| 1 | using System; | 
 
 
 
 
 | 2 |  | 
 
 
 
 
 | 3 | namespace Oni | 
 
 
 
 
 | 4 | { | 
 
 
 
 
 | 5 | internal struct Matrix : IEquatable<Matrix> | 
 
 
 
 
 | 6 | { | 
 
 
 
 
 | 7 | public float M11, M12, M13, M14; | 
 
 
 
 
 | 8 | public float M21, M22, M23, M24; | 
 
 
 
 
 | 9 | public float M31, M32, M33, M34; | 
 
 
 
 
 | 10 | public float M41, M42, M43, M44; | 
 
 
 
 
 | 11 |  | 
 
 
 
 
 | 12 | public Matrix(float m11, float m12, float m13, float m14, | 
 
 
 
 
 | 13 | float m21, float m22, float m23, float m24, | 
 
 
 
 
 | 14 | float m31, float m32, float m33, float m34, | 
 
 
 
 
 | 15 | float m41, float m42, float m43, float m44) | 
 
 
 
 
 | 16 | { | 
 
 
 
 
 | 17 | M11 = m11; M12 = m12; M13 = m13; M14 = m14; | 
 
 
 
 
 | 18 | M21 = m21; M22 = m22; M23 = m23; M24 = m24; | 
 
 
 
 
 | 19 | M31 = m31; M32 = m32; M33 = m33; M34 = m34; | 
 
 
 
 
 | 20 | M41 = m41; M42 = m42; M43 = m43; M44 = m44; | 
 
 
 
 
 | 21 | } | 
 
 
 
 
 | 22 |  | 
 
 
 
 
 | 23 | public Matrix(float[] values) | 
 
 
 
 
 | 24 | { | 
 
 
 
 
 | 25 | M11 = values[0]; M12 = values[4]; M13 = values[8]; M14 = values[12]; | 
 
 
 
 
 | 26 | M21 = values[1]; M22 = values[5]; M23 = values[9]; M24 = values[13]; | 
 
 
 
 
 | 27 | M31 = values[2]; M32 = values[6]; M33 = values[10]; M34 = values[14]; | 
 
 
 
 
 | 28 | M41 = values[3]; M42 = values[7]; M43 = values[11]; M44 = values[15]; | 
 
 
 
 
 | 29 | } | 
 
 
 
 
 | 30 |  | 
 
 
 
 
 | 31 | public void CopyTo(float[] values) | 
 
 
 
 
 | 32 | { | 
 
 
 
 
 | 33 | values[0] = M11; | 
 
 
 
 
 | 34 | values[1] = M21; | 
 
 
 
 
 | 35 | values[2] = M31; | 
 
 
 
 
 | 36 | values[3] = M41; | 
 
 
 
 
 | 37 |  | 
 
 
 
 
 | 38 | values[4] = M12; | 
 
 
 
 
 | 39 | values[5] = M22; | 
 
 
 
 
 | 40 | values[6] = M32; | 
 
 
 
 
 | 41 | values[7] = M42; | 
 
 
 
 
 | 42 |  | 
 
 
 
 
 | 43 | values[8] = M13; | 
 
 
 
 
 | 44 | values[9] = M23; | 
 
 
 
 
 | 45 | values[10] = M33; | 
 
 
 
 
 | 46 | values[11] = M43; | 
 
 
 
 
 | 47 |  | 
 
 
 
 
 | 48 | values[12] = M14; | 
 
 
 
 
 | 49 | values[13] = M24; | 
 
 
 
 
 | 50 | values[14] = M34; | 
 
 
 
 
 | 51 | values[15] = M44; | 
 
 
 
 
 | 52 | } | 
 
 
 
 
 | 53 |  | 
 
 
 
 
 | 54 | public static Matrix CreateTranslation(float x, float y, float z) | 
 
 
 
 
 | 55 | { | 
 
 
 
 
 | 56 | Matrix r = Identity; | 
 
 
 
 
 | 57 |  | 
 
 
 
 
 | 58 | r.M41 = x; | 
 
 
 
 
 | 59 | r.M42 = y; | 
 
 
 
 
 | 60 | r.M43 = z; | 
 
 
 
 
 | 61 |  | 
 
 
 
 
 | 62 | return r; | 
 
 
 
 
 | 63 | } | 
 
 
 
 
 | 64 |  | 
 
 
 
 
 | 65 | public static Matrix CreateTranslation(Vector3 v) => CreateTranslation(v.X, v.Y, v.Z); | 
 
 
 
 
 | 66 |  | 
 
 
 
 
 | 67 | public static Matrix CreateScale(float sx, float sy, float sz) | 
 
 
 
 
 | 68 | { | 
 
 
 
 
 | 69 | Matrix r = Identity; | 
 
 
 
 
 | 70 |  | 
 
 
 
 
 | 71 | r.M11 = sx; | 
 
 
 
 
 | 72 | r.M22 = sy; | 
 
 
 
 
 | 73 | r.M33 = sz; | 
 
 
 
 
 | 74 |  | 
 
 
 
 
 | 75 | return r; | 
 
 
 
 
 | 76 | } | 
 
 
 
 
 | 77 |  | 
 
 
 
 
 | 78 | public static Matrix CreateScale(float s) => CreateScale(s, s, s); | 
 
 
 
 
 | 79 | public static Matrix CreateScale(Vector3 s) => CreateScale(s.X, s.Y, s.Z); | 
 
 
 
 
 | 80 |  | 
 
 
 
 
 | 81 | public static Matrix CreateRotationX(float angle) | 
 
 
 
 
 | 82 | { | 
 
 
 
 
 | 83 | float cos = FMath.Cos(angle); | 
 
 
 
 
 | 84 | float sin = FMath.Sin(angle); | 
 
 
 
 
 | 85 |  | 
 
 
 
 
 | 86 | Matrix r = Identity; | 
 
 
 
 
 | 87 | r.M22 = cos; | 
 
 
 
 
 | 88 | r.M23 = sin; | 
 
 
 
 
 | 89 | r.M32 = -sin; | 
 
 
 
 
 | 90 | r.M33 = cos; | 
 
 
 
 
 | 91 | return r; | 
 
 
 
 
 | 92 | } | 
 
 
 
 
 | 93 |  | 
 
 
 
 
 | 94 | public static Matrix CreateRotationY(float angle) | 
 
 
 
 
 | 95 | { | 
 
 
 
 
 | 96 | float cos = FMath.Cos(angle); | 
 
 
 
 
 | 97 | float sin = FMath.Sin(angle); | 
 
 
 
 
 | 98 |  | 
 
 
 
 
 | 99 | Matrix r = Identity; | 
 
 
 
 
 | 100 | r.M11 = cos; | 
 
 
 
 
 | 101 | r.M13 = -sin; | 
 
 
 
 
 | 102 | r.M31 = sin; | 
 
 
 
 
 | 103 | r.M33 = cos; | 
 
 
 
 
 | 104 | return r; | 
 
 
 
 
 | 105 | } | 
 
 
 
 
 | 106 |  | 
 
 
 
 
 | 107 | public static Matrix CreateRotationZ(float angle) | 
 
 
 
 
 | 108 | { | 
 
 
 
 
 | 109 | float cos = FMath.Cos(angle); | 
 
 
 
 
 | 110 | float sin = FMath.Sin(angle); | 
 
 
 
 
 | 111 |  | 
 
 
 
 
 | 112 | Matrix r = Identity; | 
 
 
 
 
 | 113 | r.M11 = cos; | 
 
 
 
 
 | 114 | r.M12 = sin; | 
 
 
 
 
 | 115 | r.M21 = -sin; | 
 
 
 
 
 | 116 | r.M22 = cos; | 
 
 
 
 
 | 117 | return r; | 
 
 
 
 
 | 118 | } | 
 
 
 
 
 | 119 |  | 
 
 
 
 
 | 120 | public static Matrix CreateFromAxisAngle(Vector3 axis, float angle) | 
 
 
 
 
 | 121 | { | 
 
 
 
 
 | 122 | float sin = FMath.Sin(angle); | 
 
 
 
 
 | 123 | float cos = FMath.Cos(angle); | 
 
 
 
 
 | 124 |  | 
 
 
 
 
 | 125 | float x = axis.X; | 
 
 
 
 
 | 126 | float y = axis.Y; | 
 
 
 
 
 | 127 | float z = axis.Z; | 
 
 
 
 
 | 128 | float xx = x * x; | 
 
 
 
 
 | 129 | float yy = y * y; | 
 
 
 
 
 | 130 | float zz = z * z; | 
 
 
 
 
 | 131 | float xy = x * y; | 
 
 
 
 
 | 132 | float xz = x * z; | 
 
 
 
 
 | 133 | float yz = y * z; | 
 
 
 
 
 | 134 |  | 
 
 
 
 
 | 135 | Matrix r = Identity; | 
 
 
 
 
 | 136 | r.M11 = xx + (cos * (1.0f - xx)); | 
 
 
 
 
 | 137 | r.M12 = (xy - (cos * xy)) + (sin * z); | 
 
 
 
 
 | 138 | r.M13 = (xz - (cos * xz)) - (sin * y); | 
 
 
 
 
 | 139 | r.M21 = (xy - (cos * xy)) - (sin * z); | 
 
 
 
 
 | 140 | r.M22 = yy + (cos * (1.0f - yy)); | 
 
 
 
 
 | 141 | r.M23 = (yz - (cos * yz)) + (sin * x); | 
 
 
 
 
 | 142 | r.M31 = (xz - (cos * xz)) + (sin * y); | 
 
 
 
 
 | 143 | r.M32 = (yz - (cos * yz)) - (sin * x); | 
 
 
 
 
 | 144 | r.M33 = zz + (cos * (1.0f - zz)); | 
 
 
 
 
 | 145 | return r; | 
 
 
 
 
 | 146 | } | 
 
 
 
 
 | 147 |  | 
 
 
 
 
 | 148 | public static Matrix CreateFromQuaternion(Quaternion q) | 
 
 
 
 
 | 149 | { | 
 
 
 
 
 | 150 | float xx = q.X * q.X; | 
 
 
 
 
 | 151 | float yy = q.Y * q.Y; | 
 
 
 
 
 | 152 | float zz = q.Z * q.Z; | 
 
 
 
 
 | 153 | float xy = q.X * q.Y; | 
 
 
 
 
 | 154 | float zw = q.Z * q.W; | 
 
 
 
 
 | 155 | float zx = q.Z * q.X; | 
 
 
 
 
 | 156 | float yw = q.Y * q.W; | 
 
 
 
 
 | 157 | float yz = q.Y * q.Z; | 
 
 
 
 
 | 158 | float xw = q.X * q.W; | 
 
 
 
 
 | 159 |  | 
 
 
 
 
 | 160 | Matrix r = Identity; | 
 
 
 
 
 | 161 |  | 
 
 
 
 
 | 162 | r.M11 = 1.0f - 2.0f * (yy + zz); | 
 
 
 
 
 | 163 | r.M12 = 2.0f * (xy + zw); | 
 
 
 
 
 | 164 | r.M13 = 2.0f * (zx - yw); | 
 
 
 
 
 | 165 |  | 
 
 
 
 
 | 166 | r.M21 = 2.0f * (xy - zw); | 
 
 
 
 
 | 167 | r.M22 = 1.0f - 2.0f * (zz + xx); | 
 
 
 
 
 | 168 | r.M23 = 2.0f * (yz + xw); | 
 
 
 
 
 | 169 |  | 
 
 
 
 
 | 170 | r.M31 = 2.0f * (zx + yw); | 
 
 
 
 
 | 171 | r.M32 = 2.0f * (yz - xw); | 
 
 
 
 
 | 172 | r.M33 = 1.0f - 2.0f * (yy + xx); | 
 
 
 
 
 | 173 |  | 
 
 
 
 
 | 174 | return r; | 
 
 
 
 
 | 175 | } | 
 
 
 
 
 | 176 |  | 
 
 
 
 
 | 177 | public static Matrix operator +(Matrix m1, Matrix m2) | 
 
 
 
 
 | 178 | { | 
 
 
 
 
 | 179 | m1.M11 += m2.M11; | 
 
 
 
 
 | 180 | m1.M12 += m2.M12; | 
 
 
 
 
 | 181 | m1.M13 += m2.M13; | 
 
 
 
 
 | 182 | m1.M14 += m2.M14; | 
 
 
 
 
 | 183 | m1.M21 += m2.M21; | 
 
 
 
 
 | 184 | m1.M22 += m2.M22; | 
 
 
 
 
 | 185 | m1.M23 += m2.M23; | 
 
 
 
 
 | 186 | m1.M24 += m2.M24; | 
 
 
 
 
 | 187 | m1.M31 += m2.M31; | 
 
 
 
 
 | 188 | m1.M32 += m2.M32; | 
 
 
 
 
 | 189 | m1.M33 += m2.M33; | 
 
 
 
 
 | 190 | m1.M34 += m2.M34; | 
 
 
 
 
 | 191 | m1.M41 += m2.M41; | 
 
 
 
 
 | 192 | m1.M42 += m2.M42; | 
 
 
 
 
 | 193 | m1.M43 += m2.M43; | 
 
 
 
 
 | 194 | m1.M44 += m2.M44; | 
 
 
 
 
 | 195 |  | 
 
 
 
 
 | 196 | return m1; | 
 
 
 
 
 | 197 | } | 
 
 
 
 
 | 198 |  | 
 
 
 
 
 | 199 | public static Matrix operator -(Matrix m1, Matrix m2) | 
 
 
 
 
 | 200 | { | 
 
 
 
 
 | 201 | m1.M11 -= m2.M11; | 
 
 
 
 
 | 202 | m1.M12 -= m2.M12; | 
 
 
 
 
 | 203 | m1.M13 -= m2.M13; | 
 
 
 
 
 | 204 | m1.M14 -= m2.M14; | 
 
 
 
 
 | 205 | m1.M21 -= m2.M21; | 
 
 
 
 
 | 206 | m1.M22 -= m2.M22; | 
 
 
 
 
 | 207 | m1.M23 -= m2.M23; | 
 
 
 
 
 | 208 | m1.M24 -= m2.M24; | 
 
 
 
 
 | 209 | m1.M31 -= m2.M31; | 
 
 
 
 
 | 210 | m1.M32 -= m2.M32; | 
 
 
 
 
 | 211 | m1.M33 -= m2.M33; | 
 
 
 
 
 | 212 | m1.M34 -= m2.M34; | 
 
 
 
 
 | 213 | m1.M41 -= m2.M41; | 
 
 
 
 
 | 214 | m1.M42 -= m2.M42; | 
 
 
 
 
 | 215 | m1.M43 -= m2.M43; | 
 
 
 
 
 | 216 | m1.M44 -= m2.M44; | 
 
 
 
 
 | 217 |  | 
 
 
 
 
 | 218 | return m1; | 
 
 
 
 
 | 219 | } | 
 
 
 
 
 | 220 |  | 
 
 
 
 
 | 221 | public static Matrix operator *(Matrix m, float s) | 
 
 
 
 
 | 222 | { | 
 
 
 
 
 | 223 | m.M11 *= s; | 
 
 
 
 
 | 224 | m.M12 *= s; | 
 
 
 
 
 | 225 | m.M13 *= s; | 
 
 
 
 
 | 226 | m.M14 *= s; | 
 
 
 
 
 | 227 | m.M21 *= s; | 
 
 
 
 
 | 228 | m.M22 *= s; | 
 
 
 
 
 | 229 | m.M23 *= s; | 
 
 
 
 
 | 230 | m.M24 *= s; | 
 
 
 
 
 | 231 | m.M31 *= s; | 
 
 
 
 
 | 232 | m.M32 *= s; | 
 
 
 
 
 | 233 | m.M33 *= s; | 
 
 
 
 
 | 234 | m.M34 *= s; | 
 
 
 
 
 | 235 | m.M41 *= s; | 
 
 
 
 
 | 236 | m.M42 *= s; | 
 
 
 
 
 | 237 | m.M43 *= s; | 
 
 
 
 
 | 238 | m.M44 *= s; | 
 
 
 
 
 | 239 |  | 
 
 
 
 
 | 240 | return m; | 
 
 
 
 
 | 241 | } | 
 
 
 
 
 | 242 |  | 
 
 
 
 
 | 243 | public static Matrix operator *(float s, Matrix m) => m * s; | 
 
 
 
 
 | 244 |  | 
 
 
 
 
 | 245 | public static Matrix operator /(Matrix m, float s) => m * (1.0f / s); | 
 
 
 
 
 | 246 |  | 
 
 
 
 
 | 247 | public static Matrix operator *(Matrix m1, Matrix m2) | 
 
 
 
 
 | 248 | { | 
 
 
 
 
 | 249 | Matrix r; | 
 
 
 
 
 | 250 |  | 
 
 
 
 
 | 251 | r.M11 = m1.M11 * m2.M11 + m1.M12 * m2.M21 + m1.M13 * m2.M31 + m1.M14 * m2.M41; | 
 
 
 
 
 | 252 | r.M12 = m1.M11 * m2.M12 + m1.M12 * m2.M22 + m1.M13 * m2.M32 + m1.M14 * m2.M42; | 
 
 
 
 
 | 253 | r.M13 = m1.M11 * m2.M13 + m1.M12 * m2.M23 + m1.M13 * m2.M33 + m1.M14 * m2.M43; | 
 
 
 
 
 | 254 | r.M14 = m1.M11 * m2.M14 + m1.M12 * m2.M24 + m1.M13 * m2.M34 + m1.M14 * m2.M44; | 
 
 
 
 
 | 255 | r.M21 = m1.M21 * m2.M11 + m1.M22 * m2.M21 + m1.M23 * m2.M31 + m1.M24 * m2.M41; | 
 
 
 
 
 | 256 | r.M22 = m1.M21 * m2.M12 + m1.M22 * m2.M22 + m1.M23 * m2.M32 + m1.M24 * m2.M42; | 
 
 
 
 
 | 257 | r.M23 = m1.M21 * m2.M13 + m1.M22 * m2.M23 + m1.M23 * m2.M33 + m1.M24 * m2.M43; | 
 
 
 
 
 | 258 | r.M24 = m1.M21 * m2.M14 + m1.M22 * m2.M24 + m1.M23 * m2.M34 + m1.M24 * m2.M44; | 
 
 
 
 
 | 259 | r.M31 = m1.M31 * m2.M11 + m1.M32 * m2.M21 + m1.M33 * m2.M31 + m1.M34 * m2.M41; | 
 
 
 
 
 | 260 | r.M32 = m1.M31 * m2.M12 + m1.M32 * m2.M22 + m1.M33 * m2.M32 + m1.M34 * m2.M42; | 
 
 
 
 
 | 261 | r.M33 = m1.M31 * m2.M13 + m1.M32 * m2.M23 + m1.M33 * m2.M33 + m1.M34 * m2.M43; | 
 
 
 
 
 | 262 | r.M34 = m1.M31 * m2.M14 + m1.M32 * m2.M24 + m1.M33 * m2.M34 + m1.M34 * m2.M44; | 
 
 
 
 
 | 263 | r.M41 = m1.M41 * m2.M11 + m1.M42 * m2.M21 + m1.M43 * m2.M31 + m1.M44 * m2.M41; | 
 
 
 
 
 | 264 | r.M42 = m1.M41 * m2.M12 + m1.M42 * m2.M22 + m1.M43 * m2.M32 + m1.M44 * m2.M42; | 
 
 
 
 
 | 265 | r.M43 = m1.M41 * m2.M13 + m1.M42 * m2.M23 + m1.M43 * m2.M33 + m1.M44 * m2.M43; | 
 
 
 
 
 | 266 | r.M44 = m1.M41 * m2.M14 + m1.M42 * m2.M24 + m1.M43 * m2.M34 + m1.M44 * m2.M44; | 
 
 
 
 
 | 267 |  | 
 
 
 
 
 | 268 | return r; | 
 
 
 
 
 | 269 | } | 
 
 
 
 
 | 270 |  | 
 
 
 
 
 | 271 | public Matrix Transpose() | 
 
 
 
 
 | 272 | { | 
 
 
 
 
 | 273 | Matrix t; | 
 
 
 
 
 | 274 |  | 
 
 
 
 
 | 275 | t.M11 = M11; | 
 
 
 
 
 | 276 | t.M12 = M21; | 
 
 
 
 
 | 277 | t.M13 = M31; | 
 
 
 
 
 | 278 | t.M14 = M41; | 
 
 
 
 
 | 279 | t.M21 = M12; | 
 
 
 
 
 | 280 | t.M22 = M22; | 
 
 
 
 
 | 281 | t.M23 = M32; | 
 
 
 
 
 | 282 | t.M24 = M42; | 
 
 
 
 
 | 283 | t.M31 = M13; | 
 
 
 
 
 | 284 | t.M32 = M23; | 
 
 
 
 
 | 285 | t.M33 = M33; | 
 
 
 
 
 | 286 | t.M34 = M43; | 
 
 
 
 
 | 287 | t.M41 = M14; | 
 
 
 
 
 | 288 | t.M42 = M24; | 
 
 
 
 
 | 289 | t.M43 = M34; | 
 
 
 
 
 | 290 | t.M44 = M44; | 
 
 
 
 
 | 291 |  | 
 
 
 
 
 | 292 | return t; | 
 
 
 
 
 | 293 | } | 
 
 
 
 
 | 294 |  | 
 
 
 
 
 | 295 | public static bool operator ==(Matrix m1, Matrix m2) => m1.Equals(m2); | 
 
 
 
 
 | 296 | public static bool operator !=(Matrix m1, Matrix m2) => !m1.Equals(m2); | 
 
 
 
 
 | 297 |  | 
 
 
 
 
 | 298 | public Vector3 XAxis | 
 
 
 
 
 | 299 | { | 
 
 
 
 
 | 300 | get | 
 
 
 
 
 | 301 | { | 
 
 
 
 
 | 302 | return new Vector3(M11, M12, M13); | 
 
 
 
 
 | 303 | } | 
 
 
 
 
 | 304 | set | 
 
 
 
 
 | 305 | { | 
 
 
 
 
 | 306 | M11 = value.X; | 
 
 
 
 
 | 307 | M12 = value.Y; | 
 
 
 
 
 | 308 | M13 = value.Z; | 
 
 
 
 
 | 309 | } | 
 
 
 
 
 | 310 | } | 
 
 
 
 
 | 311 |  | 
 
 
 
 
 | 312 | public Vector3 YAxis | 
 
 
 
 
 | 313 | { | 
 
 
 
 
 | 314 | get | 
 
 
 
 
 | 315 | { | 
 
 
 
 
 | 316 | return new Vector3(M21, M22, M23); | 
 
 
 
 
 | 317 | } | 
 
 
 
 
 | 318 | set | 
 
 
 
 
 | 319 | { | 
 
 
 
 
 | 320 | M21 = value.X; | 
 
 
 
 
 | 321 | M22 = value.Y; | 
 
 
 
 
 | 322 | M23 = value.Z; | 
 
 
 
 
 | 323 | } | 
 
 
 
 
 | 324 | } | 
 
 
 
 
 | 325 |  | 
 
 
 
 
 | 326 | public Vector3 ZAxis | 
 
 
 
 
 | 327 | { | 
 
 
 
 
 | 328 | get | 
 
 
 
 
 | 329 | { | 
 
 
 
 
 | 330 | return new Vector3(M31, M32, M33); | 
 
 
 
 
 | 331 | } | 
 
 
 
 
 | 332 | set | 
 
 
 
 
 | 333 | { | 
 
 
 
 
 | 334 | M31 = value.X; | 
 
 
 
 
 | 335 | M32 = value.Y; | 
 
 
 
 
 | 336 | M33 = value.Z; | 
 
 
 
 
 | 337 | } | 
 
 
 
 
 | 338 | } | 
 
 
 
 
 | 339 |  | 
 
 
 
 
 | 340 | public Vector3 Scale | 
 
 
 
 
 | 341 | { | 
 
 
 
 
 | 342 | get | 
 
 
 
 
 | 343 | { | 
 
 
 
 
 | 344 | return new Vector3(M11, M22, M33); | 
 
 
 
 
 | 345 | } | 
 
 
 
 
 | 346 | set | 
 
 
 
 
 | 347 | { | 
 
 
 
 
 | 348 | M11 = value.X; | 
 
 
 
 
 | 349 | M22 = value.Y; | 
 
 
 
 
 | 350 | M33 = value.Z; | 
 
 
 
 
 | 351 | } | 
 
 
 
 
 | 352 | } | 
 
 
 
 
 | 353 |  | 
 
 
 
 
 | 354 | public Vector3 Translation | 
 
 
 
 
 | 355 | { | 
 
 
 
 
 | 356 | get | 
 
 
 
 
 | 357 | { | 
 
 
 
 
 | 358 | return new Vector3(M41, M42, M43); | 
 
 
 
 
 | 359 | } | 
 
 
 
 
 | 360 | set | 
 
 
 
 
 | 361 | { | 
 
 
 
 
 | 362 | M41 = value.X; | 
 
 
 
 
 | 363 | M42 = value.Y; | 
 
 
 
 
 | 364 | M43 = value.Z; | 
 
 
 
 
 | 365 | } | 
 
 
 
 
 | 366 | } | 
 
 
 
 
 | 367 |  | 
 
 
 
 
 | 368 | public bool Equals(Matrix other) | 
 
 
 
 
 | 369 | { | 
 
 
 
 
 | 370 | return (M11 == other.M11 && M12 == other.M12 && M13 == other.M13 && M14 == other.M14 | 
 
 
 
 
 | 371 | && M21 == other.M21 && M22 == other.M22 && M23 == other.M23 && M24 == other.M24 | 
 
 
 
 
 | 372 | && M31 == other.M31 && M32 == other.M32 && M33 == other.M33 && M34 == other.M34 | 
 
 
 
 
 | 373 | && M41 == other.M41 && M42 == other.M42 && M43 == other.M43 && M44 == other.M44); | 
 
 
 
 
 | 374 | } | 
 
 
 
 
 | 375 |  | 
 
 
 
 
 | 376 | public override bool Equals(object obj) => obj is Matrix && Equals((Matrix)obj); | 
 
 
 
 
 | 377 |  | 
 
 
 
 
 | 378 | public override int GetHashCode() | 
 
 
 
 
 | 379 | { | 
 
 
 
 
 | 380 | return M11.GetHashCode() ^ M12.GetHashCode() ^ M13.GetHashCode() ^ M14.GetHashCode() | 
 
 
 
 
 | 381 | ^ M11.GetHashCode() ^ M12.GetHashCode() ^ M13.GetHashCode() ^ M14.GetHashCode() | 
 
 
 
 
 | 382 | ^ M11.GetHashCode() ^ M12.GetHashCode() ^ M13.GetHashCode() ^ M14.GetHashCode() | 
 
 
 
 
 | 383 | ^ M11.GetHashCode() ^ M12.GetHashCode() ^ M13.GetHashCode() ^ M14.GetHashCode(); | 
 
 
 
 
 | 384 | } | 
 
 
 
 
 | 385 |  | 
 
 
 
 
 | 386 | public override string ToString() | 
 
 
 
 
 | 387 | { | 
 
 
 
 
 | 388 | return string.Format("{{M11:{0} M12:{1} M13:{2} M14:{3}}}\n{{M21:{4} M22:{5} M23:{6} M24:{7}}}\n{{M31:{8} M32:{9} M33:{10} M34:{11}}}\n{{M41:{12} M42:{13} M43:{14} M44:{15}}}", | 
 
 
 
 
 | 389 | M11, M12, M13, M14, | 
 
 
 
 
 | 390 | M21, M22, M23, M24, | 
 
 
 
 
 | 391 | M31, M32, M33, M34, | 
 
 
 
 
 | 392 | M41, M42, M43, M44); | 
 
 
 
 
 | 393 | } | 
 
 
 
 
 | 394 |  | 
 
 
 
 
 | 395 | private static readonly Matrix identity = new Matrix( | 
 
 
 
 
 | 396 | 1.0f, 0.0f, 0.0f, 0.0f, | 
 
 
 
 
 | 397 | 0.0f, 1.0f, 0.0f, 0.0f, | 
 
 
 
 
 | 398 | 0.0f, 0.0f, 1.0f, 0.0f, | 
 
 
 
 
 | 399 | 0.0f, 0.0f, 0.0f, 1.0f); | 
 
 
 
 
 | 400 |  | 
 
 
 
 
 | 401 | public static Matrix Identity => identity; | 
 
 
 
 
 | 402 |  | 
 
 
 
 
 | 403 | public Vector3 ToEuler() | 
 
 
 
 
 | 404 | { | 
 
 
 
 
 | 405 | float a = M11; | 
 
 
 
 
 | 406 | float b = M21; | 
 
 
 
 
 | 407 | float c, s, r; | 
 
 
 
 
 | 408 |  | 
 
 
 
 
 | 409 | if (b == 0.0f) | 
 
 
 
 
 | 410 | { | 
 
 
 
 
 | 411 | c = FMath.Sign(a); | 
 
 
 
 
 | 412 | s = 0.0f; | 
 
 
 
 
 | 413 | r = Math.Abs(a); | 
 
 
 
 
 | 414 | } | 
 
 
 
 
 | 415 | else if (a == 0.0f) | 
 
 
 
 
 | 416 | { | 
 
 
 
 
 | 417 | c = 0.0f; | 
 
 
 
 
 | 418 | s = FMath.Sign(b); | 
 
 
 
 
 | 419 | r = Math.Abs(b); | 
 
 
 
 
 | 420 | } | 
 
 
 
 
 | 421 | else if (Math.Abs(b) > Math.Abs(a)) | 
 
 
 
 
 | 422 | { | 
 
 
 
 
 | 423 | float t = a / b; | 
 
 
 
 
 | 424 | float u = FMath.Sign(b) * FMath.Sqrt(1.0f + t * t); | 
 
 
 
 
 | 425 | s = 1.0f / u; | 
 
 
 
 
 | 426 | c = s * t; | 
 
 
 
 
 | 427 | r = b * u; | 
 
 
 
 
 | 428 | } | 
 
 
 
 
 | 429 | else | 
 
 
 
 
 | 430 | { | 
 
 
 
 
 | 431 | float t = b / a; | 
 
 
 
 
 | 432 | float u = FMath.Sign(a) * FMath.Sqrt(1.0f + t * t); | 
 
 
 
 
 | 433 | c = 1.0f / u; | 
 
 
 
 
 | 434 | s = c * t; | 
 
 
 
 
 | 435 | r = a * u; | 
 
 
 
 
 | 436 | } | 
 
 
 
 
 | 437 |  | 
 
 
 
 
 | 438 | Vector3 e; | 
 
 
 
 
 | 439 | e.Z = MathHelper.ToDegrees(-FMath.Atan2(s, c)); | 
 
 
 
 
 | 440 | e.Y = MathHelper.ToDegrees(FMath.Atan2(M31, r)); | 
 
 
 
 
 | 441 | e.X = MathHelper.ToDegrees(-FMath.Atan2(M32, M33)); | 
 
 
 
 
 | 442 | return e; | 
 
 
 
 
 | 443 | } | 
 
 
 
 
 | 444 |  | 
 
 
 
 
 | 445 | public float Determinant() | 
 
 
 
 
 | 446 | { | 
 
 
 
 
 | 447 | var m11 = M11; | 
 
 
 
 
 | 448 | var m12 = M12; | 
 
 
 
 
 | 449 | var m13 = M13; | 
 
 
 
 
 | 450 | var m14 = M14; | 
 
 
 
 
 | 451 | var m21 = M21; | 
 
 
 
 
 | 452 | var m22 = M22; | 
 
 
 
 
 | 453 | var m23 = M23; | 
 
 
 
 
 | 454 | var m24 = M24; | 
 
 
 
 
 | 455 | var m31 = M31; | 
 
 
 
 
 | 456 | var m32 = M32; | 
 
 
 
 
 | 457 | var m33 = M33; | 
 
 
 
 
 | 458 | var m34 = M34; | 
 
 
 
 
 | 459 | var m41 = M41; | 
 
 
 
 
 | 460 | var m42 = M42; | 
 
 
 
 
 | 461 | var m43 = M43; | 
 
 
 
 
 | 462 | var m44 = M44; | 
 
 
 
 
 | 463 |  | 
 
 
 
 
 | 464 | var d3434 = m33 * m44 - m34 * m43; | 
 
 
 
 
 | 465 | var d3424 = m32 * m44 - m34 * m42; | 
 
 
 
 
 | 466 | var d3423 = m32 * m43 - m33 * m42; | 
 
 
 
 
 | 467 | var d3414 = m31 * m44 - m34 * m41; | 
 
 
 
 
 | 468 | var d3413 = m31 * m43 - m33 * m41; | 
 
 
 
 
 | 469 | var d3412 = m31 * m42 - m32 * m41; | 
 
 
 
 
 | 470 |  | 
 
 
 
 
 | 471 | return m11 * (m22 * d3434 - m23 * d3424 + m24 * d3423) | 
 
 
 
 
 | 472 | - m12 * (m21 * d3434 - m23 * d3414 + m24 * d3413) | 
 
 
 
 
 | 473 | + m13 * (m21 * d3424 - m22 * d3414 + m24 * d3412) | 
 
 
 
 
 | 474 | - m14 * (m21 * d3423 - m22 * d3413 + m23 * d3412); | 
 
 
 
 
 | 475 | } | 
 
 
 
 
 | 476 |  | 
 
 
 
 
 | 477 | //Matrix m = Matrix.Identity; | 
 
 
 
 
 | 478 | //m *= Matrix.CreateScale(3.3f, 1.3f, 7.6f); | 
 
 
 
 
 | 479 | //m *= Matrix.CreateTranslation(2.3f, 4.5f, 6.7f); | 
 
 
 
 
 | 480 | //m *= Matrix.CreateRotationY(1.2f); | 
 
 
 
 
 | 481 | //m *= Matrix.CreateTranslation(2.3f, 4.5f, 6.7f); | 
 
 
 
 
 | 482 | //m *= Matrix.CreateRotationY(1.2f); | 
 
 
 
 
 | 483 | //m *= Matrix.CreateTranslation(2.3f, 4.5f, 6.7f); | 
 
 
 
 
 | 484 | //m *= Matrix.CreateRotationY(1.2f); | 
 
 
 
 
 | 485 |  | 
 
 
 
 
 | 486 | //Vector3 s, t; | 
 
 
 
 
 | 487 | //Quaternion r; | 
 
 
 
 
 | 488 | //m.Decompose(out s, out r, out t); | 
 
 
 
 
 | 489 | //Matrix m2 = Matrix.CreateScale(s) * Matrix.CreateFromQuaternion(r) * Matrix.CreateTranslation(t); | 
 
 
 
 
 | 490 |  | 
 
 
 
 
 | 491 | //Console.WriteLine(m2 - m); | 
 
 
 
 
 | 492 | //return 0; | 
 
 
 
 
 | 493 |  | 
 
 
 
 
 | 494 | //[StructLayout(LayoutKind.Sequential)] | 
 
 
 
 
 | 495 | //private unsafe struct VectorBasis | 
 
 
 
 
 | 496 | //{ | 
 
 
 
 
 | 497 | //    public Vector3* axis0; | 
 
 
 
 
 | 498 | //    public Vector3* axis1; | 
 
 
 
 
 | 499 | //    public Vector3* axis2; | 
 
 
 
 
 | 500 | //} | 
 
 
 
 
 | 501 |  | 
 
 
 
 
 | 502 | //[StructLayout(LayoutKind.Sequential)] | 
 
 
 
 
 | 503 | //private struct CanonicalBasis | 
 
 
 
 
 | 504 | //{ | 
 
 
 
 
 | 505 | //    public Vector3 axis0; | 
 
 
 
 
 | 506 | //    public Vector3 axis1; | 
 
 
 
 
 | 507 | //    public Vector3 axis2; | 
 
 
 
 
 | 508 | //} | 
 
 
 
 
 | 509 |  | 
 
 
 
 
 | 510 | //public unsafe bool Decompose(out Vector3 outScale, out Quaternion outRotation, out Vector3 outTranslation) | 
 
 
 
 
 | 511 | //{ | 
 
 
 
 
 | 512 | //    outTranslation.X = M41; | 
 
 
 
 
 | 513 | //    outTranslation.Y = M42; | 
 
 
 
 
 | 514 | //    outTranslation.Z = M43; | 
 
 
 
 
 | 515 |  | 
 
 
 
 
 | 516 | //    var rotation = new Matrix( | 
 
 
 
 
 | 517 | //        M11, M12, M13, 0.0f, | 
 
 
 
 
 | 518 | //        M21, M22, M23, 0.0f, | 
 
 
 
 
 | 519 | //        M31, M32, M33, 0.0f, | 
 
 
 
 
 | 520 | //        0.0f, 0.0f, 0.0f, 1.0f); | 
 
 
 
 
 | 521 |  | 
 
 
 
 
 | 522 | //    var vectorBasis = new VectorBasis { | 
 
 
 
 
 | 523 | //        axis0 = (Vector3*)&rotation.M11, | 
 
 
 
 
 | 524 | //        axis1 = (Vector3*)&rotation.M21, | 
 
 
 
 
 | 525 | //        axis2 = (Vector3*)&rotation.M31 | 
 
 
 
 
 | 526 | //    }; | 
 
 
 
 
 | 527 |  | 
 
 
 
 
 | 528 | //    var canonicalBasis = new CanonicalBasis { | 
 
 
 
 
 | 529 | //        axis0 = Vector3.UnitX, | 
 
 
 
 
 | 530 | //        axis1 = Vector3.UnitY, | 
 
 
 
 
 | 531 | //        axis2 = Vector3.UnitZ | 
 
 
 
 
 | 532 | //    }; | 
 
 
 
 
 | 533 |  | 
 
 
 
 
 | 534 | //    var scale = new Vector3( | 
 
 
 
 
 | 535 | //        vectorBasis.axis0->Length(), | 
 
 
 
 
 | 536 | //        vectorBasis.axis1->Length(), | 
 
 
 
 
 | 537 | //        vectorBasis.axis2->Length() | 
 
 
 
 
 | 538 | //    ); | 
 
 
 
 
 | 539 |  | 
 
 
 
 
 | 540 | //    int xi, yi, zi; | 
 
 
 
 
 | 541 |  | 
 
 
 
 
 | 542 | //    if (scale.X < scale.Y) | 
 
 
 
 
 | 543 | //    { | 
 
 
 
 
 | 544 | //        if (scale.Y < scale.Z) | 
 
 
 
 
 | 545 | //        { | 
 
 
 
 
 | 546 | //            xi = 2; | 
 
 
 
 
 | 547 | //            yi = 1; | 
 
 
 
 
 | 548 | //            zi = 0; | 
 
 
 
 
 | 549 | //        } | 
 
 
 
 
 | 550 | //        else | 
 
 
 
 
 | 551 | //        { | 
 
 
 
 
 | 552 | //            xi = 1; | 
 
 
 
 
 | 553 |  | 
 
 
 
 
 | 554 | //            if (scale.X < scale.Z) | 
 
 
 
 
 | 555 | //            { | 
 
 
 
 
 | 556 | //                yi = 2; | 
 
 
 
 
 | 557 | //                zi = 0; | 
 
 
 
 
 | 558 | //            } | 
 
 
 
 
 | 559 | //            else | 
 
 
 
 
 | 560 | //            { | 
 
 
 
 
 | 561 | //                yi = 0; | 
 
 
 
 
 | 562 | //                zi = 2; | 
 
 
 
 
 | 563 | //            } | 
 
 
 
 
 | 564 | //        } | 
 
 
 
 
 | 565 | //    } | 
 
 
 
 
 | 566 | //    else | 
 
 
 
 
 | 567 | //    { | 
 
 
 
 
 | 568 | //        if (scale.X < scale.Z) | 
 
 
 
 
 | 569 | //        { | 
 
 
 
 
 | 570 | //            xi = 2; | 
 
 
 
 
 | 571 | //            yi = 0; | 
 
 
 
 
 | 572 | //            zi = 1; | 
 
 
 
 
 | 573 | //        } | 
 
 
 
 
 | 574 | //        else | 
 
 
 
 
 | 575 | //        { | 
 
 
 
 
 | 576 | //            xi = 0; | 
 
 
 
 
 | 577 |  | 
 
 
 
 
 | 578 | //            if (scale.Y < scale.Z) | 
 
 
 
 
 | 579 | //            { | 
 
 
 
 
 | 580 | //                yi = 2; | 
 
 
 
 
 | 581 | //                zi = 1; | 
 
 
 
 
 | 582 | //            } | 
 
 
 
 
 | 583 | //            else | 
 
 
 
 
 | 584 | //            { | 
 
 
 
 
 | 585 | //                yi = 1; | 
 
 
 
 
 | 586 | //                zi = 2; | 
 
 
 
 
 | 587 | //            } | 
 
 
 
 
 | 588 | //        } | 
 
 
 
 
 | 589 | //    } | 
 
 
 
 
 | 590 |  | 
 
 
 
 
 | 591 | //    var pScale = &scale.X; | 
 
 
 
 
 | 592 |  | 
 
 
 
 
 | 593 | //    var pvBasis = &vectorBasis.axis0; | 
 
 
 
 
 | 594 | //    var pcBasis = &canonicalBasis.axis0; | 
 
 
 
 
 | 595 |  | 
 
 
 
 
 | 596 | //    if (pScale[xi] < 0.0001f) | 
 
 
 
 
 | 597 | //    { | 
 
 
 
 
 | 598 | //        // | 
 
 
 
 
 | 599 | //        // If the smallest scale is < 0.0001 then use the coresponding cannonical basis instead | 
 
 
 
 
 | 600 | //        // | 
 
 
 
 
 | 601 |  | 
 
 
 
 
 | 602 | //        pvBasis[xi] = &pcBasis[xi]; | 
 
 
 
 
 | 603 | //    } | 
 
 
 
 
 | 604 | //    else | 
 
 
 
 
 | 605 | //    { | 
 
 
 
 
 | 606 | //        pvBasis[xi]->Normalize(); | 
 
 
 
 
 | 607 | //    } | 
 
 
 
 
 | 608 |  | 
 
 
 
 
 | 609 | //    if (pScale[yi] < 0.0001f) | 
 
 
 
 
 | 610 | //    { | 
 
 
 
 
 | 611 | //        // | 
 
 
 
 
 | 612 | //        // The second smallest scale is < 0.0001 too, build a perpendicular vector | 
 
 
 
 
 | 613 | //        // | 
 
 
 
 
 | 614 |  | 
 
 
 
 
 | 615 | //        float fx = Math.Abs(pvBasis[xi]->X); | 
 
 
 
 
 | 616 | //        float fy = Math.Abs(pvBasis[xi]->Y); | 
 
 
 
 
 | 617 | //        float fz = Math.Abs(pvBasis[xi]->Z); | 
 
 
 
 
 | 618 |  | 
 
 
 
 
 | 619 | //        int yij; | 
 
 
 
 
 | 620 |  | 
 
 
 
 
 | 621 | //        if (fx < fy) | 
 
 
 
 
 | 622 | //        { | 
 
 
 
 
 | 623 | //            if (fy < fz) | 
 
 
 
 
 | 624 | //            { | 
 
 
 
 
 | 625 | //                yij = 0; | 
 
 
 
 
 | 626 | //            } | 
 
 
 
 
 | 627 | //            else | 
 
 
 
 
 | 628 | //            { | 
 
 
 
 
 | 629 | //                if (fx < fz) | 
 
 
 
 
 | 630 | //                    yij = 0; | 
 
 
 
 
 | 631 | //                else | 
 
 
 
 
 | 632 | //                    yij = 2; | 
 
 
 
 
 | 633 | //            } | 
 
 
 
 
 | 634 | //        } | 
 
 
 
 
 | 635 | //        else | 
 
 
 
 
 | 636 | //        { | 
 
 
 
 
 | 637 | //            if (fx < fz) | 
 
 
 
 
 | 638 | //            { | 
 
 
 
 
 | 639 | //                yij = 1; | 
 
 
 
 
 | 640 | //            } | 
 
 
 
 
 | 641 | //            else | 
 
 
 
 
 | 642 | //            { | 
 
 
 
 
 | 643 | //                if (fy < fz) | 
 
 
 
 
 | 644 | //                    yij = 1; | 
 
 
 
 
 | 645 | //                else | 
 
 
 
 
 | 646 | //                    yij = 2; | 
 
 
 
 
 | 647 | //            } | 
 
 
 
 
 | 648 | //        } | 
 
 
 
 
 | 649 |  | 
 
 
 
 
 | 650 | //        pcBasis[yij] = Vector3.Cross(*pvBasis[yi], *pvBasis[xi]); | 
 
 
 
 
 | 651 | //    } | 
 
 
 
 
 | 652 |  | 
 
 
 
 
 | 653 | //    pvBasis[yi]->Normalize(); | 
 
 
 
 
 | 654 |  | 
 
 
 
 
 | 655 | //    if (pScale[zi] < 0.0001f) | 
 
 
 
 
 | 656 | //        *(pvBasis[zi]) = Vector3.Cross(*pvBasis[yi], *pvBasis[xi]); | 
 
 
 
 
 | 657 | //    else | 
 
 
 
 
 | 658 | //        pvBasis[zi]->Normalize(); | 
 
 
 
 
 | 659 |  | 
 
 
 
 
 | 660 | //    float rotDet = rotation.Determinant(); | 
 
 
 
 
 | 661 |  | 
 
 
 
 
 | 662 | //    if (rotDet < 0.0f) | 
 
 
 
 
 | 663 | //    { | 
 
 
 
 
 | 664 | //        pScale[xi] = -pScale[xi]; | 
 
 
 
 
 | 665 | //        *(pvBasis[xi]) = -(*(pvBasis[xi])); | 
 
 
 
 
 | 666 | //        rotDet = -rotDet; | 
 
 
 
 
 | 667 | //    } | 
 
 
 
 
 | 668 |  | 
 
 
 
 
 | 669 | //    outScale = scale; | 
 
 
 
 
 | 670 |  | 
 
 
 
 
 | 671 | //    if (Math.Abs(rotDet - 1.0f) > 0.01f) | 
 
 
 
 
 | 672 | //    { | 
 
 
 
 
 | 673 | //        outRotation = Quaternion.Identity; | 
 
 
 
 
 | 674 | //        return false; | 
 
 
 
 
 | 675 | //    } | 
 
 
 
 
 | 676 | //    else | 
 
 
 
 
 | 677 | //    { | 
 
 
 
 
 | 678 | //        outRotation = Quaternion.CreateFromRotationMatrix(rotation); | 
 
 
 
 
 | 679 | //        return true; | 
 
 
 
 
 | 680 | //    } | 
 
 
 
 
 | 681 | //} | 
 
 
 
 
 | 682 | } | 
 
 
 
 
 | 683 | } |