1 |
using System; |
2 |
|
3 |
namespace Oni |
4 |
{ |
5 |
internal struct Vector3 : IEquatable<Vector3> |
6 |
{ |
7 |
public float X; |
8 |
public float Y; |
9 |
public float Z; |
10 |
|
11 |
public Vector3(float all) |
12 |
{ |
13 |
X = all; |
14 |
Y = all; |
15 |
Z = all; |
16 |
} |
17 |
|
18 |
public Vector3(float x, float y, float z) |
19 |
{ |
20 |
X = x; |
21 |
Y = y; |
22 |
Z = z; |
23 |
} |
24 |
|
25 |
public Vector3(float[] values, int index = 0) |
26 |
{ |
27 |
int i = index * 3; |
28 |
|
29 |
X = values[i + 0]; |
30 |
Y = values[i + 1]; |
31 |
Z = values[i + 2]; |
32 |
} |
33 |
|
34 |
public void CopyTo(float[] values, int index = 0) |
35 |
{ |
36 |
values[index + 0] = X; |
37 |
values[index + 1] = Y; |
38 |
values[index + 2] = Z; |
39 |
} |
40 |
|
41 |
public Vector2 XZ => new Vector2(X, Z); |
42 |
|
43 |
public static Vector3 operator +(Vector3 v1, Vector3 v2) |
44 |
{ |
45 |
v1.X += v2.X; |
46 |
v1.Y += v2.Y; |
47 |
v1.Z += v2.Z; |
48 |
|
49 |
return v1; |
50 |
} |
51 |
|
52 |
public static Vector3 operator -(Vector3 v1, Vector3 v2) |
53 |
{ |
54 |
v1.X -= v2.X; |
55 |
v1.Y -= v2.Y; |
56 |
v1.Z -= v2.Z; |
57 |
|
58 |
return v1; |
59 |
} |
60 |
|
61 |
public static Vector3 operator -(Vector3 v) |
62 |
{ |
63 |
v.X = -v.X; |
64 |
v.Y = -v.Y; |
65 |
v.Z = -v.Z; |
66 |
|
67 |
return v; |
68 |
} |
69 |
|
70 |
public static Vector3 operator *(Vector3 v, float s) |
71 |
{ |
72 |
v.X *= s; |
73 |
v.Y *= s; |
74 |
v.Z *= s; |
75 |
|
76 |
return v; |
77 |
} |
78 |
|
79 |
public static Vector3 operator *(float s, Vector3 v) |
80 |
{ |
81 |
v.X *= s; |
82 |
v.Y *= s; |
83 |
v.Z *= s; |
84 |
|
85 |
return v; |
86 |
} |
87 |
|
88 |
public static Vector3 operator *(Vector3 v1, Vector3 v2) => new Vector3 |
89 |
{ |
90 |
X = v1.X * v2.X, |
91 |
Y = v1.Y * v2.Y, |
92 |
Z = v1.Z * v2.Z, |
93 |
}; |
94 |
|
95 |
public static Vector3 operator /(Vector3 v, float s) => v * (1.0f / s); |
96 |
|
97 |
public static Vector3 operator /(Vector3 v1, Vector3 v2) => new Vector3 |
98 |
{ |
99 |
X = v1.X /= v2.X, |
100 |
Y = v1.Y /= v2.Y, |
101 |
Z = v1.Z /= v2.Z |
102 |
}; |
103 |
|
104 |
public static void Add(ref Vector3 v1, ref Vector3 v2, out Vector3 r) |
105 |
{ |
106 |
r.X = v1.X + v2.X; |
107 |
r.Y = v1.Y + v2.Y; |
108 |
r.Z = v1.Z + v2.Z; |
109 |
} |
110 |
|
111 |
public static void Substract(ref Vector3 v1, ref Vector3 v2, out Vector3 r) |
112 |
{ |
113 |
r.X = v1.X - v2.X; |
114 |
r.Y = v1.Y - v2.Y; |
115 |
r.Z = v1.Z - v2.Z; |
116 |
} |
117 |
|
118 |
public static void Multiply(ref Vector3 v, float f, out Vector3 r) |
119 |
{ |
120 |
r.X = v.X * f; |
121 |
r.Y = v.Y * f; |
122 |
r.Z = v.Z * f; |
123 |
} |
124 |
|
125 |
public void Scale(float scale) |
126 |
{ |
127 |
X *= scale; |
128 |
Y *= scale; |
129 |
Z *= scale; |
130 |
} |
131 |
|
132 |
public static Vector3 Clamp(Vector3 v, Vector3 min, Vector3 max) |
133 |
{ |
134 |
Vector3 r; |
135 |
|
136 |
float x = v.X; |
137 |
x = (x > max.X) ? max.X : x; |
138 |
x = (x < min.X) ? min.X : x; |
139 |
|
140 |
float y = v.Y; |
141 |
y = (y > max.Y) ? max.Y : y; |
142 |
y = (y < min.Y) ? min.Y : y; |
143 |
|
144 |
float z = v.Z; |
145 |
z = (z > max.Z) ? max.Z : z; |
146 |
z = (z < min.Z) ? min.Z : z; |
147 |
|
148 |
r.X = x; |
149 |
r.Y = y; |
150 |
r.Z = z; |
151 |
|
152 |
return r; |
153 |
} |
154 |
|
155 |
public static Vector3 Cross(Vector3 v1, Vector3 v2) |
156 |
{ |
157 |
return new Vector3( |
158 |
v1.Y * v2.Z - v1.Z * v2.Y, |
159 |
v1.Z * v2.X - v1.X * v2.Z, |
160 |
v1.X * v2.Y - v1.Y * v2.X); |
161 |
} |
162 |
|
163 |
public static void Cross(ref Vector3 v1, ref Vector3 v2, out Vector3 r) |
164 |
{ |
165 |
r = new Vector3( |
166 |
v1.Y * v2.Z - v1.Z * v2.Y, |
167 |
v1.Z * v2.X - v1.X * v2.Z, |
168 |
v1.X * v2.Y - v1.Y * v2.X); |
169 |
} |
170 |
|
171 |
public static float Dot(Vector3 v1, Vector3 v2) |
172 |
{ |
173 |
return v1.X * v2.X + v1.Y * v2.Y + v1.Z * v2.Z; |
174 |
} |
175 |
|
176 |
public static float Dot(ref Vector3 v1, ref Vector3 v2) => v1.X * v2.X + v1.Y * v2.Y + v1.Z * v2.Z; |
177 |
|
178 |
public float Dot(ref Vector3 v) => X * v.X + Y * v.Y + Z * v.Z; |
179 |
|
180 |
public static Vector3 Transform(Vector3 v, Quaternion q) |
181 |
{ |
182 |
Quaternion vq = new Quaternion(v, 0.0f); |
183 |
q = q * vq * Quaternion.Conjugate(q); |
184 |
return new Vector3(q.X, q.Y, q.Z); |
185 |
} |
186 |
|
187 |
public static Vector3 Transform(Vector3 v, ref Matrix m) |
188 |
{ |
189 |
return new Vector3( |
190 |
v.X * m.M11 + v.Y * m.M21 + v.Z * m.M31 + m.M41, |
191 |
v.X * m.M12 + v.Y * m.M22 + v.Z * m.M32 + m.M42, |
192 |
v.X * m.M13 + v.Y * m.M23 + v.Z * m.M33 + m.M43); |
193 |
} |
194 |
|
195 |
public static void Transform(ref Vector3 v, ref Matrix m, out Vector3 r) |
196 |
{ |
197 |
r.X = v.X * m.M11 + v.Y * m.M21 + v.Z * m.M31 + m.M41; |
198 |
r.Y = v.X * m.M12 + v.Y * m.M22 + v.Z * m.M32 + m.M42; |
199 |
r.Z = v.X * m.M13 + v.Y * m.M23 + v.Z * m.M33 + m.M43; |
200 |
} |
201 |
|
202 |
public static Vector3 TransformNormal(Vector3 v, ref Matrix m) |
203 |
{ |
204 |
return new Vector3( |
205 |
v.X * m.M11 + v.Y * m.M21 + v.Z * m.M31, |
206 |
v.X * m.M12 + v.Y * m.M22 + v.Z * m.M32, |
207 |
v.X * m.M13 + v.Y * m.M23 + v.Z * m.M33); |
208 |
} |
209 |
|
210 |
public static void Transform(Vector3[] v, ref Matrix m, Vector3[] r) |
211 |
{ |
212 |
for (int i = 0; i < v.Length; i++) |
213 |
{ |
214 |
float x = v[i].X; |
215 |
float y = v[i].Y; |
216 |
float z = v[i].Z; |
217 |
|
218 |
r[i].X = x * m.M11 + y * m.M21 + z * m.M31 + m.M41; |
219 |
r[i].Y = x * m.M12 + y * m.M22 + z * m.M32 + m.M42; |
220 |
r[i].Z = x * m.M13 + y * m.M23 + z * m.M33 + m.M43; |
221 |
} |
222 |
} |
223 |
|
224 |
public static Vector3[] Transform(Vector3[] v, ref Matrix m) |
225 |
{ |
226 |
var r = new Vector3[v.Length]; |
227 |
Transform(v, ref m, r); |
228 |
return r; |
229 |
} |
230 |
|
231 |
public static void TransformNormal(Vector3[] v, ref Matrix m, Vector3[] r) |
232 |
{ |
233 |
for (int i = 0; i < v.Length; i++) |
234 |
{ |
235 |
float x = v[i].X; |
236 |
float y = v[i].Y; |
237 |
float z = v[i].Z; |
238 |
|
239 |
r[i].X = x * m.M11 + y * m.M21 + z * m.M31; |
240 |
r[i].Y = x * m.M12 + y * m.M22 + z * m.M32; |
241 |
r[i].Z = x * m.M13 + y * m.M23 + z * m.M33; |
242 |
} |
243 |
} |
244 |
|
245 |
public static Vector3[] TransformNormal(Vector3[] v, ref Matrix m) |
246 |
{ |
247 |
var r = new Vector3[v.Length]; |
248 |
TransformNormal(v, ref m, r); |
249 |
return r; |
250 |
} |
251 |
|
252 |
public static Vector3 Min(Vector3 v1, Vector3 v2) |
253 |
{ |
254 |
if (v2.X < v1.X) |
255 |
v1.X = v2.X; |
256 |
|
257 |
if (v2.Y < v1.Y) |
258 |
v1.Y = v2.Y; |
259 |
|
260 |
if (v2.Z < v1.Z) |
261 |
v1.Z = v2.Z; |
262 |
|
263 |
return v1; |
264 |
} |
265 |
|
266 |
public static void Min(ref Vector3 v1, ref Vector3 v2, out Vector3 r) |
267 |
{ |
268 |
r.X = (v1.X < v2.X) ? v1.X : v2.X; |
269 |
r.Y = (v1.Y < v2.Y) ? v1.Y : v2.Y; |
270 |
r.Z = (v1.Z < v2.Z) ? v1.Z : v2.Z; |
271 |
} |
272 |
|
273 |
public static Vector3 Max(Vector3 v1, Vector3 v2) |
274 |
{ |
275 |
if (v2.X > v1.X) |
276 |
v1.X = v2.X; |
277 |
|
278 |
if (v2.Y > v1.Y) |
279 |
v1.Y = v2.Y; |
280 |
|
281 |
if (v2.Z > v1.Z) |
282 |
v1.Z = v2.Z; |
283 |
|
284 |
return v1; |
285 |
} |
286 |
|
287 |
public static void Max(ref Vector3 v1, ref Vector3 v2, out Vector3 r) |
288 |
{ |
289 |
r.X = (v1.X > v2.X) ? v1.X : v2.X; |
290 |
r.Y = (v1.Y > v2.Y) ? v1.Y : v2.Y; |
291 |
r.Z = (v1.Z > v2.Z) ? v1.Z : v2.Z; |
292 |
} |
293 |
|
294 |
public static Vector3 Normalize(Vector3 v) => v * (1.0f / v.Length()); |
295 |
|
296 |
public void Normalize() |
297 |
{ |
298 |
float k = 1.0f / Length(); |
299 |
|
300 |
X *= k; |
301 |
Y *= k; |
302 |
Z *= k; |
303 |
} |
304 |
|
305 |
public float LengthSquared() => X * X + Y * Y + Z * Z; |
306 |
|
307 |
public float Length() => FMath.Sqrt(LengthSquared()); |
308 |
|
309 |
public static float Distance(Vector3 v1, Vector3 v2) => FMath.Sqrt((v2 - v1).LengthSquared()); |
310 |
|
311 |
public static float DistanceSquared(Vector3 v1, Vector3 v2) => (v2 - v1).LengthSquared(); |
312 |
|
313 |
public static Vector3 Lerp(Vector3 v1, Vector3 v2, float amount) => v1 + (v2 - v1) * amount; |
314 |
|
315 |
public static bool EqualsEps(Vector3 v1, Vector3 v2) |
316 |
{ |
317 |
Vector3 d = v2 - v1; |
318 |
|
319 |
float dx = Math.Abs(d.X); |
320 |
float dy = Math.Abs(d.Y); |
321 |
float dz = Math.Abs(d.Z); |
322 |
|
323 |
return (dx < 0.0001f && dy < 0.0001f && dz < 0.0001f); |
324 |
} |
325 |
|
326 |
public static bool operator ==(Vector3 v1, Vector3 v2) => v1.X == v2.X && v1.Y == v2.Y && v1.Z == v2.Z; |
327 |
public static bool operator !=(Vector3 v1, Vector3 v2) => v1.X != v2.X || v1.Y != v2.Y || v1.Z != v2.Z; |
328 |
|
329 |
public bool Equals(Vector3 other) => X == other.X && Y == other.Y && Z == other.Z; |
330 |
public override bool Equals(object obj) => obj is Vector3 && Equals((Vector3)obj); |
331 |
public override int GetHashCode() => X.GetHashCode() ^ Y.GetHashCode() ^ Z.GetHashCode(); |
332 |
|
333 |
public override string ToString() => $"{{{X} {Y} {Z}}}"; |
334 |
|
335 |
private static Vector3 zero = new Vector3(); |
336 |
private static Vector3 one = new Vector3(1.0f); |
337 |
private static Vector3 up = new Vector3(0.0f, 1.0f, 0.0f); |
338 |
private static Vector3 down = new Vector3(0.0f, -1.0f, 0.0f); |
339 |
private static Vector3 right = new Vector3(1.0f, 0.0f, 0.0f); |
340 |
private static Vector3 left = new Vector3(-1.0f, 0.0f, 0.0f); |
341 |
private static Vector3 backward = new Vector3(0.0f, 0.0f, 1.0f); |
342 |
private static Vector3 forward = new Vector3(0.0f, 0.0f, -1.0f); |
343 |
|
344 |
public static Vector3 Zero => zero; |
345 |
public static Vector3 One => one; |
346 |
public static Vector3 Up => up; |
347 |
public static Vector3 Down => down; |
348 |
public static Vector3 Left => left; |
349 |
public static Vector3 Right => right; |
350 |
public static Vector3 Backward => backward; |
351 |
public static Vector3 Forward => forward; |
352 |
public static Vector3 UnitX => right; |
353 |
public static Vector3 UnitY => up; |
354 |
public static Vector3 UnitZ => backward; |
355 |
|
356 |
public float this[int i] |
357 |
{ |
358 |
get |
359 |
{ |
360 |
if (i == 1) |
361 |
return Y; |
362 |
else if (i < 1) |
363 |
return X; |
364 |
else |
365 |
return Z; |
366 |
} |
367 |
} |
368 |
} |
369 |
} |