{ |
| 23 |
int triangleCount = 0; |
| 24 |
|
| 25 |
for (int i = 0; i < triangleStrips.Length; i++) |
| 26 |
{ |
| 27 |
triangleCount++; |
| 28 |
|
| 29 |
if (triangleStrips[i] < 0) |
| 30 |
triangleCount -= 2; |
| 31 |
} |
| 32 |
|
| 33 |
var triangles = new int[triangleCount * 3]; |
| 34 |
int pos = 0; |
| 35 |
var face = new int[3]; |
| 36 |
int order = 0; |
| 37 |
|
| 38 |
for (int i = 0; i < triangleStrips.Length; i++) |
| 39 |
{ |
| 40 |
if (triangleStrips[i] < 0) |
| 41 |
{ |
| 42 |
face[0] = triangleStrips[i] & int.MaxValue; |
| 43 |
i++; |
| 44 |
face[1] = triangleStrips[i]; |
| 45 |
i++; |
| 46 |
order = 0; |
| 47 |
} |
| 48 |
else |
| 49 |
{ |
| 50 |
face[order] = face[2]; |
| 51 |
order = (order + 1) % 2; |
| 52 |
} |
| 53 |
|
| 54 |
face[2] = triangleStrips[i]; |
| 55 |
|
| 56 |
Array.Copy(face, 0, triangles, pos, 3); |
| 57 |
pos += 3; |
| 58 |
} |
| 59 |
|
| 60 |
return triangles; |
| 61 |
} |
| 62 |
|
| 63 |
private Stripify(int[] triangleList) |
| 64 |
{ |
| 65 |
tlist = triangleList; |
| 66 |
} |
| 67 |
|
| 68 |
private int[] Run() |
| 69 |
{ |
| 70 |
strips = new List<int>(); |
| 71 |
|
| 72 |
GenerateAdjacency(); |
| 73 |
|
| 74 |
while (GenerateStrip()) |
| 75 |
; |
| 76 |
|
| 77 |
// |
| 78 |
// Generate 1 triangle long strips for all triangles that were not included |
| 79 |
// in triangle strips |
| 80 |
// |
| 81 |
|
| 82 |
for (int i = 0; i < degree.Length; i++) |
| 83 |
{ |
| 84 |
if (!used[i]) |
| 85 |
{ |
| 86 |
int j = i * 3; |
| 87 |
|
| 88 |
strips.Add(tlist[j + 0] | BeginStrip); |
| 89 |
strips.Add(tlist[j + 1]); |
| 90 |
strips.Add(tlist[j + 2]); |
| 91 |
|
| 92 |
used[i] = true; |
| 93 |
} |
| 94 |
} |
| 95 |
|
| 96 |
return strips.ToArray(); |
| 97 |
} |
| 98 |
|
| 99 |
private bool GenerateStrip() |
| 100 |
{ |
| 101 |
int current = -1; |
| 102 |
|
| 103 |
int minDegree = 4; |
| 104 |
int minAdjacentDegree = 4; |
| 105 |
|
| 106 |
// |
| 107 |
// Find a triangle to start with. The triangle with the lowest degree |
| 108 |
// is picked as a start triangle. If multiple triangles have the same |
| 109 |
// degree then the adjacent triangles are checked for lowest degree. |
| 110 |
// |
| 111 |
|
| 112 |
for (int t = 0; t < degree.Length; t++) |
| 113 |
{ |
| 114 |
if (used[t] || degree[t] == 0) |
| 115 |
continue; |
| 116 |
|
| 117 |
if (degree[t] < minDegree) |
| 118 |
{ |
| 119 |
minDegree = degree[t]; |
| 120 |
minAdjacentDegree = 4; |
| 121 |
current = t; |
| 122 |
} |
| 123 |
else if (degree[t] == minDegree) |
| 124 |
{ |
| 125 |
// |
| 126 |
// We have 2 candidates for a start triangle with the same degree. |
| 127 |
// Check their neighbours for lowest degree to decide which candidate to use. |
| 128 |
// |
| 129 |
|
| 130 |
for (int k = 0; k < 3; k++) |
| 131 |
{ |
| 132 |
int a = adjacency[t * 3 + k]; |
| 133 |
|
| 134 |
if (a == -1 || used[a] || degree[a] == 0) |
| 135 |
continue; |
| 136 |
|
| 137 |
if (degree[a] < minAdjacentDegree) |
| 138 |
{ |
| 139 |
minAdjacentDegree = degree[a]; |
| 140 |
current = t; |
| 141 |
} |
| 142 |
} |
| 143 |
} |
| 144 |
} |
| 145 |
|
| 146 |
if (current == -1) |
| 147 |
{ |
| 148 |
// |
| 149 |
// A start triangle cannot be found. Either there are no more unused triangles left |
| 150 |
// or all remaining triangles have degree = 0. |
| 151 |
// |
| 152 |
|
| 153 |
return false; |
| 154 |
} |
| 155 |
|
| 156 |
UseTriangle(current); |
| 157 |
|
| 158 |
// |
| 159 |
// Find a triangle adjacent to the start triangle so we can decide |
| 160 |
// on a vertex order for the start triangle. If there are multiple |
| 161 |
// adjacent triangles the one with lowest degree is used. |
| 162 |
// |
| 163 |
|
| 164 |
int next = -1; |
| 165 |
int edge = 0; |
| 166 |
|
| 167 |
minDegree = 4; |
| 168 |
|
| 169 |
for (int e = 0; e < 3; e++) |
| 170 |
{ |
| 171 |
int a = adjacency[current * 3 + e]; |
| 172 |
|
| 173 |
if (a == -1 || used[a]) |
| 174 |
continue; |
| 175 |
|
| 176 |
// |
| 177 |
// NOTE: Don't check for degree = 0. The previous UseTriangle(current) can make |
| 178 |
// adjacent triangles have a 0 degree. It works because all we are interested in |
| 179 |
// is which adjacent triangle has the lowest degree. |
| 180 |
// |
| 181 |
|
| 182 |
if (degree[a] < minDegree) |
| 183 |
{ |
| 184 |
minDegree = degree[a]; |
| 185 |
next = a; |
| 186 |
edge = e; |
| 187 |
} |
| 188 |
} |
| 189 |
|
| 190 |
// |
| 191 |
// Begin a new triangle strip |
| 192 |
// |
| 193 |
|
| 194 |
var triangle = new int[3]; |
| 195 |
|
| 196 |
triangle[0] = tlist[(current * 3) + (edge + 2) % 3]; |
| 197 |
triangle[1] = tlist[(current * 3) + (edge + 0) % 3]; |
| 198 |
triangle[2] = tlist[(current * 3) + (edge + 1) % 3]; |
| 199 |
|
| 200 |
strips.Add(triangle[0] | BeginStrip); |
| 201 |
strips.Add(triangle[1]); |
| 202 |
strips.Add(triangle[2]); |
| 203 |
|
| 204 |
// |
| 205 |
// Continue the triangle strip as long as possible |
| 206 |
// |
| 207 |
|
| 208 |
int order = 0; |
| 209 |
|
| 210 |
while (next != -1) |
| 211 |
{ |
| 212 |
UseTriangle(next); |
| 213 |
|
| 214 |
triangle[0] = triangle[1 + order]; |
| 215 |
|
| 216 |
// |
| 217 |
// Search an edge in triangle "next" that matches the "exit" edge of triangle "current" |
| 218 |
// |
| 219 |
|
| 220 |
for (int v = 0; v < 3; v++) |
| 221 |
{ |
| 222 |
int t = next * 3; |
| 223 |
|
| 224 |
if (tlist[t + v] == triangle[(2 + order) % 3] && tlist[t + (v + 1) % 3] == triangle[order]) |
| 225 |
{ |
| 226 |
edge = (v + 2 - order) % 3; |
| 227 |
triangle[1 + order] = tlist[t + (v + 2) % 3]; |
| 228 |
break; |
| 229 |
} |
| 230 |
} |
| 231 |
|
| 232 |
strips.Add(triangle[1 + order]); |
| 233 |
|
| 234 |
// |
| 235 |
// Replace "current" with "next" and find a "next" triangle that is adjacent with "current" |
| 236 |
// |
| 237 |
|
| 238 |
current = next; |
| 239 |
next = adjacency[current * 3 + edge]; |
| 240 |
|
| 241 |
if (next == -1 || used[next]) |
| 242 |
break; |
| 243 |
|
| 244 |
UseTriangle(next); |
| 245 |
|
| 246 |
// |
| 247 |
// Alternate vertex ordering |
| 248 |
// |
| 249 |
|
| 250 |
order = (order + 1) % 2; |
| 251 |
} |
| 252 |
|
| 253 |
return true; |
| 254 |
} |
| 255 |
|
| 256 |
private void UseTriangle(int t) |
| 257 |
{ |
| 258 |
degree[t] = 0; |
| 259 |
used[t] = true; |
| 260 |
|
| 261 |
// |
| 262 |
// Decrease the degree of all adjacent triangles by 1. |
| 263 |
// |
| 264 |
|
| 265 |
for (int e = 0; e < 3; e++) |
| 266 |
{ |
| 267 |
int a = adjacency[t * 3 + e]; |
| 268 |
|
| 269 |
if (a != -1 && degree[a] > 0) |
| 270 |
degree[a]--; |
| 271 |
} |
| 272 |
} |
| 273 |
|
| 274 |
#region private struct Edge |
| 275 |
|
| 276 |
private struct Edge : IEquatable<Edge> |
| 277 |
{ |
| 278 |
public readonly int V1; |
| 279 |
public readonly int V2; |
| 280 |
|
| 281 |
public Edge(int V1, int V2) |
| 282 |
{ |
| 283 |
this.V1 = V1; |
| 284 |
this.V2 = V2; |
| 285 |
} |
| 286 |
|
| 287 |
public static bool operator ==(Edge e1, Edge e2) => e1.V1 == e2.V1 && e1.V2 == e2.V2; |
| 288 |
public static bool operator !=(Edge e1, Edge e2) => e1.V1 != e2.V1 || e1.V2 != e2.V2; |
| 289 |
public bool Equals(Edge edge) => V1 == edge.V1 && V2 == edge.V2; |
| 290 |
public override bool Equals(object obj) => obj is Edge && Equals((Edge)obj); |
| 291 |
public override int GetHashCode() => V1 ^ V2; |
| 292 |
} |
| 293 |
|
| 294 |
#endregion |
| 295 |
|
| 296 |
private void GenerateAdjacency() |
| 297 |
{ |
| 298 |
adjacency = new int[tlist.Length]; |
| 299 |
degree = new int[tlist.Length / 3]; |
| 300 |
used = new bool[tlist.Length / 3]; |
| 301 |
|
| 302 |
for (int i = 0; i < adjacency.Length; i++) |
| 303 |
adjacency[i] = -1; |
| 304 |
|
| 305 |
// |
| 306 |
// Store all the edges in a dictionary for easier lookup |
| 307 |
// |
| 308 |
|
| 309 |
var edges = new Dictionary<Edge, int>(); |
| 310 |
|
| 311 |
for (int t = 0; t < tlist.Length; t += 3) |
| 312 |
{ |
| 313 |
for (int v = 0; v < 3; v++) |
| 314 |
{ |
| 315 |
var edge = new Edge(tlist[t + v], tlist[t + (v + 1) % 3]); |
| 316 |
|
| 317 |
edges[edge] = t / 3; |
| 318 |
} |
| 319 |
} |
| 320 |
|
| 321 |
// |
| 322 |
// Fill the adjacency array |
| 323 |
// |
| 324 |
|
| 325 |
for (int t = 0; t < tlist.Length; t += 3) |
| 326 |
{ |
| 327 |
for (int e = 0; e < 3; e++) |
| 328 |
{ |
| 329 |
// |
| 330 |
// We already have an adjacent triangle for this edge. |
| 331 |
// This means that there are 3 or more triangles that have a |
| 332 |
// common edge but this is not very common and we'll just |
| 333 |
// ignore it. |
| 334 |
// |
| 335 |
|
| 336 |
if (adjacency[t + e] != -1) |
| 337 |
continue; |
| 338 |
|
| 339 |
// |
| 340 |
// Notice that the edge must be reversed compared to the |
| 341 |
// order they were stored in the dictionary to preserve |
| 342 |
// trinangle vertex ordering. |
| 343 |
// |
| 344 |
|
| 345 |
var edge = new Edge(tlist[t + (e + 1) % 3], tlist[t + e]); |
| 346 |
|
| 347 |
int k; |
| 348 |
|
| 349 |
// |
| 350 |
// Note the k != t / 3 check to avoid making degenerate triangles |
| 351 |
// adjacent to themselfs. |
| 352 |
// |
| 353 |
|
| 354 |
if (edges.TryGetValue(edge, out k) && k != t / 3) |
| 355 |
{ |
| 356 |
adjacency[t + e] = k; |
| 357 |
degree[t / 3]++; |
| 358 |
} |
| 359 |
} |
| 360 |
} |
| 361 |
} |
| 362 |
} |
| 363 |
} |