| 1 | 
 using System; | 
 
 
 
 
 
 | 2 | 
  | 
 
 
 
 
 
 | 3 | 
 namespace Oni | 
 
 
 
 
 
 | 4 | 
 { | 
 
 
 
 
 
 | 5 | 
     internal struct Matrix : IEquatable<Matrix> | 
 
 
 
 
 
 | 6 | 
     { | 
 
 
 
 
 
 | 7 | 
         public float M11, M12, M13, M14; | 
 
 
 
 
 
 | 8 | 
         public float M21, M22, M23, M24; | 
 
 
 
 
 
 | 9 | 
         public float M31, M32, M33, M34; | 
 
 
 
 
 
 | 10 | 
         public float M41, M42, M43, M44; | 
 
 
 
 
 
 | 11 | 
  | 
 
 
 
 
 
 | 12 | 
         public Matrix(float m11, float m12, float m13, float m14, | 
 
 
 
 
 
 | 13 | 
             float m21, float m22, float m23, float m24, | 
 
 
 
 
 
 | 14 | 
             float m31, float m32, float m33, float m34, | 
 
 
 
 
 
 | 15 | 
             float m41, float m42, float m43, float m44) | 
 
 
 
 
 
 | 16 | 
         { | 
 
 
 
 
 
 | 17 | 
             M11 = m11; M12 = m12; M13 = m13; M14 = m14; | 
 
 
 
 
 
 | 18 | 
             M21 = m21; M22 = m22; M23 = m23; M24 = m24; | 
 
 
 
 
 
 | 19 | 
             M31 = m31; M32 = m32; M33 = m33; M34 = m34; | 
 
 
 
 
 
 | 20 | 
             M41 = m41; M42 = m42; M43 = m43; M44 = m44; | 
 
 
 
 
 
 | 21 | 
         } | 
 
 
 
 
 
 | 22 | 
  | 
 
 
 
 
 
 | 23 | 
         public Matrix(float[] values) | 
 
 
 
 
 
 | 24 | 
         { | 
 
 
 
 
 
 | 25 | 
             M11 = values[0]; M12 = values[4]; M13 = values[8]; M14 = values[12]; | 
 
 
 
 
 
 | 26 | 
             M21 = values[1]; M22 = values[5]; M23 = values[9]; M24 = values[13]; | 
 
 
 
 
 
 | 27 | 
             M31 = values[2]; M32 = values[6]; M33 = values[10]; M34 = values[14]; | 
 
 
 
 
 
 | 28 | 
             M41 = values[3]; M42 = values[7]; M43 = values[11]; M44 = values[15]; | 
 
 
 
 
 
 | 29 | 
         } | 
 
 
 
 
 
 | 30 | 
  | 
 
 
 
 
 
 | 31 | 
         public void CopyTo(float[] values) | 
 
 
 
 
 
 | 32 | 
         { | 
 
 
 
 
 
 | 33 | 
             values[0] = M11; | 
 
 
 
 
 
 | 34 | 
             values[1] = M21; | 
 
 
 
 
 
 | 35 | 
             values[2] = M31; | 
 
 
 
 
 
 | 36 | 
             values[3] = M41; | 
 
 
 
 
 
 | 37 | 
  | 
 
 
 
 
 
 | 38 | 
             values[4] = M12; | 
 
 
 
 
 
 | 39 | 
             values[5] = M22; | 
 
 
 
 
 
 | 40 | 
             values[6] = M32; | 
 
 
 
 
 
 | 41 | 
             values[7] = M42; | 
 
 
 
 
 
 | 42 | 
  | 
 
 
 
 
 
 | 43 | 
             values[8] = M13; | 
 
 
 
 
 
 | 44 | 
             values[9] = M23; | 
 
 
 
 
 
 | 45 | 
             values[10] = M33; | 
 
 
 
 
 
 | 46 | 
             values[11] = M43; | 
 
 
 
 
 
 | 47 | 
  | 
 
 
 
 
 
 | 48 | 
             values[12] = M14; | 
 
 
 
 
 
 | 49 | 
             values[13] = M24; | 
 
 
 
 
 
 | 50 | 
             values[14] = M34; | 
 
 
 
 
 
 | 51 | 
             values[15] = M44; | 
 
 
 
 
 
 | 52 | 
         } | 
 
 
 
 
 
 | 53 | 
  | 
 
 
 
 
 
 | 54 | 
         public static Matrix CreateTranslation(float x, float y, float z) | 
 
 
 
 
 
 | 55 | 
         { | 
 
 
 
 
 
 | 56 | 
             Matrix r = Identity; | 
 
 
 
 
 
 | 57 | 
  | 
 
 
 
 
 
 | 58 | 
             r.M41 = x; | 
 
 
 
 
 
 | 59 | 
             r.M42 = y; | 
 
 
 
 
 
 | 60 | 
             r.M43 = z; | 
 
 
 
 
 
 | 61 | 
  | 
 
 
 
 
 
 | 62 | 
             return r; | 
 
 
 
 
 
 | 63 | 
         } | 
 
 
 
 
 
 | 64 | 
  | 
 
 
 
 
 
 | 65 | 
         public static Matrix CreateTranslation(Vector3 v) => CreateTranslation(v.X, v.Y, v.Z); | 
 
 
 
 
 
 | 66 | 
  | 
 
 
 
 
 
 | 67 | 
         public static Matrix CreateScale(float sx, float sy, float sz) | 
 
 
 
 
 
 | 68 | 
         { | 
 
 
 
 
 
 | 69 | 
             Matrix r = Identity; | 
 
 
 
 
 
 | 70 | 
  | 
 
 
 
 
 
 | 71 | 
             r.M11 = sx; | 
 
 
 
 
 
 | 72 | 
             r.M22 = sy; | 
 
 
 
 
 
 | 73 | 
             r.M33 = sz; | 
 
 
 
 
 
 | 74 | 
  | 
 
 
 
 
 
 | 75 | 
             return r; | 
 
 
 
 
 
 | 76 | 
         } | 
 
 
 
 
 
 | 77 | 
  | 
 
 
 
 
 
 | 78 | 
         public static Matrix CreateScale(float s) => CreateScale(s, s, s); | 
 
 
 
 
 
 | 79 | 
         public static Matrix CreateScale(Vector3 s) => CreateScale(s.X, s.Y, s.Z); | 
 
 
 
 
 
 | 80 | 
  | 
 
 
 
 
 
 | 81 | 
         public static Matrix CreateRotationX(float angle) | 
 
 
 
 
 
 | 82 | 
         { | 
 
 
 
 
 
 | 83 | 
             float cos = FMath.Cos(angle); | 
 
 
 
 
 
 | 84 | 
             float sin = FMath.Sin(angle); | 
 
 
 
 
 
 | 85 | 
  | 
 
 
 
 
 
 | 86 | 
             Matrix r = Identity; | 
 
 
 
 
 
 | 87 | 
             r.M22 = cos; | 
 
 
 
 
 
 | 88 | 
             r.M23 = sin; | 
 
 
 
 
 
 | 89 | 
             r.M32 = -sin; | 
 
 
 
 
 
 | 90 | 
             r.M33 = cos; | 
 
 
 
 
 
 | 91 | 
             return r; | 
 
 
 
 
 
 | 92 | 
         } | 
 
 
 
 
 
 | 93 | 
  | 
 
 
 
 
 
 | 94 | 
         public static Matrix CreateRotationY(float angle) | 
 
 
 
 
 
 | 95 | 
         { | 
 
 
 
 
 
 | 96 | 
             float cos = FMath.Cos(angle); | 
 
 
 
 
 
 | 97 | 
             float sin = FMath.Sin(angle); | 
 
 
 
 
 
 | 98 | 
  | 
 
 
 
 
 
 | 99 | 
             Matrix r = Identity; | 
 
 
 
 
 
 | 100 | 
             r.M11 = cos; | 
 
 
 
 
 
 | 101 | 
             r.M13 = -sin; | 
 
 
 
 
 
 | 102 | 
             r.M31 = sin; | 
 
 
 
 
 
 | 103 | 
             r.M33 = cos; | 
 
 
 
 
 
 | 104 | 
             return r; | 
 
 
 
 
 
 | 105 | 
         } | 
 
 
 
 
 
 | 106 | 
  | 
 
 
 
 
 
 | 107 | 
         public static Matrix CreateRotationZ(float angle) | 
 
 
 
 
 
 | 108 | 
         { | 
 
 
 
 
 
 | 109 | 
             float cos = FMath.Cos(angle); | 
 
 
 
 
 
 | 110 | 
             float sin = FMath.Sin(angle); | 
 
 
 
 
 
 | 111 | 
  | 
 
 
 
 
 
 | 112 | 
             Matrix r = Identity; | 
 
 
 
 
 
 | 113 | 
             r.M11 = cos; | 
 
 
 
 
 
 | 114 | 
             r.M12 = sin; | 
 
 
 
 
 
 | 115 | 
             r.M21 = -sin; | 
 
 
 
 
 
 | 116 | 
             r.M22 = cos; | 
 
 
 
 
 
 | 117 | 
             return r; | 
 
 
 
 
 
 | 118 | 
         } | 
 
 
 
 
 
 | 119 | 
  | 
 
 
 
 
 
 | 120 | 
         public static Matrix CreateFromAxisAngle(Vector3 axis, float angle) | 
 
 
 
 
 
 | 121 | 
         { | 
 
 
 
 
 
 | 122 | 
             float sin = FMath.Sin(angle); | 
 
 
 
 
 
 | 123 | 
             float cos = FMath.Cos(angle); | 
 
 
 
 
 
 | 124 | 
  | 
 
 
 
 
 
 | 125 | 
             float x = axis.X; | 
 
 
 
 
 
 | 126 | 
             float y = axis.Y; | 
 
 
 
 
 
 | 127 | 
             float z = axis.Z; | 
 
 
 
 
 
 | 128 | 
             float xx = x * x; | 
 
 
 
 
 
 | 129 | 
             float yy = y * y; | 
 
 
 
 
 
 | 130 | 
             float zz = z * z; | 
 
 
 
 
 
 | 131 | 
             float xy = x * y; | 
 
 
 
 
 
 | 132 | 
             float xz = x * z; | 
 
 
 
 
 
 | 133 | 
             float yz = y * z; | 
 
 
 
 
 
 | 134 | 
  | 
 
 
 
 
 
 | 135 | 
             Matrix r = Identity; | 
 
 
 
 
 
 | 136 | 
             r.M11 = xx + (cos * (1.0f - xx)); | 
 
 
 
 
 
 | 137 | 
             r.M12 = (xy - (cos * xy)) + (sin * z); | 
 
 
 
 
 
 | 138 | 
             r.M13 = (xz - (cos * xz)) - (sin * y); | 
 
 
 
 
 
 | 139 | 
             r.M21 = (xy - (cos * xy)) - (sin * z); | 
 
 
 
 
 
 | 140 | 
             r.M22 = yy + (cos * (1.0f - yy)); | 
 
 
 
 
 
 | 141 | 
             r.M23 = (yz - (cos * yz)) + (sin * x); | 
 
 
 
 
 
 | 142 | 
             r.M31 = (xz - (cos * xz)) + (sin * y); | 
 
 
 
 
 
 | 143 | 
             r.M32 = (yz - (cos * yz)) - (sin * x); | 
 
 
 
 
 
 | 144 | 
             r.M33 = zz + (cos * (1.0f - zz)); | 
 
 
 
 
 
 | 145 | 
             return r; | 
 
 
 
 
 
 | 146 | 
         } | 
 
 
 
 
 
 | 147 | 
  | 
 
 
 
 
 
 | 148 | 
         public static Matrix CreateFromQuaternion(Quaternion q) | 
 
 
 
 
 
 | 149 | 
         { | 
 
 
 
 
 
 | 150 | 
             float xx = q.X * q.X; | 
 
 
 
 
 
 | 151 | 
             float yy = q.Y * q.Y; | 
 
 
 
 
 
 | 152 | 
             float zz = q.Z * q.Z; | 
 
 
 
 
 
 | 153 | 
             float xy = q.X * q.Y; | 
 
 
 
 
 
 | 154 | 
             float zw = q.Z * q.W; | 
 
 
 
 
 
 | 155 | 
             float zx = q.Z * q.X; | 
 
 
 
 
 
 | 156 | 
             float yw = q.Y * q.W; | 
 
 
 
 
 
 | 157 | 
             float yz = q.Y * q.Z; | 
 
 
 
 
 
 | 158 | 
             float xw = q.X * q.W; | 
 
 
 
 
 
 | 159 | 
  | 
 
 
 
 
 
 | 160 | 
             Matrix r = Identity; | 
 
 
 
 
 
 | 161 | 
  | 
 
 
 
 
 
 | 162 | 
             r.M11 = 1.0f - 2.0f * (yy + zz); | 
 
 
 
 
 
 | 163 | 
             r.M12 = 2.0f * (xy + zw); | 
 
 
 
 
 
 | 164 | 
             r.M13 = 2.0f * (zx - yw); | 
 
 
 
 
 
 | 165 | 
  | 
 
 
 
 
 
 | 166 | 
             r.M21 = 2.0f * (xy - zw); | 
 
 
 
 
 
 | 167 | 
             r.M22 = 1.0f - 2.0f * (zz + xx); | 
 
 
 
 
 
 | 168 | 
             r.M23 = 2.0f * (yz + xw); | 
 
 
 
 
 
 | 169 | 
  | 
 
 
 
 
 
 | 170 | 
             r.M31 = 2.0f * (zx + yw); | 
 
 
 
 
 
 | 171 | 
             r.M32 = 2.0f * (yz - xw); | 
 
 
 
 
 
 | 172 | 
             r.M33 = 1.0f - 2.0f * (yy + xx); | 
 
 
 
 
 
 | 173 | 
  | 
 
 
 
 
 
 | 174 | 
             return r; | 
 
 
 
 
 
 | 175 | 
         } | 
 
 
 
 
 
 | 176 | 
  | 
 
 
 
 
 
 | 177 | 
         public static Matrix operator +(Matrix m1, Matrix m2) | 
 
 
 
 
 
 | 178 | 
         { | 
 
 
 
 
 
 | 179 | 
             m1.M11 += m2.M11; | 
 
 
 
 
 
 | 180 | 
             m1.M12 += m2.M12; | 
 
 
 
 
 
 | 181 | 
             m1.M13 += m2.M13; | 
 
 
 
 
 
 | 182 | 
             m1.M14 += m2.M14; | 
 
 
 
 
 
 | 183 | 
             m1.M21 += m2.M21; | 
 
 
 
 
 
 | 184 | 
             m1.M22 += m2.M22; | 
 
 
 
 
 
 | 185 | 
             m1.M23 += m2.M23; | 
 
 
 
 
 
 | 186 | 
             m1.M24 += m2.M24; | 
 
 
 
 
 
 | 187 | 
             m1.M31 += m2.M31; | 
 
 
 
 
 
 | 188 | 
             m1.M32 += m2.M32; | 
 
 
 
 
 
 | 189 | 
             m1.M33 += m2.M33; | 
 
 
 
 
 
 | 190 | 
             m1.M34 += m2.M34; | 
 
 
 
 
 
 | 191 | 
             m1.M41 += m2.M41; | 
 
 
 
 
 
 | 192 | 
             m1.M42 += m2.M42; | 
 
 
 
 
 
 | 193 | 
             m1.M43 += m2.M43; | 
 
 
 
 
 
 | 194 | 
             m1.M44 += m2.M44; | 
 
 
 
 
 
 | 195 | 
  | 
 
 
 
 
 
 | 196 | 
             return m1; | 
 
 
 
 
 
 | 197 | 
         } | 
 
 
 
 
 
 | 198 | 
  | 
 
 
 
 
 
 | 199 | 
         public static Matrix operator -(Matrix m1, Matrix m2) | 
 
 
 
 
 
 | 200 | 
         { | 
 
 
 
 
 
 | 201 | 
             m1.M11 -= m2.M11; | 
 
 
 
 
 
 | 202 | 
             m1.M12 -= m2.M12; | 
 
 
 
 
 
 | 203 | 
             m1.M13 -= m2.M13; | 
 
 
 
 
 
 | 204 | 
             m1.M14 -= m2.M14; | 
 
 
 
 
 
 | 205 | 
             m1.M21 -= m2.M21; | 
 
 
 
 
 
 | 206 | 
             m1.M22 -= m2.M22; | 
 
 
 
 
 
 | 207 | 
             m1.M23 -= m2.M23; | 
 
 
 
 
 
 | 208 | 
             m1.M24 -= m2.M24; | 
 
 
 
 
 
 | 209 | 
             m1.M31 -= m2.M31; | 
 
 
 
 
 
 | 210 | 
             m1.M32 -= m2.M32; | 
 
 
 
 
 
 | 211 | 
             m1.M33 -= m2.M33; | 
 
 
 
 
 
 | 212 | 
             m1.M34 -= m2.M34; | 
 
 
 
 
 
 | 213 | 
             m1.M41 -= m2.M41; | 
 
 
 
 
 
 | 214 | 
             m1.M42 -= m2.M42; | 
 
 
 
 
 
 | 215 | 
             m1.M43 -= m2.M43; | 
 
 
 
 
 
 | 216 | 
             m1.M44 -= m2.M44; | 
 
 
 
 
 
 | 217 | 
  | 
 
 
 
 
 
 | 218 | 
             return m1; | 
 
 
 
 
 
 | 219 | 
         } | 
 
 
 
 
 
 | 220 | 
  | 
 
 
 
 
 
 | 221 | 
         public static Matrix operator *(Matrix m, float s) | 
 
 
 
 
 
 | 222 | 
         { | 
 
 
 
 
 
 | 223 | 
             m.M11 *= s; | 
 
 
 
 
 
 | 224 | 
             m.M12 *= s; | 
 
 
 
 
 
 | 225 | 
             m.M13 *= s; | 
 
 
 
 
 
 | 226 | 
             m.M14 *= s; | 
 
 
 
 
 
 | 227 | 
             m.M21 *= s; | 
 
 
 
 
 
 | 228 | 
             m.M22 *= s; | 
 
 
 
 
 
 | 229 | 
             m.M23 *= s; | 
 
 
 
 
 
 | 230 | 
             m.M24 *= s; | 
 
 
 
 
 
 | 231 | 
             m.M31 *= s; | 
 
 
 
 
 
 | 232 | 
             m.M32 *= s; | 
 
 
 
 
 
 | 233 | 
             m.M33 *= s; | 
 
 
 
 
 
 | 234 | 
             m.M34 *= s; | 
 
 
 
 
 
 | 235 | 
             m.M41 *= s; | 
 
 
 
 
 
 | 236 | 
             m.M42 *= s; | 
 
 
 
 
 
 | 237 | 
             m.M43 *= s; | 
 
 
 
 
 
 | 238 | 
             m.M44 *= s; | 
 
 
 
 
 
 | 239 | 
  | 
 
 
 
 
 
 | 240 | 
             return m; | 
 
 
 
 
 
 | 241 | 
         } | 
 
 
 
 
 
 | 242 | 
  | 
 
 
 
 
 
 | 243 | 
         public static Matrix operator *(float s, Matrix m) => m * s; | 
 
 
 
 
 
 | 244 | 
  | 
 
 
 
 
 
 | 245 | 
         public static Matrix operator /(Matrix m, float s) => m * (1.0f / s); | 
 
 
 
 
 
 | 246 | 
  | 
 
 
 
 
 
 | 247 | 
         public static Matrix operator *(Matrix m1, Matrix m2) | 
 
 
 
 
 
 | 248 | 
         { | 
 
 
 
 
 
 | 249 | 
             Matrix r; | 
 
 
 
 
 
 | 250 | 
  | 
 
 
 
 
 
 | 251 | 
             r.M11 = m1.M11 * m2.M11 + m1.M12 * m2.M21 + m1.M13 * m2.M31 + m1.M14 * m2.M41; | 
 
 
 
 
 
 | 252 | 
             r.M12 = m1.M11 * m2.M12 + m1.M12 * m2.M22 + m1.M13 * m2.M32 + m1.M14 * m2.M42; | 
 
 
 
 
 
 | 253 | 
             r.M13 = m1.M11 * m2.M13 + m1.M12 * m2.M23 + m1.M13 * m2.M33 + m1.M14 * m2.M43; | 
 
 
 
 
 
 | 254 | 
             r.M14 = m1.M11 * m2.M14 + m1.M12 * m2.M24 + m1.M13 * m2.M34 + m1.M14 * m2.M44; | 
 
 
 
 
 
 | 255 | 
             r.M21 = m1.M21 * m2.M11 + m1.M22 * m2.M21 + m1.M23 * m2.M31 + m1.M24 * m2.M41; | 
 
 
 
 
 
 | 256 | 
             r.M22 = m1.M21 * m2.M12 + m1.M22 * m2.M22 + m1.M23 * m2.M32 + m1.M24 * m2.M42; | 
 
 
 
 
 
 | 257 | 
             r.M23 = m1.M21 * m2.M13 + m1.M22 * m2.M23 + m1.M23 * m2.M33 + m1.M24 * m2.M43; | 
 
 
 
 
 
 | 258 | 
             r.M24 = m1.M21 * m2.M14 + m1.M22 * m2.M24 + m1.M23 * m2.M34 + m1.M24 * m2.M44; | 
 
 
 
 
 
 | 259 | 
             r.M31 = m1.M31 * m2.M11 + m1.M32 * m2.M21 + m1.M33 * m2.M31 + m1.M34 * m2.M41; | 
 
 
 
 
 
 | 260 | 
             r.M32 = m1.M31 * m2.M12 + m1.M32 * m2.M22 + m1.M33 * m2.M32 + m1.M34 * m2.M42; | 
 
 
 
 
 
 | 261 | 
             r.M33 = m1.M31 * m2.M13 + m1.M32 * m2.M23 + m1.M33 * m2.M33 + m1.M34 * m2.M43; | 
 
 
 
 
 
 | 262 | 
             r.M34 = m1.M31 * m2.M14 + m1.M32 * m2.M24 + m1.M33 * m2.M34 + m1.M34 * m2.M44; | 
 
 
 
 
 
 | 263 | 
             r.M41 = m1.M41 * m2.M11 + m1.M42 * m2.M21 + m1.M43 * m2.M31 + m1.M44 * m2.M41; | 
 
 
 
 
 
 | 264 | 
             r.M42 = m1.M41 * m2.M12 + m1.M42 * m2.M22 + m1.M43 * m2.M32 + m1.M44 * m2.M42; | 
 
 
 
 
 
 | 265 | 
             r.M43 = m1.M41 * m2.M13 + m1.M42 * m2.M23 + m1.M43 * m2.M33 + m1.M44 * m2.M43; | 
 
 
 
 
 
 | 266 | 
             r.M44 = m1.M41 * m2.M14 + m1.M42 * m2.M24 + m1.M43 * m2.M34 + m1.M44 * m2.M44; | 
 
 
 
 
 
 | 267 | 
  | 
 
 
 
 
 
 | 268 | 
             return r; | 
 
 
 
 
 
 | 269 | 
         } | 
 
 
 
 
 
 | 270 | 
  | 
 
 
 
 
 
 | 271 | 
         public Matrix Transpose() | 
 
 
 
 
 
 | 272 | 
         { | 
 
 
 
 
 
 | 273 | 
             Matrix t; | 
 
 
 
 
 
 | 274 | 
  | 
 
 
 
 
 
 | 275 | 
             t.M11 = M11; | 
 
 
 
 
 
 | 276 | 
             t.M12 = M21; | 
 
 
 
 
 
 | 277 | 
             t.M13 = M31; | 
 
 
 
 
 
 | 278 | 
             t.M14 = M41; | 
 
 
 
 
 
 | 279 | 
             t.M21 = M12; | 
 
 
 
 
 
 | 280 | 
             t.M22 = M22; | 
 
 
 
 
 
 | 281 | 
             t.M23 = M32; | 
 
 
 
 
 
 | 282 | 
             t.M24 = M42; | 
 
 
 
 
 
 | 283 | 
             t.M31 = M13; | 
 
 
 
 
 
 | 284 | 
             t.M32 = M23; | 
 
 
 
 
 
 | 285 | 
             t.M33 = M33; | 
 
 
 
 
 
 | 286 | 
             t.M34 = M43; | 
 
 
 
 
 
 | 287 | 
             t.M41 = M14; | 
 
 
 
 
 
 | 288 | 
             t.M42 = M24; | 
 
 
 
 
 
 | 289 | 
             t.M43 = M34; | 
 
 
 
 
 
 | 290 | 
             t.M44 = M44; | 
 
 
 
 
 
 | 291 | 
  | 
 
 
 
 
 
 | 292 | 
             return t; | 
 
 
 
 
 
 | 293 | 
         } | 
 
 
 
 
 
 | 294 | 
  | 
 
 
 
 
 
 | 295 | 
         public static bool operator ==(Matrix m1, Matrix m2) => m1.Equals(m2); | 
 
 
 
 
 
 | 296 | 
         public static bool operator !=(Matrix m1, Matrix m2) => !m1.Equals(m2); | 
 
 
 
 
 
 | 297 | 
  | 
 
 
 
 
 
 | 298 | 
         public Vector3 XAxis | 
 
 
 
 
 
 | 299 | 
         { | 
 
 
 
 
 
 | 300 | 
             get | 
 
 
 
 
 
 | 301 | 
             { | 
 
 
 
 
 
 | 302 | 
                 return new Vector3(M11, M12, M13); | 
 
 
 
 
 
 | 303 | 
             } | 
 
 
 
 
 
 | 304 | 
             set | 
 
 
 
 
 
 | 305 | 
             { | 
 
 
 
 
 
 | 306 | 
                 M11 = value.X; | 
 
 
 
 
 
 | 307 | 
                 M12 = value.Y; | 
 
 
 
 
 
 | 308 | 
                 M13 = value.Z; | 
 
 
 
 
 
 | 309 | 
             } | 
 
 
 
 
 
 | 310 | 
         } | 
 
 
 
 
 
 | 311 | 
  | 
 
 
 
 
 
 | 312 | 
         public Vector3 YAxis | 
 
 
 
 
 
 | 313 | 
         { | 
 
 
 
 
 
 | 314 | 
             get | 
 
 
 
 
 
 | 315 | 
             { | 
 
 
 
 
 
 | 316 | 
                 return new Vector3(M21, M22, M23); | 
 
 
 
 
 
 | 317 | 
             } | 
 
 
 
 
 
 | 318 | 
             set | 
 
 
 
 
 
 | 319 | 
             { | 
 
 
 
 
 
 | 320 | 
                 M21 = value.X; | 
 
 
 
 
 
 | 321 | 
                 M22 = value.Y; | 
 
 
 
 
 
 | 322 | 
                 M23 = value.Z; | 
 
 
 
 
 
 | 323 | 
             } | 
 
 
 
 
 
 | 324 | 
         } | 
 
 
 
 
 
 | 325 | 
  | 
 
 
 
 
 
 | 326 | 
         public Vector3 ZAxis | 
 
 
 
 
 
 | 327 | 
         { | 
 
 
 
 
 
 | 328 | 
             get | 
 
 
 
 
 
 | 329 | 
             { | 
 
 
 
 
 
 | 330 | 
                 return new Vector3(M31, M32, M33); | 
 
 
 
 
 
 | 331 | 
             } | 
 
 
 
 
 
 | 332 | 
             set | 
 
 
 
 
 
 | 333 | 
             { | 
 
 
 
 
 
 | 334 | 
                 M31 = value.X; | 
 
 
 
 
 
 | 335 | 
                 M32 = value.Y; | 
 
 
 
 
 
 | 336 | 
                 M33 = value.Z; | 
 
 
 
 
 
 | 337 | 
             } | 
 
 
 
 
 
 | 338 | 
         } | 
 
 
 
 
 
 | 339 | 
  | 
 
 
 
 
 
 | 340 | 
         public Vector3 Scale | 
 
 
 
 
 
 | 341 | 
         { | 
 
 
 
 
 
 | 342 | 
             get | 
 
 
 
 
 
 | 343 | 
             { | 
 
 
 
 
 
 | 344 | 
                 return new Vector3(M11, M22, M33); | 
 
 
 
 
 
 | 345 | 
             } | 
 
 
 
 
 
 | 346 | 
             set | 
 
 
 
 
 
 | 347 | 
             { | 
 
 
 
 
 
 | 348 | 
                 M11 = value.X; | 
 
 
 
 
 
 | 349 | 
                 M22 = value.Y; | 
 
 
 
 
 
 | 350 | 
                 M33 = value.Z; | 
 
 
 
 
 
 | 351 | 
             } | 
 
 
 
 
 
 | 352 | 
         } | 
 
 
 
 
 
 | 353 | 
  | 
 
 
 
 
 
 | 354 | 
         public Vector3 Translation | 
 
 
 
 
 
 | 355 | 
         { | 
 
 
 
 
 
 | 356 | 
             get | 
 
 
 
 
 
 | 357 | 
             { | 
 
 
 
 
 
 | 358 | 
                 return new Vector3(M41, M42, M43); | 
 
 
 
 
 
 | 359 | 
             } | 
 
 
 
 
 
 | 360 | 
             set | 
 
 
 
 
 
 | 361 | 
             { | 
 
 
 
 
 
 | 362 | 
                 M41 = value.X; | 
 
 
 
 
 
 | 363 | 
                 M42 = value.Y; | 
 
 
 
 
 
 | 364 | 
                 M43 = value.Z; | 
 
 
 
 
 
 | 365 | 
             } | 
 
 
 
 
 
 | 366 | 
         } | 
 
 
 
 
 
 | 367 | 
  | 
 
 
 
 
 
 | 368 | 
         public bool Equals(Matrix other) | 
 
 
 
 
 
 | 369 | 
         { | 
 
 
 
 
 
 | 370 | 
             return (M11 == other.M11 && M12 == other.M12 && M13 == other.M13 && M14 == other.M14 | 
 
 
 
 
 
 | 371 | 
                 && M21 == other.M21 && M22 == other.M22 && M23 == other.M23 && M24 == other.M24 | 
 
 
 
 
 
 | 372 | 
                 && M31 == other.M31 && M32 == other.M32 && M33 == other.M33 && M34 == other.M34 | 
 
 
 
 
 
 | 373 | 
                 && M41 == other.M41 && M42 == other.M42 && M43 == other.M43 && M44 == other.M44); | 
 
 
 
 
 
 | 374 | 
         } | 
 
 
 
 
 
 | 375 | 
  | 
 
 
 
 
 
 | 376 | 
         public override bool Equals(object obj) => obj is Matrix && Equals((Matrix)obj); | 
 
 
 
 
 
 | 377 | 
  | 
 
 
 
 
 
 | 378 | 
         public override int GetHashCode() | 
 
 
 
 
 
 | 379 | 
         { | 
 
 
 
 
 
 | 380 | 
             return M11.GetHashCode() ^ M12.GetHashCode() ^ M13.GetHashCode() ^ M14.GetHashCode() | 
 
 
 
 
 
 | 381 | 
                  ^ M11.GetHashCode() ^ M12.GetHashCode() ^ M13.GetHashCode() ^ M14.GetHashCode() | 
 
 
 
 
 
 | 382 | 
                  ^ M11.GetHashCode() ^ M12.GetHashCode() ^ M13.GetHashCode() ^ M14.GetHashCode() | 
 
 
 
 
 
 | 383 | 
                  ^ M11.GetHashCode() ^ M12.GetHashCode() ^ M13.GetHashCode() ^ M14.GetHashCode(); | 
 
 
 
 
 
 | 384 | 
         } | 
 
 
 
 
 
 | 385 | 
  | 
 
 
 
 
 
 | 386 | 
         public override string ToString() | 
 
 
 
 
 
 | 387 | 
         { | 
 
 
 
 
 
 | 388 | 
             return string.Format("{{M11:{0} M12:{1} M13:{2} M14:{3}}}\n{{M21:{4} M22:{5} M23:{6} M24:{7}}}\n{{M31:{8} M32:{9} M33:{10} M34:{11}}}\n{{M41:{12} M42:{13} M43:{14} M44:{15}}}", | 
 
 
 
 
 
 | 389 | 
                 M11, M12, M13, M14, | 
 
 
 
 
 
 | 390 | 
                 M21, M22, M23, M24, | 
 
 
 
 
 
 | 391 | 
                 M31, M32, M33, M34, | 
 
 
 
 
 
 | 392 | 
                 M41, M42, M43, M44); | 
 
 
 
 
 
 | 393 | 
         } | 
 
 
 
 
 
 | 394 | 
  | 
 
 
 
 
 
 | 395 | 
         private static readonly Matrix identity = new Matrix( | 
 
 
 
 
 
 | 396 | 
             1.0f, 0.0f, 0.0f, 0.0f, | 
 
 
 
 
 
 | 397 | 
             0.0f, 1.0f, 0.0f, 0.0f, | 
 
 
 
 
 
 | 398 | 
             0.0f, 0.0f, 1.0f, 0.0f, | 
 
 
 
 
 
 | 399 | 
             0.0f, 0.0f, 0.0f, 1.0f); | 
 
 
 
 
 
 | 400 | 
  | 
 
 
 
 
 
 | 401 | 
         public static Matrix Identity => identity; | 
 
 
 
 
 
 | 402 | 
  | 
 
 
 
 
 
 | 403 | 
         public Vector3 ToEuler() | 
 
 
 
 
 
 | 404 | 
         { | 
 
 
 
 
 
 | 405 | 
             float a = M11; | 
 
 
 
 
 
 | 406 | 
             float b = M21; | 
 
 
 
 
 
 | 407 | 
             float c, s, r; | 
 
 
 
 
 
 | 408 | 
  | 
 
 
 
 
 
 | 409 | 
             if (b == 0.0f) | 
 
 
 
 
 
 | 410 | 
             { | 
 
 
 
 
 
 | 411 | 
                 c = FMath.Sign(a); | 
 
 
 
 
 
 | 412 | 
                 s = 0.0f; | 
 
 
 
 
 
 | 413 | 
                 r = Math.Abs(a); | 
 
 
 
 
 
 | 414 | 
             } | 
 
 
 
 
 
 | 415 | 
             else if (a == 0.0f) | 
 
 
 
 
 
 | 416 | 
             { | 
 
 
 
 
 
 | 417 | 
                 c = 0.0f; | 
 
 
 
 
 
 | 418 | 
                 s = FMath.Sign(b); | 
 
 
 
 
 
 | 419 | 
                 r = Math.Abs(b); | 
 
 
 
 
 
 | 420 | 
             } | 
 
 
 
 
 
 | 421 | 
             else if (Math.Abs(b) > Math.Abs(a)) | 
 
 
 
 
 
 | 422 | 
             { | 
 
 
 
 
 
 | 423 | 
                 float t = a / b; | 
 
 
 
 
 
 | 424 | 
                 float u = FMath.Sign(b) * FMath.Sqrt(1.0f + t * t); | 
 
 
 
 
 
 | 425 | 
                 s = 1.0f / u; | 
 
 
 
 
 
 | 426 | 
                 c = s * t; | 
 
 
 
 
 
 | 427 | 
                 r = b * u; | 
 
 
 
 
 
 | 428 | 
             } | 
 
 
 
 
 
 | 429 | 
             else | 
 
 
 
 
 
 | 430 | 
             { | 
 
 
 
 
 
 | 431 | 
                 float t = b / a; | 
 
 
 
 
 
 | 432 | 
                 float u = FMath.Sign(a) * FMath.Sqrt(1.0f + t * t); | 
 
 
 
 
 
 | 433 | 
                 c = 1.0f / u; | 
 
 
 
 
 
 | 434 | 
                 s = c * t; | 
 
 
 
 
 
 | 435 | 
                 r = a * u; | 
 
 
 
 
 
 | 436 | 
             } | 
 
 
 
 
 
 | 437 | 
  | 
 
 
 
 
 
 | 438 | 
             Vector3 e; | 
 
 
 
 
 
 | 439 | 
             e.Z = MathHelper.ToDegrees(-FMath.Atan2(s, c)); | 
 
 
 
 
 
 | 440 | 
             e.Y = MathHelper.ToDegrees(FMath.Atan2(M31, r)); | 
 
 
 
 
 
 | 441 | 
             e.X = MathHelper.ToDegrees(-FMath.Atan2(M32, M33)); | 
 
 
 
 
 
 | 442 | 
             return e; | 
 
 
 
 
 
 | 443 | 
         } | 
 
 
 
 
 
 | 444 | 
  | 
 
 
 
 
 
 | 445 | 
         public float Determinant() | 
 
 
 
 
 
 | 446 | 
         { | 
 
 
 
 
 
 | 447 | 
             var m11 = M11; | 
 
 
 
 
 
 | 448 | 
             var m12 = M12; | 
 
 
 
 
 
 | 449 | 
             var m13 = M13; | 
 
 
 
 
 
 | 450 | 
             var m14 = M14; | 
 
 
 
 
 
 | 451 | 
             var m21 = M21; | 
 
 
 
 
 
 | 452 | 
             var m22 = M22; | 
 
 
 
 
 
 | 453 | 
             var m23 = M23; | 
 
 
 
 
 
 | 454 | 
             var m24 = M24; | 
 
 
 
 
 
 | 455 | 
             var m31 = M31; | 
 
 
 
 
 
 | 456 | 
             var m32 = M32; | 
 
 
 
 
 
 | 457 | 
             var m33 = M33; | 
 
 
 
 
 
 | 458 | 
             var m34 = M34; | 
 
 
 
 
 
 | 459 | 
             var m41 = M41; | 
 
 
 
 
 
 | 460 | 
             var m42 = M42; | 
 
 
 
 
 
 | 461 | 
             var m43 = M43; | 
 
 
 
 
 
 | 462 | 
             var m44 = M44; | 
 
 
 
 
 
 | 463 | 
  | 
 
 
 
 
 
 | 464 | 
             var d3434 = m33 * m44 - m34 * m43; | 
 
 
 
 
 
 | 465 | 
             var d3424 = m32 * m44 - m34 * m42; | 
 
 
 
 
 
 | 466 | 
             var d3423 = m32 * m43 - m33 * m42; | 
 
 
 
 
 
 | 467 | 
             var d3414 = m31 * m44 - m34 * m41; | 
 
 
 
 
 
 | 468 | 
             var d3413 = m31 * m43 - m33 * m41; | 
 
 
 
 
 
 | 469 | 
             var d3412 = m31 * m42 - m32 * m41; | 
 
 
 
 
 
 | 470 | 
  | 
 
 
 
 
 
 | 471 | 
             return m11 * (m22 * d3434 - m23 * d3424 + m24 * d3423) | 
 
 
 
 
 
 | 472 | 
                  - m12 * (m21 * d3434 - m23 * d3414 + m24 * d3413) | 
 
 
 
 
 
 | 473 | 
                  + m13 * (m21 * d3424 - m22 * d3414 + m24 * d3412) | 
 
 
 
 
 
 | 474 | 
                  - m14 * (m21 * d3423 - m22 * d3413 + m23 * d3412); | 
 
 
 
 
 
 | 475 | 
         } | 
 
 
 
 
 
 | 476 | 
  | 
 
 
 
 
 
 | 477 | 
         //Matrix m = Matrix.Identity; | 
 
 
 
 
 
 | 478 | 
         //m *= Matrix.CreateScale(3.3f, 1.3f, 7.6f); | 
 
 
 
 
 
 | 479 | 
         //m *= Matrix.CreateTranslation(2.3f, 4.5f, 6.7f); | 
 
 
 
 
 
 | 480 | 
         //m *= Matrix.CreateRotationY(1.2f); | 
 
 
 
 
 
 | 481 | 
         //m *= Matrix.CreateTranslation(2.3f, 4.5f, 6.7f); | 
 
 
 
 
 
 | 482 | 
         //m *= Matrix.CreateRotationY(1.2f); | 
 
 
 
 
 
 | 483 | 
         //m *= Matrix.CreateTranslation(2.3f, 4.5f, 6.7f); | 
 
 
 
 
 
 | 484 | 
         //m *= Matrix.CreateRotationY(1.2f); | 
 
 
 
 
 
 | 485 | 
  | 
 
 
 
 
 
 | 486 | 
         //Vector3 s, t; | 
 
 
 
 
 
 | 487 | 
         //Quaternion r; | 
 
 
 
 
 
 | 488 | 
         //m.Decompose(out s, out r, out t); | 
 
 
 
 
 
 | 489 | 
         //Matrix m2 = Matrix.CreateScale(s) * Matrix.CreateFromQuaternion(r) * Matrix.CreateTranslation(t); | 
 
 
 
 
 
 | 490 | 
  | 
 
 
 
 
 
 | 491 | 
         //Console.WriteLine(m2 - m); | 
 
 
 
 
 
 | 492 | 
         //return 0; | 
 
 
 
 
 
 | 493 | 
  | 
 
 
 
 
 
 | 494 | 
         //[StructLayout(LayoutKind.Sequential)] | 
 
 
 
 
 
 | 495 | 
         //private unsafe struct VectorBasis | 
 
 
 
 
 
 | 496 | 
         //{ | 
 
 
 
 
 
 | 497 | 
         //    public Vector3* axis0; | 
 
 
 
 
 
 | 498 | 
         //    public Vector3* axis1; | 
 
 
 
 
 
 | 499 | 
         //    public Vector3* axis2; | 
 
 
 
 
 
 | 500 | 
         //} | 
 
 
 
 
 
 | 501 | 
  | 
 
 
 
 
 
 | 502 | 
         //[StructLayout(LayoutKind.Sequential)] | 
 
 
 
 
 
 | 503 | 
         //private struct CanonicalBasis | 
 
 
 
 
 
 | 504 | 
         //{ | 
 
 
 
 
 
 | 505 | 
         //    public Vector3 axis0; | 
 
 
 
 
 
 | 506 | 
         //    public Vector3 axis1; | 
 
 
 
 
 
 | 507 | 
         //    public Vector3 axis2; | 
 
 
 
 
 
 | 508 | 
         //} | 
 
 
 
 
 
 | 509 | 
  | 
 
 
 
 
 
 | 510 | 
         //public unsafe bool Decompose(out Vector3 outScale, out Quaternion outRotation, out Vector3 outTranslation) | 
 
 
 
 
 
 | 511 | 
         //{ | 
 
 
 
 
 
 | 512 | 
         //    outTranslation.X = M41; | 
 
 
 
 
 
 | 513 | 
         //    outTranslation.Y = M42; | 
 
 
 
 
 
 | 514 | 
         //    outTranslation.Z = M43; | 
 
 
 
 
 
 | 515 | 
  | 
 
 
 
 
 
 | 516 | 
         //    var rotation = new Matrix( | 
 
 
 
 
 
 | 517 | 
         //        M11, M12, M13, 0.0f,  | 
 
 
 
 
 
 | 518 | 
         //        M21, M22, M23, 0.0f,  | 
 
 
 
 
 
 | 519 | 
         //        M31, M32, M33, 0.0f,  | 
 
 
 
 
 
 | 520 | 
         //        0.0f, 0.0f, 0.0f, 1.0f); | 
 
 
 
 
 
 | 521 | 
  | 
 
 
 
 
 
 | 522 | 
         //    var vectorBasis = new VectorBasis { | 
 
 
 
 
 
 | 523 | 
         //        axis0 = (Vector3*)&rotation.M11, | 
 
 
 
 
 
 | 524 | 
         //        axis1 = (Vector3*)&rotation.M21, | 
 
 
 
 
 
 | 525 | 
         //        axis2 = (Vector3*)&rotation.M31 | 
 
 
 
 
 
 | 526 | 
         //    }; | 
 
 
 
 
 
 | 527 | 
  | 
 
 
 
 
 
 | 528 | 
         //    var canonicalBasis = new CanonicalBasis { | 
 
 
 
 
 
 | 529 | 
         //        axis0 = Vector3.UnitX, | 
 
 
 
 
 
 | 530 | 
         //        axis1 = Vector3.UnitY, | 
 
 
 
 
 
 | 531 | 
         //        axis2 = Vector3.UnitZ | 
 
 
 
 
 
 | 532 | 
         //    }; | 
 
 
 
 
 
 | 533 | 
  | 
 
 
 
 
 
 | 534 | 
         //    var scale = new Vector3( | 
 
 
 
 
 
 | 535 | 
         //        vectorBasis.axis0->Length(), | 
 
 
 
 
 
 | 536 | 
         //        vectorBasis.axis1->Length(), | 
 
 
 
 
 
 | 537 | 
         //        vectorBasis.axis2->Length() | 
 
 
 
 
 
 | 538 | 
         //    ); | 
 
 
 
 
 
 | 539 | 
  | 
 
 
 
 
 
 | 540 | 
         //    int xi, yi, zi; | 
 
 
 
 
 
 | 541 | 
  | 
 
 
 
 
 
 | 542 | 
         //    if (scale.X < scale.Y) | 
 
 
 
 
 
 | 543 | 
         //    { | 
 
 
 
 
 
 | 544 | 
         //        if (scale.Y < scale.Z) | 
 
 
 
 
 
 | 545 | 
         //        { | 
 
 
 
 
 
 | 546 | 
         //            xi = 2; | 
 
 
 
 
 
 | 547 | 
         //            yi = 1; | 
 
 
 
 
 
 | 548 | 
         //            zi = 0; | 
 
 
 
 
 
 | 549 | 
         //        } | 
 
 
 
 
 
 | 550 | 
         //        else | 
 
 
 
 
 
 | 551 | 
         //        { | 
 
 
 
 
 
 | 552 | 
         //            xi = 1; | 
 
 
 
 
 
 | 553 | 
  | 
 
 
 
 
 
 | 554 | 
         //            if (scale.X < scale.Z) | 
 
 
 
 
 
 | 555 | 
         //            { | 
 
 
 
 
 
 | 556 | 
         //                yi = 2; | 
 
 
 
 
 
 | 557 | 
         //                zi = 0; | 
 
 
 
 
 
 | 558 | 
         //            } | 
 
 
 
 
 
 | 559 | 
         //            else | 
 
 
 
 
 
 | 560 | 
         //            { | 
 
 
 
 
 
 | 561 | 
         //                yi = 0; | 
 
 
 
 
 
 | 562 | 
         //                zi = 2; | 
 
 
 
 
 
 | 563 | 
         //            } | 
 
 
 
 
 
 | 564 | 
         //        } | 
 
 
 
 
 
 | 565 | 
         //    } | 
 
 
 
 
 
 | 566 | 
         //    else | 
 
 
 
 
 
 | 567 | 
         //    { | 
 
 
 
 
 
 | 568 | 
         //        if (scale.X < scale.Z) | 
 
 
 
 
 
 | 569 | 
         //        { | 
 
 
 
 
 
 | 570 | 
         //            xi = 2; | 
 
 
 
 
 
 | 571 | 
         //            yi = 0; | 
 
 
 
 
 
 | 572 | 
         //            zi = 1; | 
 
 
 
 
 
 | 573 | 
         //        } | 
 
 
 
 
 
 | 574 | 
         //        else | 
 
 
 
 
 
 | 575 | 
         //        { | 
 
 
 
 
 
 | 576 | 
         //            xi = 0; | 
 
 
 
 
 
 | 577 | 
  | 
 
 
 
 
 
 | 578 | 
         //            if (scale.Y < scale.Z) | 
 
 
 
 
 
 | 579 | 
         //            { | 
 
 
 
 
 
 | 580 | 
         //                yi = 2; | 
 
 
 
 
 
 | 581 | 
         //                zi = 1; | 
 
 
 
 
 
 | 582 | 
         //            } | 
 
 
 
 
 
 | 583 | 
         //            else | 
 
 
 
 
 
 | 584 | 
         //            { | 
 
 
 
 
 
 | 585 | 
         //                yi = 1; | 
 
 
 
 
 
 | 586 | 
         //                zi = 2; | 
 
 
 
 
 
 | 587 | 
         //            } | 
 
 
 
 
 
 | 588 | 
         //        } | 
 
 
 
 
 
 | 589 | 
         //    } | 
 
 
 
 
 
 | 590 | 
  | 
 
 
 
 
 
 | 591 | 
         //    var pScale = &scale.X; | 
 
 
 
 
 
 | 592 | 
  | 
 
 
 
 
 
 | 593 | 
         //    var pvBasis = &vectorBasis.axis0; | 
 
 
 
 
 
 | 594 | 
         //    var pcBasis = &canonicalBasis.axis0; | 
 
 
 
 
 
 | 595 | 
  | 
 
 
 
 
 
 | 596 | 
         //    if (pScale[xi] < 0.0001f) | 
 
 
 
 
 
 | 597 | 
         //    { | 
 
 
 
 
 
 | 598 | 
         //        // | 
 
 
 
 
 
 | 599 | 
         //        // If the smallest scale is < 0.0001 then use the coresponding cannonical basis instead | 
 
 
 
 
 
 | 600 | 
         //        // | 
 
 
 
 
 
 | 601 | 
  | 
 
 
 
 
 
 | 602 | 
         //        pvBasis[xi] = &pcBasis[xi]; | 
 
 
 
 
 
 | 603 | 
         //    } | 
 
 
 
 
 
 | 604 | 
         //    else | 
 
 
 
 
 
 | 605 | 
         //    { | 
 
 
 
 
 
 | 606 | 
         //        pvBasis[xi]->Normalize(); | 
 
 
 
 
 
 | 607 | 
         //    } | 
 
 
 
 
 
 | 608 | 
  | 
 
 
 
 
 
 | 609 | 
         //    if (pScale[yi] < 0.0001f) | 
 
 
 
 
 
 | 610 | 
         //    { | 
 
 
 
 
 
 | 611 | 
         //        // | 
 
 
 
 
 
 | 612 | 
         //        // The second smallest scale is < 0.0001 too, build a perpendicular vector | 
 
 
 
 
 
 | 613 | 
         //        // | 
 
 
 
 
 
 | 614 | 
  | 
 
 
 
 
 
 | 615 | 
         //        float fx = Math.Abs(pvBasis[xi]->X); | 
 
 
 
 
 
 | 616 | 
         //        float fy = Math.Abs(pvBasis[xi]->Y); | 
 
 
 
 
 
 | 617 | 
         //        float fz = Math.Abs(pvBasis[xi]->Z); | 
 
 
 
 
 
 | 618 | 
  | 
 
 
 
 
 
 | 619 | 
         //        int yij; | 
 
 
 
 
 
 | 620 | 
  | 
 
 
 
 
 
 | 621 | 
         //        if (fx < fy) | 
 
 
 
 
 
 | 622 | 
         //        { | 
 
 
 
 
 
 | 623 | 
         //            if (fy < fz) | 
 
 
 
 
 
 | 624 | 
         //            { | 
 
 
 
 
 
 | 625 | 
         //                yij = 0; | 
 
 
 
 
 
 | 626 | 
         //            } | 
 
 
 
 
 
 | 627 | 
         //            else | 
 
 
 
 
 
 | 628 | 
         //            { | 
 
 
 
 
 
 | 629 | 
         //                if (fx < fz) | 
 
 
 
 
 
 | 630 | 
         //                    yij = 0; | 
 
 
 
 
 
 | 631 | 
         //                else | 
 
 
 
 
 
 | 632 | 
         //                    yij = 2; | 
 
 
 
 
 
 | 633 | 
         //            } | 
 
 
 
 
 
 | 634 | 
         //        } | 
 
 
 
 
 
 | 635 | 
         //        else | 
 
 
 
 
 
 | 636 | 
         //        { | 
 
 
 
 
 
 | 637 | 
         //            if (fx < fz) | 
 
 
 
 
 
 | 638 | 
         //            { | 
 
 
 
 
 
 | 639 | 
         //                yij = 1; | 
 
 
 
 
 
 | 640 | 
         //            } | 
 
 
 
 
 
 | 641 | 
         //            else | 
 
 
 
 
 
 | 642 | 
         //            { | 
 
 
 
 
 
 | 643 | 
         //                if (fy < fz) | 
 
 
 
 
 
 | 644 | 
         //                    yij = 1; | 
 
 
 
 
 
 | 645 | 
         //                else | 
 
 
 
 
 
 | 646 | 
         //                    yij = 2; | 
 
 
 
 
 
 | 647 | 
         //            } | 
 
 
 
 
 
 | 648 | 
         //        } | 
 
 
 
 
 
 | 649 | 
  | 
 
 
 
 
 
 | 650 | 
         //        pcBasis[yij] = Vector3.Cross(*pvBasis[yi], *pvBasis[xi]); | 
 
 
 
 
 
 | 651 | 
         //    } | 
 
 
 
 
 
 | 652 | 
  | 
 
 
 
 
 
 | 653 | 
         //    pvBasis[yi]->Normalize(); | 
 
 
 
 
 
 | 654 | 
  | 
 
 
 
 
 
 | 655 | 
         //    if (pScale[zi] < 0.0001f) | 
 
 
 
 
 
 | 656 | 
         //        *(pvBasis[zi]) = Vector3.Cross(*pvBasis[yi], *pvBasis[xi]); | 
 
 
 
 
 
 | 657 | 
         //    else | 
 
 
 
 
 
 | 658 | 
         //        pvBasis[zi]->Normalize(); | 
 
 
 
 
 
 | 659 | 
  | 
 
 
 
 
 
 | 660 | 
         //    float rotDet = rotation.Determinant(); | 
 
 
 
 
 
 | 661 | 
  | 
 
 
 
 
 
 | 662 | 
         //    if (rotDet < 0.0f) | 
 
 
 
 
 
 | 663 | 
         //    { | 
 
 
 
 
 
 | 664 | 
         //        pScale[xi] = -pScale[xi]; | 
 
 
 
 
 
 | 665 | 
         //        *(pvBasis[xi]) = -(*(pvBasis[xi])); | 
 
 
 
 
 
 | 666 | 
         //        rotDet = -rotDet; | 
 
 
 
 
 
 | 667 | 
         //    } | 
 
 
 
 
 
 | 668 | 
  | 
 
 
 
 
 
 | 669 | 
         //    outScale = scale; | 
 
 
 
 
 
 | 670 | 
  | 
 
 
 
 
 
 | 671 | 
         //    if (Math.Abs(rotDet - 1.0f) > 0.01f) | 
 
 
 
 
 
 | 672 | 
         //    { | 
 
 
 
 
 
 | 673 | 
         //        outRotation = Quaternion.Identity; | 
 
 
 
 
 
 | 674 | 
         //        return false; | 
 
 
 
 
 
 | 675 | 
         //    } | 
 
 
 
 
 
 | 676 | 
         //    else | 
 
 
 
 
 
 | 677 | 
         //    { | 
 
 
 
 
 
 | 678 | 
         //        outRotation = Quaternion.CreateFromRotationMatrix(rotation); | 
 
 
 
 
 
 | 679 | 
         //        return true; | 
 
 
 
 
 
 | 680 | 
         //    } | 
 
 
 
 
 
 | 681 | 
         //} | 
 
 
 
 
 
 | 682 | 
     } | 
 
 
 
 
 
 | 683 | 
 } |