1 |
using System; |
2 |
|
3 |
namespace Oni |
4 |
{ |
5 |
internal struct Quaternion : IEquatable<Quaternion> |
6 |
{ |
7 |
public float X; |
8 |
public float Y; |
9 |
public float Z; |
10 |
public float W; |
11 |
|
12 |
public Quaternion(Vector3 xyz, float w) |
13 |
{ |
14 |
X = xyz.X; |
15 |
Y = xyz.Y; |
16 |
Z = xyz.Z; |
17 |
W = w; |
18 |
} |
19 |
|
20 |
public Quaternion(float x, float y, float z, float w) |
21 |
{ |
22 |
X = x; |
23 |
Y = y; |
24 |
Z = z; |
25 |
W = w; |
26 |
} |
27 |
|
28 |
public Quaternion(Vector4 xyzw) |
29 |
{ |
30 |
X = xyzw.X; |
31 |
Y = xyzw.Y; |
32 |
Z = xyzw.Z; |
33 |
W = xyzw.W; |
34 |
} |
35 |
|
36 |
private Vector3 XYZ => new Vector3(X, Y, Z); |
37 |
|
38 |
public static Quaternion CreateFromAxisAngle(Vector3 axis, float angle) |
39 |
{ |
40 |
float halfAngle = angle * 0.5f; |
41 |
float sin = FMath.Sin(halfAngle); |
42 |
float cos = FMath.Cos(halfAngle); |
43 |
|
44 |
return new Quaternion(axis * sin, cos); |
45 |
} |
46 |
|
47 |
public void ToAxisAngle(out Vector3 axis, out float angle) |
48 |
{ |
49 |
float halfAngle = FMath.Acos(W); |
50 |
float sin = FMath.Sqrt(1 - W * W); |
51 |
|
52 |
if (sin < 1e-5f) |
53 |
{ |
54 |
axis = XYZ; |
55 |
angle = 0.0f; |
56 |
} |
57 |
else |
58 |
{ |
59 |
axis = XYZ / sin; |
60 |
angle = halfAngle * 2.0f; |
61 |
} |
62 |
} |
63 |
|
64 |
public static Quaternion CreateFromEulerXYZ(float x, float y, float z) |
65 |
{ |
66 |
x = MathHelper.ToRadians(x); |
67 |
y = MathHelper.ToRadians(y); |
68 |
z = MathHelper.ToRadians(z); |
69 |
|
70 |
return CreateFromAxisAngle(Vector3.UnitX, x) |
71 |
* CreateFromAxisAngle(Vector3.UnitY, y) |
72 |
* CreateFromAxisAngle(Vector3.UnitZ, z); |
73 |
} |
74 |
|
75 |
public Vector3 ToEulerXYZ() |
76 |
{ |
77 |
Vector3 r; |
78 |
|
79 |
var p0 = -W; |
80 |
var p1 = X; |
81 |
var p2 = Y; |
82 |
var p3 = Z; |
83 |
var e = -1.0f; |
84 |
|
85 |
var s = 2.0f * (p0 * p2 + e * p1 * p3); |
86 |
|
87 |
if (s > 0.999f) |
88 |
{ |
89 |
r.X = MathHelper.ToDegrees(-2.0f * (float)Math.Atan2(p1, p0)); |
90 |
r.Y = -90.0f; |
91 |
r.Z = 0.0f; |
92 |
} |
93 |
else if (s < -0.999f) |
94 |
{ |
95 |
r.X = MathHelper.ToDegrees(2.0f * (float)Math.Atan2(p1, p0)); |
96 |
r.Y = 90.0f; |
97 |
r.Z = 0.0f; |
98 |
} |
99 |
else |
100 |
{ |
101 |
r.X = -MathHelper.ToDegrees((float)Math.Atan2(2.0f * (p0 * p1 - e * p2 * p3), 1.0f - 2.0f * (p1 * p1 + p2 * p2))); |
102 |
r.Y = -MathHelper.ToDegrees((float)Math.Asin(s)); |
103 |
r.Z = -MathHelper.ToDegrees((float)Math.Atan2(2.0f * (p0 * p3 - e * p1 * p2), 1.0f - 2.0f * (p2 * p2 + p3 * p3))); |
104 |
} |
105 |
|
106 |
return r; |
107 |
} |
108 |
|
109 |
public static Quaternion CreateFromYawPitchRoll(float yaw, float pitch, float roll) |
110 |
{ |
111 |
float halfRoll = roll * 0.5f; |
112 |
float sinRoll = FMath.Sin(halfRoll); |
113 |
float cosRoll = FMath.Cos(halfRoll); |
114 |
|
115 |
float halfPitch = pitch * 0.5f; |
116 |
float sinPitch = FMath.Sin(halfPitch); |
117 |
float cosPitch = FMath.Cos(halfPitch); |
118 |
|
119 |
float halfYaw = yaw * 0.5f; |
120 |
float sinYaw = FMath.Sin(halfYaw); |
121 |
float cosYaw = FMath.Cos(halfYaw); |
122 |
|
123 |
Quaternion r; |
124 |
|
125 |
r.X = (cosYaw * sinPitch * cosRoll) + (sinYaw * cosPitch * sinRoll); |
126 |
r.Y = (sinYaw * cosPitch * cosRoll) - (cosYaw * sinPitch * sinRoll); |
127 |
r.Z = (cosYaw * cosPitch * sinRoll) - (sinYaw * sinPitch * cosRoll); |
128 |
r.W = (cosYaw * cosPitch * cosRoll) + (sinYaw * sinPitch * sinRoll); |
129 |
|
130 |
return r; |
131 |
} |
132 |
|
133 |
public static Quaternion CreateFromRotationMatrix(Matrix m) |
134 |
{ |
135 |
Quaternion q; |
136 |
|
137 |
float trace = m.M11 + m.M22 + m.M33; |
138 |
|
139 |
if (trace > 0.0f) |
140 |
{ |
141 |
float s = FMath.Sqrt(1.0f + trace); |
142 |
float inv2s = 0.5f / s; |
143 |
q.X = (m.M23 - m.M32) * inv2s; |
144 |
q.Y = (m.M31 - m.M13) * inv2s; |
145 |
q.Z = (m.M12 - m.M21) * inv2s; |
146 |
q.W = s * 0.5f; |
147 |
} |
148 |
else if (m.M11 >= m.M22 && m.M11 >= m.M33) |
149 |
{ |
150 |
float s = FMath.Sqrt(1.0f + m.M11 - m.M22 - m.M33); |
151 |
float inv2s = 0.5f / s; |
152 |
q.X = s * 0.5f; |
153 |
q.Y = (m.M12 + m.M21) * inv2s; |
154 |
q.Z = (m.M13 + m.M31) * inv2s; |
155 |
q.W = (m.M23 - m.M32) * inv2s; |
156 |
} |
157 |
else if (m.M22 > m.M33) |
158 |
{ |
159 |
float s = FMath.Sqrt(1.0f - m.M11 + m.M22 - m.M33); |
160 |
float inv2s = 0.5f / s; |
161 |
q.X = (m.M21 + m.M12) * inv2s; |
162 |
q.Y = s * 0.5f; |
163 |
q.Z = (m.M32 + m.M23) * inv2s; |
164 |
q.W = (m.M31 - m.M13) * inv2s; |
165 |
} |
166 |
else |
167 |
{ |
168 |
float s = FMath.Sqrt(1.0f - m.M11 - m.M22 + m.M33); |
169 |
float inv2s = 0.5f / s; |
170 |
q.X = (m.M31 + m.M13) * inv2s; |
171 |
q.Y = (m.M32 + m.M23) * inv2s; |
172 |
q.Z = s * 0.5f; |
173 |
q.W = (m.M12 - m.M21) * inv2s; |
174 |
} |
175 |
|
176 |
return q; |
177 |
} |
178 |
|
179 |
public static Quaternion Lerp(Quaternion q1, Quaternion q2, float amount) |
180 |
{ |
181 |
float invAmount = 1.0f - amount; |
182 |
|
183 |
if (Dot(q1, q2) < 0.0f) |
184 |
amount = -amount; |
185 |
|
186 |
q1.X = invAmount * q1.X + amount * q2.X; |
187 |
q1.Y = invAmount * q1.Y + amount * q2.Y; |
188 |
q1.Z = invAmount * q1.Z + amount * q2.Z; |
189 |
q1.W = invAmount * q1.W + amount * q2.W; |
190 |
|
191 |
q1.Normalize(); |
192 |
|
193 |
return q1; |
194 |
} |
195 |
|
196 |
public static float Dot(Quaternion q1, Quaternion q2) |
197 |
=> q1.X * q2.X + q1.Y * q2.Y + q1.Z * q2.Z + q1.W * q2.W; |
198 |
|
199 |
public static Quaternion operator +(Quaternion q1, Quaternion q2) |
200 |
{ |
201 |
q1.X += q2.X; |
202 |
q1.Y += q2.Y; |
203 |
q1.Z += q2.Z; |
204 |
q1.W += q2.W; |
205 |
|
206 |
return q1; |
207 |
} |
208 |
|
209 |
public static Quaternion operator -(Quaternion q1, Quaternion q2) |
210 |
{ |
211 |
q1.X -= q2.X; |
212 |
q1.Y -= q2.Y; |
213 |
q1.Z -= q2.Z; |
214 |
q1.W -= q2.W; |
215 |
|
216 |
return q1; |
217 |
} |
218 |
|
219 |
public static Quaternion operator *(Quaternion q1, Quaternion q2) => new Quaternion |
220 |
{ |
221 |
X = q1.X * q2.W + q1.Y * q2.Z - q1.Z * q2.Y + q1.W * q2.X, |
222 |
Y = -q1.X * q2.Z + q1.Y * q2.W + q1.Z * q2.X + q1.W * q2.Y, |
223 |
Z = q1.X * q2.Y - q1.Y * q2.X + q1.Z * q2.W + q1.W * q2.Z, |
224 |
W = -q1.X * q2.X - q1.Y * q2.Y - q1.Z * q2.Z + q1.W * q2.W, |
225 |
}; |
226 |
|
227 |
public static Quaternion operator *(Quaternion q, float s) |
228 |
{ |
229 |
q.X *= s; |
230 |
q.Y *= s; |
231 |
q.Z *= s; |
232 |
q.W *= s; |
233 |
|
234 |
return q; |
235 |
} |
236 |
|
237 |
public static bool operator ==(Quaternion q1, Quaternion q2) => q1.Equals(q2); |
238 |
public static bool operator !=(Quaternion q1, Quaternion q2) => !q1.Equals(q2); |
239 |
|
240 |
public static Quaternion Conjugate(Quaternion q) |
241 |
{ |
242 |
q.X = -q.X; |
243 |
q.Y = -q.Y; |
244 |
q.Z = -q.Z; |
245 |
|
246 |
return q; |
247 |
} |
248 |
|
249 |
public Quaternion Inverse() |
250 |
{ |
251 |
float inv = 1.0f / SquaredLength(); |
252 |
|
253 |
Quaternion r; |
254 |
r.X = -X * inv; |
255 |
r.Y = -Y * inv; |
256 |
r.Z = -Z * inv; |
257 |
r.W = W * inv; |
258 |
return r; |
259 |
} |
260 |
|
261 |
public void Normalize() |
262 |
{ |
263 |
float f = 1.0f / Length(); |
264 |
|
265 |
X *= f; |
266 |
Y *= f; |
267 |
Z *= f; |
268 |
W *= f; |
269 |
} |
270 |
|
271 |
public float Length() => FMath.Sqrt(SquaredLength()); |
272 |
|
273 |
public float SquaredLength() => X * X + Y * Y + Z * Z + W * W; |
274 |
|
275 |
public bool Equals(Quaternion other) => X == other.X && Y == other.Y && Z == other.Z && W == other.W; |
276 |
|
277 |
public override bool Equals(object obj) => obj is Quaternion && Equals((Quaternion)obj); |
278 |
|
279 |
public override int GetHashCode() => X.GetHashCode() ^ Y.GetHashCode() ^ Z.GetHashCode() ^ W.GetHashCode(); |
280 |
|
281 |
public override string ToString() => $"{{{X} {Y} {Z} {W}}}"; |
282 |
|
283 |
public Matrix ToMatrix() |
284 |
{ |
285 |
float xx = X * X; |
286 |
float yy = Y * Y; |
287 |
float zz = Z * Z; |
288 |
float xy = X * Y; |
289 |
float zw = Z * W; |
290 |
float zx = Z * X; |
291 |
float yw = Y * W; |
292 |
float yz = Y * Z; |
293 |
float xw = X * W; |
294 |
|
295 |
Matrix m; |
296 |
|
297 |
m.M11 = 1.0f - 2.0f * (yy + zz); |
298 |
m.M12 = 2.0f * (xy + zw); |
299 |
m.M13 = 2.0f * (zx - yw); |
300 |
m.M14 = 0.0f; |
301 |
|
302 |
m.M21 = 2.0f * (xy - zw); |
303 |
m.M22 = 1.0f - 2.0f * (zz + xx); |
304 |
m.M23 = 2.0f * (yz + xw); |
305 |
m.M24 = 0.0f; |
306 |
|
307 |
m.M31 = 2.0f * (zx + yw); |
308 |
m.M32 = 2.0f * (yz - xw); |
309 |
m.M33 = 1.0f - 2.0f * (yy + xx); |
310 |
m.M34 = 0.0f; |
311 |
|
312 |
m.M41 = 0.0f; |
313 |
m.M42 = 0.0f; |
314 |
m.M43 = 0.0f; |
315 |
m.M44 = 1.0f; |
316 |
|
317 |
return m; |
318 |
} |
319 |
|
320 |
public Vector4 ToVector4() => new Vector4(X, Y, Z, W); |
321 |
|
322 |
private static readonly Quaternion identity = new Quaternion(0.0f, 0.0f, 0.0f, 1.0f); |
323 |
|
324 |
public static Quaternion Identity => identity; |
325 |
} |
326 |
} |