| 1 |
// Special functions -*- C++ -*- |
| 2 |
|
| 3 |
// Copyright (C) 2006-2021 Free Software Foundation, Inc. |
| 4 |
// |
| 5 |
// This file is part of the GNU ISO C++ Library. This library is free |
| 6 |
// software; you can redistribute it and/or modify it under the |
| 7 |
// terms of the GNU General Public License as published by the |
| 8 |
// Free Software Foundation; either version 3, or (at your option) |
| 9 |
// any later version. |
| 10 |
// |
| 11 |
// This library is distributed in the hope that it will be useful, |
| 12 |
// but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 13 |
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 14 |
// GNU General Public License for more details. |
| 15 |
// |
| 16 |
// Under Section 7 of GPL version 3, you are granted additional |
| 17 |
// permissions described in the GCC Runtime Library Exception, version |
| 18 |
// 3.1, as published by the Free Software Foundation. |
| 19 |
|
| 20 |
// You should have received a copy of the GNU General Public License and |
| 21 |
// a copy of the GCC Runtime Library Exception along with this program; |
| 22 |
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see |
| 23 |
// <http://www.gnu.org/licenses/>. |
| 24 |
|
| 25 |
/** @file tr1/modified_bessel_func.tcc |
| 26 |
* This is an internal header file, included by other library headers. |
| 27 |
* Do not attempt to use it directly. @headername{tr1/cmath} |
| 28 |
*/ |
| 29 |
|
| 30 |
// |
| 31 |
// ISO C++ 14882 TR1: 5.2 Special functions |
| 32 |
// |
| 33 |
|
| 34 |
// Written by Edward Smith-Rowland. |
| 35 |
// |
| 36 |
// References: |
| 37 |
// (1) Handbook of Mathematical Functions, |
| 38 |
// Ed. Milton Abramowitz and Irene A. Stegun, |
| 39 |
// Dover Publications, |
| 40 |
// Section 9, pp. 355-434, Section 10 pp. 435-478 |
| 41 |
// (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl |
| 42 |
// (3) Numerical Recipes in C, by W. H. Press, S. A. Teukolsky, |
| 43 |
// W. T. Vetterling, B. P. Flannery, Cambridge University Press (1992), |
| 44 |
// 2nd ed, pp. 246-249. |
| 45 |
|
| 46 |
#ifndef _GLIBCXX_TR1_MODIFIED_BESSEL_FUNC_TCC |
| 47 |
#define _GLIBCXX_TR1_MODIFIED_BESSEL_FUNC_TCC 1 |
| 48 |
|
| 49 |
#include <tr1/special_function_util.h> |
| 50 |
|
| 51 |
namespace std _GLIBCXX_VISIBILITY(default) |
| 52 |
{ |
| 53 |
_GLIBCXX_BEGIN_NAMESPACE_VERSION |
| 54 |
|
| 55 |
#if _GLIBCXX_USE_STD_SPEC_FUNCS |
| 56 |
#elif defined(_GLIBCXX_TR1_CMATH) |
| 57 |
namespace tr1 |
| 58 |
{ |
| 59 |
#else |
| 60 |
# error do not include this header directly, use <cmath> or <tr1/cmath> |
| 61 |
#endif |
| 62 |
// [5.2] Special functions |
| 63 |
|
| 64 |
// Implementation-space details. |
| 65 |
namespace __detail |
| 66 |
{ |
| 67 |
/** |
| 68 |
* @brief Compute the modified Bessel functions @f$ I_\nu(x) @f$ and |
| 69 |
* @f$ K_\nu(x) @f$ and their first derivatives |
| 70 |
* @f$ I'_\nu(x) @f$ and @f$ K'_\nu(x) @f$ respectively. |
| 71 |
* These four functions are computed together for numerical |
| 72 |
* stability. |
| 73 |
* |
| 74 |
* @param __nu The order of the Bessel functions. |
| 75 |
* @param __x The argument of the Bessel functions. |
| 76 |
* @param __Inu The output regular modified Bessel function. |
| 77 |
* @param __Knu The output irregular modified Bessel function. |
| 78 |
* @param __Ipnu The output derivative of the regular |
| 79 |
* modified Bessel function. |
| 80 |
* @param __Kpnu The output derivative of the irregular |
| 81 |
* modified Bessel function. |
| 82 |
*/ |
| 83 |
template <typename _Tp> |
| 84 |
void |
| 85 |
__bessel_ik(_Tp __nu, _Tp __x, |
| 86 |
_Tp & __Inu, _Tp & __Knu, _Tp & __Ipnu, _Tp & __Kpnu) |
| 87 |
{ |
| 88 |
if (__x == _Tp(0)) |
| 89 |
{ |
| 90 |
if (__nu == _Tp(0)) |
| 91 |
{ |
| 92 |
__Inu = _Tp(1); |
| 93 |
__Ipnu = _Tp(0); |
| 94 |
} |
| 95 |
else if (__nu == _Tp(1)) |
| 96 |
{ |
| 97 |
__Inu = _Tp(0); |
| 98 |
__Ipnu = _Tp(0.5L); |
| 99 |
} |
| 100 |
else |
| 101 |
{ |
| 102 |
__Inu = _Tp(0); |
| 103 |
__Ipnu = _Tp(0); |
| 104 |
} |
| 105 |
__Knu = std::numeric_limits<_Tp>::infinity(); |
| 106 |
__Kpnu = -std::numeric_limits<_Tp>::infinity(); |
| 107 |
return; |
| 108 |
} |
| 109 |
|
| 110 |
const _Tp __eps = std::numeric_limits<_Tp>::epsilon(); |
| 111 |
const _Tp __fp_min = _Tp(10) * std::numeric_limits<_Tp>::epsilon(); |
| 112 |
const int __max_iter = 15000; |
| 113 |
const _Tp __x_min = _Tp(2); |
| 114 |
|
| 115 |
const int __nl = static_cast<int>(__nu + _Tp(0.5L)); |
| 116 |
|
| 117 |
const _Tp __mu = __nu - __nl; |
| 118 |
const _Tp __mu2 = __mu * __mu; |
| 119 |
const _Tp __xi = _Tp(1) / __x; |
| 120 |
const _Tp __xi2 = _Tp(2) * __xi; |
| 121 |
_Tp __h = __nu * __xi; |
| 122 |
if ( __h < __fp_min ) |
| 123 |
__h = __fp_min; |
| 124 |
_Tp __b = __xi2 * __nu; |
| 125 |
_Tp __d = _Tp(0); |
| 126 |
_Tp __c = __h; |
| 127 |
int __i; |
| 128 |
for ( __i = 1; __i <= __max_iter; ++__i ) |
| 129 |
{ |
| 130 |
__b += __xi2; |
| 131 |
__d = _Tp(1) / (__b + __d); |
| 132 |
__c = __b + _Tp(1) / __c; |
| 133 |
const _Tp __del = __c * __d; |
| 134 |
__h *= __del; |
| 135 |
if (std::abs(__del - _Tp(1)) < __eps) |
| 136 |
break; |
| 137 |
} |
| 138 |
if (__i > __max_iter) |
| 139 |
std::__throw_runtime_error(__N("Argument x too large " |
| 140 |
"in __bessel_ik; " |
| 141 |
"try asymptotic expansion.")); |
| 142 |
_Tp __Inul = __fp_min; |
| 143 |
_Tp __Ipnul = __h * __Inul; |
| 144 |
_Tp __Inul1 = __Inul; |
| 145 |
_Tp __Ipnu1 = __Ipnul; |
| 146 |
_Tp __fact = __nu * __xi; |
| 147 |
for (int __l = __nl; __l >= 1; --__l) |
| 148 |
{ |
| 149 |
const _Tp __Inutemp = __fact * __Inul + __Ipnul; |
| 150 |
__fact -= __xi; |
| 151 |
__Ipnul = __fact * __Inutemp + __Inul; |
| 152 |
__Inul = __Inutemp; |
| 153 |
} |
| 154 |
_Tp __f = __Ipnul / __Inul; |
| 155 |
_Tp __Kmu, __Knu1; |
| 156 |
if (__x < __x_min) |
| 157 |
{ |
| 158 |
const _Tp __x2 = __x / _Tp(2); |
| 159 |
const _Tp __pimu = __numeric_constants<_Tp>::__pi() * __mu; |
| 160 |
const _Tp __fact = (std::abs(__pimu) < __eps |
| 161 |
? _Tp(1) : __pimu / std::sin(__pimu)); |
| 162 |
_Tp __d = -std::log(__x2); |
| 163 |
_Tp __e = __mu * __d; |
| 164 |
const _Tp __fact2 = (std::abs(__e) < __eps |
| 165 |
? _Tp(1) : std::sinh(__e) / __e); |
| 166 |
_Tp __gam1, __gam2, __gampl, __gammi; |
| 167 |
__gamma_temme(__mu, __gam1, __gam2, __gampl, __gammi); |
| 168 |
_Tp __ff = __fact |
| 169 |
* (__gam1 * std::cosh(__e) + __gam2 * __fact2 * __d); |
| 170 |
_Tp __sum = __ff; |
| 171 |
__e = std::exp(__e); |
| 172 |
_Tp __p = __e / (_Tp(2) * __gampl); |
| 173 |
_Tp __q = _Tp(1) / (_Tp(2) * __e * __gammi); |
| 174 |
_Tp __c = _Tp(1); |
| 175 |
__d = __x2 * __x2; |
| 176 |
_Tp __sum1 = __p; |
| 177 |
int __i; |
| 178 |
for (__i = 1; __i <= __max_iter; ++__i) |
| 179 |
{ |
| 180 |
__ff = (__i * __ff + __p + __q) / (__i * __i - __mu2); |
| 181 |
__c *= __d / __i; |
| 182 |
__p /= __i - __mu; |
| 183 |
__q /= __i + __mu; |
| 184 |
const _Tp __del = __c * __ff; |
| 185 |
__sum += __del; |
| 186 |
const _Tp __del1 = __c * (__p - __i * __ff); |
| 187 |
__sum1 += __del1; |
| 188 |
if (std::abs(__del) < __eps * std::abs(__sum)) |
| 189 |
break; |
| 190 |
} |
| 191 |
if (__i > __max_iter) |
| 192 |
std::__throw_runtime_error(__N("Bessel k series failed to converge " |
| 193 |
"in __bessel_ik.")); |
| 194 |
__Kmu = __sum; |
| 195 |
__Knu1 = __sum1 * __xi2; |
| 196 |
} |
| 197 |
else |
| 198 |
{ |
| 199 |
_Tp __b = _Tp(2) * (_Tp(1) + __x); |
| 200 |
_Tp __d = _Tp(1) / __b; |
| 201 |
_Tp __delh = __d; |
| 202 |
_Tp __h = __delh; |
| 203 |
_Tp __q1 = _Tp(0); |
| 204 |
_Tp __q2 = _Tp(1); |
| 205 |
_Tp __a1 = _Tp(0.25L) - __mu2; |
| 206 |
_Tp __q = __c = __a1; |
| 207 |
_Tp __a = -__a1; |
| 208 |
_Tp __s = _Tp(1) + __q * __delh; |
| 209 |
int __i; |
| 210 |
for (__i = 2; __i <= __max_iter; ++__i) |
| 211 |
{ |
| 212 |
__a -= 2 * (__i - 1); |
| 213 |
__c = -__a * __c / __i; |
| 214 |
const _Tp __qnew = (__q1 - __b * __q2) / __a; |
| 215 |
__q1 = __q2; |
| 216 |
__q2 = __qnew; |
| 217 |
__q += __c * __qnew; |
| 218 |
__b += _Tp(2); |
| 219 |
__d = _Tp(1) / (__b + __a * __d); |
| 220 |
__delh = (__b * __d - _Tp(1)) * __delh; |
| 221 |
__h += __delh; |
| 222 |
const _Tp __dels = __q * __delh; |
| 223 |
__s += __dels; |
| 224 |
if ( std::abs(__dels / __s) < __eps ) |
| 225 |
break; |
| 226 |
} |
| 227 |
if (__i > __max_iter) |
| 228 |
std::__throw_runtime_error(__N("Steed's method failed " |
| 229 |
"in __bessel_ik.")); |
| 230 |
__h = __a1 * __h; |
| 231 |
__Kmu = std::sqrt(__numeric_constants<_Tp>::__pi() / (_Tp(2) * __x)) |
| 232 |
* std::exp(-__x) / __s; |
| 233 |
__Knu1 = __Kmu * (__mu + __x + _Tp(0.5L) - __h) * __xi; |
| 234 |
} |
| 235 |
|
| 236 |
_Tp __Kpmu = __mu * __xi * __Kmu - __Knu1; |
| 237 |
_Tp __Inumu = __xi / (__f * __Kmu - __Kpmu); |
| 238 |
__Inu = __Inumu * __Inul1 / __Inul; |
| 239 |
__Ipnu = __Inumu * __Ipnu1 / __Inul; |
| 240 |
for ( __i = 1; __i <= __nl; ++__i ) |
| 241 |
{ |
| 242 |
const _Tp __Knutemp = (__mu + __i) * __xi2 * __Knu1 + __Kmu; |
| 243 |
__Kmu = __Knu1; |
| 244 |
__Knu1 = __Knutemp; |
| 245 |
} |
| 246 |
__Knu = __Kmu; |
| 247 |
__Kpnu = __nu * __xi * __Kmu - __Knu1; |
| 248 |
|
| 249 |
return; |
| 250 |
} |
| 251 |
|
| 252 |
|
| 253 |
/** |
| 254 |
* @brief Return the regular modified Bessel function of order |
| 255 |
* \f$ \nu \f$: \f$ I_{\nu}(x) \f$. |
| 256 |
* |
| 257 |
* The regular modified cylindrical Bessel function is: |
| 258 |
* @f[ |
| 259 |
* I_{\nu}(x) = \sum_{k=0}^{\infty} |
| 260 |
* \frac{(x/2)^{\nu + 2k}}{k!\Gamma(\nu+k+1)} |
| 261 |
* @f] |
| 262 |
* |
| 263 |
* @param __nu The order of the regular modified Bessel function. |
| 264 |
* @param __x The argument of the regular modified Bessel function. |
| 265 |
* @return The output regular modified Bessel function. |
| 266 |
*/ |
| 267 |
template<typename _Tp> |
| 268 |
_Tp |
| 269 |
__cyl_bessel_i(_Tp __nu, _Tp __x) |
| 270 |
{ |
| 271 |
if (__nu < _Tp(0) || __x < _Tp(0)) |
| 272 |
std::__throw_domain_error(__N("Bad argument " |
| 273 |
"in __cyl_bessel_i.")); |
| 274 |
else if (__isnan(__nu) || __isnan(__x)) |
| 275 |
return std::numeric_limits<_Tp>::quiet_NaN(); |
| 276 |
else if (__x * __x < _Tp(10) * (__nu + _Tp(1))) |
| 277 |
return __cyl_bessel_ij_series(__nu, __x, +_Tp(1), 200); |
| 278 |
else |
| 279 |
{ |
| 280 |
_Tp __I_nu, __K_nu, __Ip_nu, __Kp_nu; |
| 281 |
__bessel_ik(__nu, __x, __I_nu, __K_nu, __Ip_nu, __Kp_nu); |
| 282 |
return __I_nu; |
| 283 |
} |
| 284 |
} |
| 285 |
|
| 286 |
|
| 287 |
/** |
| 288 |
* @brief Return the irregular modified Bessel function |
| 289 |
* \f$ K_{\nu}(x) \f$ of order \f$ \nu \f$. |
| 290 |
* |
| 291 |
* The irregular modified Bessel function is defined by: |
| 292 |
* @f[ |
| 293 |
* K_{\nu}(x) = \frac{\pi}{2} |
| 294 |
* \frac{I_{-\nu}(x) - I_{\nu}(x)}{\sin \nu\pi} |
| 295 |
* @f] |
| 296 |
* where for integral \f$ \nu = n \f$ a limit is taken: |
| 297 |
* \f$ lim_{\nu \to n} \f$. |
| 298 |
* |
| 299 |
* @param __nu The order of the irregular modified Bessel function. |
| 300 |
* @param __x The argument of the irregular modified Bessel function. |
| 301 |
* @return The output irregular modified Bessel function. |
| 302 |
*/ |
| 303 |
template<typename _Tp> |
| 304 |
_Tp |
| 305 |
__cyl_bessel_k(_Tp __nu, _Tp __x) |
| 306 |
{ |
| 307 |
if (__nu < _Tp(0) || __x < _Tp(0)) |
| 308 |
std::__throw_domain_error(__N("Bad argument " |
| 309 |
"in __cyl_bessel_k.")); |
| 310 |
else if (__isnan(__nu) || __isnan(__x)) |
| 311 |
return std::numeric_limits<_Tp>::quiet_NaN(); |
| 312 |
else |
| 313 |
{ |
| 314 |
_Tp __I_nu, __K_nu, __Ip_nu, __Kp_nu; |
| 315 |
__bessel_ik(__nu, __x, __I_nu, __K_nu, __Ip_nu, __Kp_nu); |
| 316 |
return __K_nu; |
| 317 |
} |
| 318 |
} |
| 319 |
|
| 320 |
|
| 321 |
/** |
| 322 |
* @brief Compute the spherical modified Bessel functions |
| 323 |
* @f$ i_n(x) @f$ and @f$ k_n(x) @f$ and their first |
| 324 |
* derivatives @f$ i'_n(x) @f$ and @f$ k'_n(x) @f$ |
| 325 |
* respectively. |
| 326 |
* |
| 327 |
* @param __n The order of the modified spherical Bessel function. |
| 328 |
* @param __x The argument of the modified spherical Bessel function. |
| 329 |
* @param __i_n The output regular modified spherical Bessel function. |
| 330 |
* @param __k_n The output irregular modified spherical |
| 331 |
* Bessel function. |
| 332 |
* @param __ip_n The output derivative of the regular modified |
| 333 |
* spherical Bessel function. |
| 334 |
* @param __kp_n The output derivative of the irregular modified |
| 335 |
* spherical Bessel function. |
| 336 |
*/ |
| 337 |
template <typename _Tp> |
| 338 |
void |
| 339 |
__sph_bessel_ik(unsigned int __n, _Tp __x, |
| 340 |
_Tp & __i_n, _Tp & __k_n, _Tp & __ip_n, _Tp & __kp_n) |
| 341 |
{ |
| 342 |
const _Tp __nu = _Tp(__n) + _Tp(0.5L); |
| 343 |
|
| 344 |
_Tp __I_nu, __Ip_nu, __K_nu, __Kp_nu; |
| 345 |
__bessel_ik(__nu, __x, __I_nu, __K_nu, __Ip_nu, __Kp_nu); |
| 346 |
|
| 347 |
const _Tp __factor = __numeric_constants<_Tp>::__sqrtpio2() |
| 348 |
/ std::sqrt(__x); |
| 349 |
|
| 350 |
__i_n = __factor * __I_nu; |
| 351 |
__k_n = __factor * __K_nu; |
| 352 |
__ip_n = __factor * __Ip_nu - __i_n / (_Tp(2) * __x); |
| 353 |
__kp_n = __factor * __Kp_nu - __k_n / (_Tp(2) * __x); |
| 354 |
|
| 355 |
return; |
| 356 |
} |
| 357 |
|
| 358 |
|
| 359 |
/** |
| 360 |
* @brief Compute the Airy functions |
| 361 |
* @f$ Ai(x) @f$ and @f$ Bi(x) @f$ and their first |
| 362 |
* derivatives @f$ Ai'(x) @f$ and @f$ Bi(x) @f$ |
| 363 |
* respectively. |
| 364 |
* |
| 365 |
* @param __x The argument of the Airy functions. |
| 366 |
* @param __Ai The output Airy function of the first kind. |
| 367 |
* @param __Bi The output Airy function of the second kind. |
| 368 |
* @param __Aip The output derivative of the Airy function |
| 369 |
* of the first kind. |
| 370 |
* @param __Bip The output derivative of the Airy function |
| 371 |
* of the second kind. |
| 372 |
*/ |
| 373 |
template <typename _Tp> |
| 374 |
void |
| 375 |
__airy(_Tp __x, _Tp & __Ai, _Tp & __Bi, _Tp & __Aip, _Tp & __Bip) |
| 376 |
{ |
| 377 |
const _Tp __absx = std::abs(__x); |
| 378 |
const _Tp __rootx = std::sqrt(__absx); |
| 379 |
const _Tp __z = _Tp(2) * __absx * __rootx / _Tp(3); |
| 380 |
const _Tp _S_inf = std::numeric_limits<_Tp>::infinity(); |
| 381 |
|
| 382 |
if (__isnan(__x)) |
| 383 |
__Bip = __Aip = __Bi = __Ai = std::numeric_limits<_Tp>::quiet_NaN(); |
| 384 |
else if (__z == _S_inf) |
| 385 |
{ |
| 386 |
__Aip = __Ai = _Tp(0); |
| 387 |
__Bip = __Bi = _S_inf; |
| 388 |
} |
| 389 |
else if (__z == -_S_inf) |
| 390 |
__Bip = __Aip = __Bi = __Ai = _Tp(0); |
| 391 |
else if (__x > _Tp(0)) |
| 392 |
{ |
| 393 |
_Tp __I_nu, __Ip_nu, __K_nu, __Kp_nu; |
| 394 |
|
| 395 |
__bessel_ik(_Tp(1) / _Tp(3), __z, __I_nu, __K_nu, __Ip_nu, __Kp_nu); |
| 396 |
__Ai = __rootx * __K_nu |
| 397 |
/ (__numeric_constants<_Tp>::__sqrt3() |
| 398 |
* __numeric_constants<_Tp>::__pi()); |
| 399 |
__Bi = __rootx * (__K_nu / __numeric_constants<_Tp>::__pi() |
| 400 |
+ _Tp(2) * __I_nu / __numeric_constants<_Tp>::__sqrt3()); |
| 401 |
|
| 402 |
__bessel_ik(_Tp(2) / _Tp(3), __z, __I_nu, __K_nu, __Ip_nu, __Kp_nu); |
| 403 |
__Aip = -__x * __K_nu |
| 404 |
/ (__numeric_constants<_Tp>::__sqrt3() |
| 405 |
* __numeric_constants<_Tp>::__pi()); |
| 406 |
__Bip = __x * (__K_nu / __numeric_constants<_Tp>::__pi() |
| 407 |
+ _Tp(2) * __I_nu |
| 408 |
/ __numeric_constants<_Tp>::__sqrt3()); |
| 409 |
} |
| 410 |
else if (__x < _Tp(0)) |
| 411 |
{ |
| 412 |
_Tp __J_nu, __Jp_nu, __N_nu, __Np_nu; |
| 413 |
|
| 414 |
__bessel_jn(_Tp(1) / _Tp(3), __z, __J_nu, __N_nu, __Jp_nu, __Np_nu); |
| 415 |
__Ai = __rootx * (__J_nu |
| 416 |
- __N_nu / __numeric_constants<_Tp>::__sqrt3()) / _Tp(2); |
| 417 |
__Bi = -__rootx * (__N_nu |
| 418 |
+ __J_nu / __numeric_constants<_Tp>::__sqrt3()) / _Tp(2); |
| 419 |
|
| 420 |
__bessel_jn(_Tp(2) / _Tp(3), __z, __J_nu, __N_nu, __Jp_nu, __Np_nu); |
| 421 |
__Aip = __absx * (__N_nu / __numeric_constants<_Tp>::__sqrt3() |
| 422 |
+ __J_nu) / _Tp(2); |
| 423 |
__Bip = __absx * (__J_nu / __numeric_constants<_Tp>::__sqrt3() |
| 424 |
- __N_nu) / _Tp(2); |
| 425 |
} |
| 426 |
else |
| 427 |
{ |
| 428 |
// Reference: |
| 429 |
// Abramowitz & Stegun, page 446 section 10.4.4 on Airy functions. |
| 430 |
// The number is Ai(0) = 3^{-2/3}/\Gamma(2/3). |
| 431 |
__Ai = _Tp(0.35502805388781723926L); |
| 432 |
__Bi = __Ai * __numeric_constants<_Tp>::__sqrt3(); |
| 433 |
|
| 434 |
// Reference: |
| 435 |
// Abramowitz & Stegun, page 446 section 10.4.5 on Airy functions. |
| 436 |
// The number is Ai'(0) = -3^{-1/3}/\Gamma(1/3). |
| 437 |
__Aip = -_Tp(0.25881940379280679840L); |
| 438 |
__Bip = -__Aip * __numeric_constants<_Tp>::__sqrt3(); |
| 439 |
} |
| 440 |
|
| 441 |
return; |
| 442 |
} |
| 443 |
} // namespace __detail |
| 444 |
#if ! _GLIBCXX_USE_STD_SPEC_FUNCS && defined(_GLIBCXX_TR1_CMATH) |
| 445 |
} // namespace tr1 |
| 446 |
#endif |
| 447 |
|
| 448 |
_GLIBCXX_END_NAMESPACE_VERSION |
| 449 |
} |
| 450 |
|
| 451 |
#endif // _GLIBCXX_TR1_MODIFIED_BESSEL_FUNC_TCC |