| 1 |
using System; |
| 2 |
|
| 3 |
namespace Oni |
| 4 |
{ |
| 5 |
internal struct Quaternion : IEquatable<Quaternion> |
| 6 |
{ |
| 7 |
public float X; |
| 8 |
public float Y; |
| 9 |
public float Z; |
| 10 |
public float W; |
| 11 |
|
| 12 |
public Quaternion(Vector3 xyz, float w) |
| 13 |
{ |
| 14 |
X = xyz.X; |
| 15 |
Y = xyz.Y; |
| 16 |
Z = xyz.Z; |
| 17 |
W = w; |
| 18 |
} |
| 19 |
|
| 20 |
public Quaternion(float x, float y, float z, float w) |
| 21 |
{ |
| 22 |
X = x; |
| 23 |
Y = y; |
| 24 |
Z = z; |
| 25 |
W = w; |
| 26 |
} |
| 27 |
|
| 28 |
public Quaternion(Vector4 xyzw) |
| 29 |
{ |
| 30 |
X = xyzw.X; |
| 31 |
Y = xyzw.Y; |
| 32 |
Z = xyzw.Z; |
| 33 |
W = xyzw.W; |
| 34 |
} |
| 35 |
|
| 36 |
private Vector3 XYZ => new Vector3(X, Y, Z); |
| 37 |
|
| 38 |
public static Quaternion CreateFromAxisAngle(Vector3 axis, float angle) |
| 39 |
{ |
| 40 |
float halfAngle = angle * 0.5f; |
| 41 |
float sin = FMath.Sin(halfAngle); |
| 42 |
float cos = FMath.Cos(halfAngle); |
| 43 |
|
| 44 |
return new Quaternion(axis * sin, cos); |
| 45 |
} |
| 46 |
|
| 47 |
public void ToAxisAngle(out Vector3 axis, out float angle) |
| 48 |
{ |
| 49 |
float halfAngle = FMath.Acos(W); |
| 50 |
float sin = FMath.Sqrt(1 - W * W); |
| 51 |
|
| 52 |
if (sin < 1e-5f) |
| 53 |
{ |
| 54 |
axis = XYZ; |
| 55 |
angle = 0.0f; |
| 56 |
} |
| 57 |
else |
| 58 |
{ |
| 59 |
axis = XYZ / sin; |
| 60 |
angle = halfAngle * 2.0f; |
| 61 |
} |
| 62 |
} |
| 63 |
|
| 64 |
public static Quaternion CreateFromEulerXYZ(float x, float y, float z) |
| 65 |
{ |
| 66 |
x = MathHelper.ToRadians(x); |
| 67 |
y = MathHelper.ToRadians(y); |
| 68 |
z = MathHelper.ToRadians(z); |
| 69 |
|
| 70 |
return CreateFromAxisAngle(Vector3.UnitX, x) |
| 71 |
* CreateFromAxisAngle(Vector3.UnitY, y) |
| 72 |
* CreateFromAxisAngle(Vector3.UnitZ, z); |
| 73 |
} |
| 74 |
|
| 75 |
public Vector3 ToEulerXYZ() |
| 76 |
{ |
| 77 |
Vector3 r; |
| 78 |
|
| 79 |
var p0 = -W; |
| 80 |
var p1 = X; |
| 81 |
var p2 = Y; |
| 82 |
var p3 = Z; |
| 83 |
var e = -1.0f; |
| 84 |
|
| 85 |
var s = 2.0f * (p0 * p2 + e * p1 * p3); |
| 86 |
|
| 87 |
if (s > 0.999f) |
| 88 |
{ |
| 89 |
r.X = MathHelper.ToDegrees(-2.0f * (float)Math.Atan2(p1, p0)); |
| 90 |
r.Y = -90.0f; |
| 91 |
r.Z = 0.0f; |
| 92 |
} |
| 93 |
else if (s < -0.999f) |
| 94 |
{ |
| 95 |
r.X = MathHelper.ToDegrees(2.0f * (float)Math.Atan2(p1, p0)); |
| 96 |
r.Y = 90.0f; |
| 97 |
r.Z = 0.0f; |
| 98 |
} |
| 99 |
else |
| 100 |
{ |
| 101 |
r.X = -MathHelper.ToDegrees((float)Math.Atan2(2.0f * (p0 * p1 - e * p2 * p3), 1.0f - 2.0f * (p1 * p1 + p2 * p2))); |
| 102 |
r.Y = -MathHelper.ToDegrees((float)Math.Asin(s)); |
| 103 |
r.Z = -MathHelper.ToDegrees((float)Math.Atan2(2.0f * (p0 * p3 - e * p1 * p2), 1.0f - 2.0f * (p2 * p2 + p3 * p3))); |
| 104 |
} |
| 105 |
|
| 106 |
return r; |
| 107 |
} |
| 108 |
|
| 109 |
public static Quaternion CreateFromYawPitchRoll(float yaw, float pitch, float roll) |
| 110 |
{ |
| 111 |
float halfRoll = roll * 0.5f; |
| 112 |
float sinRoll = FMath.Sin(halfRoll); |
| 113 |
float cosRoll = FMath.Cos(halfRoll); |
| 114 |
|
| 115 |
float halfPitch = pitch * 0.5f; |
| 116 |
float sinPitch = FMath.Sin(halfPitch); |
| 117 |
float cosPitch = FMath.Cos(halfPitch); |
| 118 |
|
| 119 |
float halfYaw = yaw * 0.5f; |
| 120 |
float sinYaw = FMath.Sin(halfYaw); |
| 121 |
float cosYaw = FMath.Cos(halfYaw); |
| 122 |
|
| 123 |
Quaternion r; |
| 124 |
|
| 125 |
r.X = (cosYaw * sinPitch * cosRoll) + (sinYaw * cosPitch * sinRoll); |
| 126 |
r.Y = (sinYaw * cosPitch * cosRoll) - (cosYaw * sinPitch * sinRoll); |
| 127 |
r.Z = (cosYaw * cosPitch * sinRoll) - (sinYaw * sinPitch * cosRoll); |
| 128 |
r.W = (cosYaw * cosPitch * cosRoll) + (sinYaw * sinPitch * sinRoll); |
| 129 |
|
| 130 |
return r; |
| 131 |
} |
| 132 |
|
| 133 |
public static Quaternion CreateFromRotationMatrix(Matrix m) |
| 134 |
{ |
| 135 |
Quaternion q; |
| 136 |
|
| 137 |
float trace = m.M11 + m.M22 + m.M33; |
| 138 |
|
| 139 |
if (trace > 0.0f) |
| 140 |
{ |
| 141 |
float s = FMath.Sqrt(1.0f + trace); |
| 142 |
float inv2s = 0.5f / s; |
| 143 |
q.X = (m.M23 - m.M32) * inv2s; |
| 144 |
q.Y = (m.M31 - m.M13) * inv2s; |
| 145 |
q.Z = (m.M12 - m.M21) * inv2s; |
| 146 |
q.W = s * 0.5f; |
| 147 |
} |
| 148 |
else if (m.M11 >= m.M22 && m.M11 >= m.M33) |
| 149 |
{ |
| 150 |
float s = FMath.Sqrt(1.0f + m.M11 - m.M22 - m.M33); |
| 151 |
float inv2s = 0.5f / s; |
| 152 |
q.X = s * 0.5f; |
| 153 |
q.Y = (m.M12 + m.M21) * inv2s; |
| 154 |
q.Z = (m.M13 + m.M31) * inv2s; |
| 155 |
q.W = (m.M23 - m.M32) * inv2s; |
| 156 |
} |
| 157 |
else if (m.M22 > m.M33) |
| 158 |
{ |
| 159 |
float s = FMath.Sqrt(1.0f - m.M11 + m.M22 - m.M33); |
| 160 |
float inv2s = 0.5f / s; |
| 161 |
q.X = (m.M21 + m.M12) * inv2s; |
| 162 |
q.Y = s * 0.5f; |
| 163 |
q.Z = (m.M32 + m.M23) * inv2s; |
| 164 |
q.W = (m.M31 - m.M13) * inv2s; |
| 165 |
} |
| 166 |
else |
| 167 |
{ |
| 168 |
float s = FMath.Sqrt(1.0f - m.M11 - m.M22 + m.M33); |
| 169 |
float inv2s = 0.5f / s; |
| 170 |
q.X = (m.M31 + m.M13) * inv2s; |
| 171 |
q.Y = (m.M32 + m.M23) * inv2s; |
| 172 |
q.Z = s * 0.5f; |
| 173 |
q.W = (m.M12 - m.M21) * inv2s; |
| 174 |
} |
| 175 |
|
| 176 |
return q; |
| 177 |
} |
| 178 |
|
| 179 |
public static Quaternion Lerp(Quaternion q1, Quaternion q2, float amount) |
| 180 |
{ |
| 181 |
float invAmount = 1.0f - amount; |
| 182 |
|
| 183 |
if (Dot(q1, q2) < 0.0f) |
| 184 |
amount = -amount; |
| 185 |
|
| 186 |
q1.X = invAmount * q1.X + amount * q2.X; |
| 187 |
q1.Y = invAmount * q1.Y + amount * q2.Y; |
| 188 |
q1.Z = invAmount * q1.Z + amount * q2.Z; |
| 189 |
q1.W = invAmount * q1.W + amount * q2.W; |
| 190 |
|
| 191 |
q1.Normalize(); |
| 192 |
|
| 193 |
return q1; |
| 194 |
} |
| 195 |
|
| 196 |
public static float Dot(Quaternion q1, Quaternion q2) |
| 197 |
=> q1.X * q2.X + q1.Y * q2.Y + q1.Z * q2.Z + q1.W * q2.W; |
| 198 |
|
| 199 |
public static Quaternion operator +(Quaternion q1, Quaternion q2) |
| 200 |
{ |
| 201 |
q1.X += q2.X; |
| 202 |
q1.Y += q2.Y; |
| 203 |
q1.Z += q2.Z; |
| 204 |
q1.W += q2.W; |
| 205 |
|
| 206 |
return q1; |
| 207 |
} |
| 208 |
|
| 209 |
public static Quaternion operator -(Quaternion q1, Quaternion q2) |
| 210 |
{ |
| 211 |
q1.X -= q2.X; |
| 212 |
q1.Y -= q2.Y; |
| 213 |
q1.Z -= q2.Z; |
| 214 |
q1.W -= q2.W; |
| 215 |
|
| 216 |
return q1; |
| 217 |
} |
| 218 |
|
| 219 |
public static Quaternion operator *(Quaternion q1, Quaternion q2) => new Quaternion |
| 220 |
{ |
| 221 |
X = q1.X * q2.W + q1.Y * q2.Z - q1.Z * q2.Y + q1.W * q2.X, |
| 222 |
Y = -q1.X * q2.Z + q1.Y * q2.W + q1.Z * q2.X + q1.W * q2.Y, |
| 223 |
Z = q1.X * q2.Y - q1.Y * q2.X + q1.Z * q2.W + q1.W * q2.Z, |
| 224 |
W = -q1.X * q2.X - q1.Y * q2.Y - q1.Z * q2.Z + q1.W * q2.W, |
| 225 |
}; |
| 226 |
|
| 227 |
public static Quaternion operator *(Quaternion q, float s) |
| 228 |
{ |
| 229 |
q.X *= s; |
| 230 |
q.Y *= s; |
| 231 |
q.Z *= s; |
| 232 |
q.W *= s; |
| 233 |
|
| 234 |
return q; |
| 235 |
} |
| 236 |
|
| 237 |
public static bool operator ==(Quaternion q1, Quaternion q2) => q1.Equals(q2); |
| 238 |
public static bool operator !=(Quaternion q1, Quaternion q2) => !q1.Equals(q2); |
| 239 |
|
| 240 |
public static Quaternion Conjugate(Quaternion q) |
| 241 |
{ |
| 242 |
q.X = -q.X; |
| 243 |
q.Y = -q.Y; |
| 244 |
q.Z = -q.Z; |
| 245 |
|
| 246 |
return q; |
| 247 |
} |
| 248 |
|
| 249 |
public Quaternion Inverse() |
| 250 |
{ |
| 251 |
float inv = 1.0f / SquaredLength(); |
| 252 |
|
| 253 |
Quaternion r; |
| 254 |
r.X = -X * inv; |
| 255 |
r.Y = -Y * inv; |
| 256 |
r.Z = -Z * inv; |
| 257 |
r.W = W * inv; |
| 258 |
return r; |
| 259 |
} |
| 260 |
|
| 261 |
public void Normalize() |
| 262 |
{ |
| 263 |
float f = 1.0f / Length(); |
| 264 |
|
| 265 |
X *= f; |
| 266 |
Y *= f; |
| 267 |
Z *= f; |
| 268 |
W *= f; |
| 269 |
} |
| 270 |
|
| 271 |
public float Length() => FMath.Sqrt(SquaredLength()); |
| 272 |
|
| 273 |
public float SquaredLength() => X * X + Y * Y + Z * Z + W * W; |
| 274 |
|
| 275 |
public bool Equals(Quaternion other) => X == other.X && Y == other.Y && Z == other.Z && W == other.W; |
| 276 |
|
| 277 |
public override bool Equals(object obj) => obj is Quaternion && Equals((Quaternion)obj); |
| 278 |
|
| 279 |
public override int GetHashCode() => X.GetHashCode() ^ Y.GetHashCode() ^ Z.GetHashCode() ^ W.GetHashCode(); |
| 280 |
|
| 281 |
public override string ToString() => $"{{{X} {Y} {Z} {W}}}"; |
| 282 |
|
| 283 |
public Matrix ToMatrix() |
| 284 |
{ |
| 285 |
float xx = X * X; |
| 286 |
float yy = Y * Y; |
| 287 |
float zz = Z * Z; |
| 288 |
float xy = X * Y; |
| 289 |
float zw = Z * W; |
| 290 |
float zx = Z * X; |
| 291 |
float yw = Y * W; |
| 292 |
float yz = Y * Z; |
| 293 |
float xw = X * W; |
| 294 |
|
| 295 |
Matrix m; |
| 296 |
|
| 297 |
m.M11 = 1.0f - 2.0f * (yy + zz); |
| 298 |
m.M12 = 2.0f * (xy + zw); |
| 299 |
m.M13 = 2.0f * (zx - yw); |
| 300 |
m.M14 = 0.0f; |
| 301 |
|
| 302 |
m.M21 = 2.0f * (xy - zw); |
| 303 |
m.M22 = 1.0f - 2.0f * (zz + xx); |
| 304 |
m.M23 = 2.0f * (yz + xw); |
| 305 |
m.M24 = 0.0f; |
| 306 |
|
| 307 |
m.M31 = 2.0f * (zx + yw); |
| 308 |
m.M32 = 2.0f * (yz - xw); |
| 309 |
m.M33 = 1.0f - 2.0f * (yy + xx); |
| 310 |
m.M34 = 0.0f; |
| 311 |
|
| 312 |
m.M41 = 0.0f; |
| 313 |
m.M42 = 0.0f; |
| 314 |
m.M43 = 0.0f; |
| 315 |
m.M44 = 1.0f; |
| 316 |
|
| 317 |
return m; |
| 318 |
} |
| 319 |
|
| 320 |
public Vector4 ToVector4() => new Vector4(X, Y, Z, W); |
| 321 |
|
| 322 |
private static readonly Quaternion identity = new Quaternion(0.0f, 0.0f, 0.0f, 1.0f); |
| 323 |
|
| 324 |
public static Quaternion Identity => identity; |
| 325 |
} |
| 326 |
} |