| 1 | // Special functions -*- C++ -*- | 
 
 
 
 
 | 2 |  | 
 
 
 
 
 | 3 | // Copyright (C) 2006-2021 Free Software Foundation, Inc. | 
 
 
 
 
 | 4 | // | 
 
 
 
 
 | 5 | // This file is part of the GNU ISO C++ Library.  This library is free | 
 
 
 
 
 | 6 | // software; you can redistribute it and/or modify it under the | 
 
 
 
 
 | 7 | // terms of the GNU General Public License as published by the | 
 
 
 
 
 | 8 | // Free Software Foundation; either version 3, or (at your option) | 
 
 
 
 
 | 9 | // any later version. | 
 
 
 
 
 | 10 | // | 
 
 
 
 
 | 11 | // This library is distributed in the hope that it will be useful, | 
 
 
 
 
 | 12 | // but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 
 
 
 
 | 13 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
 
 
 
 
 | 14 | // GNU General Public License for more details. | 
 
 
 
 
 | 15 | // | 
 
 
 
 
 | 16 | // Under Section 7 of GPL version 3, you are granted additional | 
 
 
 
 
 | 17 | // permissions described in the GCC Runtime Library Exception, version | 
 
 
 
 
 | 18 | // 3.1, as published by the Free Software Foundation. | 
 
 
 
 
 | 19 |  | 
 
 
 
 
 | 20 | // You should have received a copy of the GNU General Public License and | 
 
 
 
 
 | 21 | // a copy of the GCC Runtime Library Exception along with this program; | 
 
 
 
 
 | 22 | // see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see | 
 
 
 
 
 | 23 | // <http://www.gnu.org/licenses/>. | 
 
 
 
 
 | 24 |  | 
 
 
 
 
 | 25 | /** @file tr1/hypergeometric.tcc | 
 
 
 
 
 | 26 | *  This is an internal header file, included by other library headers. | 
 
 
 
 
 | 27 | *  Do not attempt to use it directly. @headername{tr1/cmath} | 
 
 
 
 
 | 28 | */ | 
 
 
 
 
 | 29 |  | 
 
 
 
 
 | 30 | // | 
 
 
 
 
 | 31 | // ISO C++ 14882 TR1: 5.2  Special functions | 
 
 
 
 
 | 32 | // | 
 
 
 
 
 | 33 |  | 
 
 
 
 
 | 34 | // Written by Edward Smith-Rowland based: | 
 
 
 
 
 | 35 | //   (1) Handbook of Mathematical Functions, | 
 
 
 
 
 | 36 | //       ed. Milton Abramowitz and Irene A. Stegun, | 
 
 
 
 
 | 37 | //       Dover Publications, | 
 
 
 
 
 | 38 | //       Section 6, pp. 555-566 | 
 
 
 
 
 | 39 | //   (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl | 
 
 
 
 
 | 40 |  | 
 
 
 
 
 | 41 | #ifndef _GLIBCXX_TR1_HYPERGEOMETRIC_TCC | 
 
 
 
 
 | 42 | #define _GLIBCXX_TR1_HYPERGEOMETRIC_TCC 1 | 
 
 
 
 
 | 43 |  | 
 
 
 
 
 | 44 | namespace std _GLIBCXX_VISIBILITY(default) | 
 
 
 
 
 | 45 | { | 
 
 
 
 
 | 46 | _GLIBCXX_BEGIN_NAMESPACE_VERSION | 
 
 
 
 
 | 47 |  | 
 
 
 
 
 | 48 | #if _GLIBCXX_USE_STD_SPEC_FUNCS | 
 
 
 
 
 | 49 | # define _GLIBCXX_MATH_NS ::std | 
 
 
 
 
 | 50 | #elif defined(_GLIBCXX_TR1_CMATH) | 
 
 
 
 
 | 51 | namespace tr1 | 
 
 
 
 
 | 52 | { | 
 
 
 
 
 | 53 | # define _GLIBCXX_MATH_NS ::std::tr1 | 
 
 
 
 
 | 54 | #else | 
 
 
 
 
 | 55 | # error do not include this header directly, use <cmath> or <tr1/cmath> | 
 
 
 
 
 | 56 | #endif | 
 
 
 
 
 | 57 | // [5.2] Special functions | 
 
 
 
 
 | 58 |  | 
 
 
 
 
 | 59 | // Implementation-space details. | 
 
 
 
 
 | 60 | namespace __detail | 
 
 
 
 
 | 61 | { | 
 
 
 
 
 | 62 | /** | 
 
 
 
 
 | 63 | *   @brief This routine returns the confluent hypergeometric function | 
 
 
 
 
 | 64 | *          by series expansion. | 
 
 
 
 
 | 65 | * | 
 
 
 
 
 | 66 | *   @f[ | 
 
 
 
 
 | 67 | *     _1F_1(a;c;x) = \frac{\Gamma(c)}{\Gamma(a)} | 
 
 
 
 
 | 68 | *                      \sum_{n=0}^{\infty} | 
 
 
 
 
 | 69 | *                      \frac{\Gamma(a+n)}{\Gamma(c+n)} | 
 
 
 
 
 | 70 | *                      \frac{x^n}{n!} | 
 
 
 
 
 | 71 | *   @f] | 
 
 
 
 
 | 72 | * | 
 
 
 
 
 | 73 | *   If a and b are integers and a < 0 and either b > 0 or b < a | 
 
 
 
 
 | 74 | *   then the series is a polynomial with a finite number of | 
 
 
 
 
 | 75 | *   terms.  If b is an integer and b <= 0 the confluent | 
 
 
 
 
 | 76 | *   hypergeometric function is undefined. | 
 
 
 
 
 | 77 | * | 
 
 
 
 
 | 78 | *   @param  __a  The "numerator" parameter. | 
 
 
 
 
 | 79 | *   @param  __c  The "denominator" parameter. | 
 
 
 
 
 | 80 | *   @param  __x  The argument of the confluent hypergeometric function. | 
 
 
 
 
 | 81 | *   @return  The confluent hypergeometric function. | 
 
 
 
 
 | 82 | */ | 
 
 
 
 
 | 83 | template<typename _Tp> | 
 
 
 
 
 | 84 | _Tp | 
 
 
 
 
 | 85 | __conf_hyperg_series(_Tp __a, _Tp __c, _Tp __x) | 
 
 
 
 
 | 86 | { | 
 
 
 
 
 | 87 | const _Tp __eps = std::numeric_limits<_Tp>::epsilon(); | 
 
 
 
 
 | 88 |  | 
 
 
 
 
 | 89 | _Tp __term = _Tp(1); | 
 
 
 
 
 | 90 | _Tp __Fac = _Tp(1); | 
 
 
 
 
 | 91 | const unsigned int __max_iter = 100000; | 
 
 
 
 
 | 92 | unsigned int __i; | 
 
 
 
 
 | 93 | for (__i = 0; __i < __max_iter; ++__i) | 
 
 
 
 
 | 94 | { | 
 
 
 
 
 | 95 | __term *= (__a + _Tp(__i)) * __x | 
 
 
 
 
 | 96 | / ((__c + _Tp(__i)) * _Tp(1 + __i)); | 
 
 
 
 
 | 97 | if (std::abs(__term) < __eps) | 
 
 
 
 
 | 98 | { | 
 
 
 
 
 | 99 | break; | 
 
 
 
 
 | 100 | } | 
 
 
 
 
 | 101 | __Fac += __term; | 
 
 
 
 
 | 102 | } | 
 
 
 
 
 | 103 | if (__i == __max_iter) | 
 
 
 
 
 | 104 | std::__throw_runtime_error(__N("Series failed to converge " | 
 
 
 
 
 | 105 | "in __conf_hyperg_series.")); | 
 
 
 
 
 | 106 |  | 
 
 
 
 
 | 107 | return __Fac; | 
 
 
 
 
 | 108 | } | 
 
 
 
 
 | 109 |  | 
 
 
 
 
 | 110 |  | 
 
 
 
 
 | 111 | /** | 
 
 
 
 
 | 112 | *  @brief  Return the hypogeometric function @f$ _2F_1(a,b;c;x) @f$ | 
 
 
 
 
 | 113 | *          by an iterative procedure described in | 
 
 
 
 
 | 114 | *          Luke, Algorithms for the Computation of Mathematical Functions. | 
 
 
 
 
 | 115 | * | 
 
 
 
 
 | 116 | *  Like the case of the 2F1 rational approximations, these are | 
 
 
 
 
 | 117 | *  probably guaranteed to converge for x < 0, barring gross | 
 
 
 
 
 | 118 | *  numerical instability in the pre-asymptotic regime. | 
 
 
 
 
 | 119 | */ | 
 
 
 
 
 | 120 | template<typename _Tp> | 
 
 
 
 
 | 121 | _Tp | 
 
 
 
 
 | 122 | __conf_hyperg_luke(_Tp __a, _Tp __c, _Tp __xin) | 
 
 
 
 
 | 123 | { | 
 
 
 
 
 | 124 | const _Tp __big = std::pow(std::numeric_limits<_Tp>::max(), _Tp(0.16L)); | 
 
 
 
 
 | 125 | const int __nmax = 20000; | 
 
 
 
 
 | 126 | const _Tp __eps = std::numeric_limits<_Tp>::epsilon(); | 
 
 
 
 
 | 127 | const _Tp __x  = -__xin; | 
 
 
 
 
 | 128 | const _Tp __x3 = __x * __x * __x; | 
 
 
 
 
 | 129 | const _Tp __t0 = __a / __c; | 
 
 
 
 
 | 130 | const _Tp __t1 = (__a + _Tp(1)) / (_Tp(2) * __c); | 
 
 
 
 
 | 131 | const _Tp __t2 = (__a + _Tp(2)) / (_Tp(2) * (__c + _Tp(1))); | 
 
 
 
 
 | 132 | _Tp __F = _Tp(1); | 
 
 
 
 
 | 133 | _Tp __prec; | 
 
 
 
 
 | 134 |  | 
 
 
 
 
 | 135 | _Tp __Bnm3 = _Tp(1); | 
 
 
 
 
 | 136 | _Tp __Bnm2 = _Tp(1) + __t1 * __x; | 
 
 
 
 
 | 137 | _Tp __Bnm1 = _Tp(1) + __t2 * __x * (_Tp(1) + __t1 / _Tp(3) * __x); | 
 
 
 
 
 | 138 |  | 
 
 
 
 
 | 139 | _Tp __Anm3 = _Tp(1); | 
 
 
 
 
 | 140 | _Tp __Anm2 = __Bnm2 - __t0 * __x; | 
 
 
 
 
 | 141 | _Tp __Anm1 = __Bnm1 - __t0 * (_Tp(1) + __t2 * __x) * __x | 
 
 
 
 
 | 142 | + __t0 * __t1 * (__c / (__c + _Tp(1))) * __x * __x; | 
 
 
 
 
 | 143 |  | 
 
 
 
 
 | 144 | int __n = 3; | 
 
 
 
 
 | 145 | while(1) | 
 
 
 
 
 | 146 | { | 
 
 
 
 
 | 147 | _Tp __npam1 = _Tp(__n - 1) + __a; | 
 
 
 
 
 | 148 | _Tp __npcm1 = _Tp(__n - 1) + __c; | 
 
 
 
 
 | 149 | _Tp __npam2 = _Tp(__n - 2) + __a; | 
 
 
 
 
 | 150 | _Tp __npcm2 = _Tp(__n - 2) + __c; | 
 
 
 
 
 | 151 | _Tp __tnm1  = _Tp(2 * __n - 1); | 
 
 
 
 
 | 152 | _Tp __tnm3  = _Tp(2 * __n - 3); | 
 
 
 
 
 | 153 | _Tp __tnm5  = _Tp(2 * __n - 5); | 
 
 
 
 
 | 154 | _Tp __F1 =  (_Tp(__n - 2) - __a) / (_Tp(2) * __tnm3 * __npcm1); | 
 
 
 
 
 | 155 | _Tp __F2 =  (_Tp(__n) + __a) * __npam1 | 
 
 
 
 
 | 156 | / (_Tp(4) * __tnm1 * __tnm3 * __npcm2 * __npcm1); | 
 
 
 
 
 | 157 | _Tp __F3 = -__npam2 * __npam1 * (_Tp(__n - 2) - __a) | 
 
 
 
 
 | 158 | / (_Tp(8) * __tnm3 * __tnm3 * __tnm5 | 
 
 
 
 
 | 159 | * (_Tp(__n - 3) + __c) * __npcm2 * __npcm1); | 
 
 
 
 
 | 160 | _Tp __E  = -__npam1 * (_Tp(__n - 1) - __c) | 
 
 
 
 
 | 161 | / (_Tp(2) * __tnm3 * __npcm2 * __npcm1); | 
 
 
 
 
 | 162 |  | 
 
 
 
 
 | 163 | _Tp __An = (_Tp(1) + __F1 * __x) * __Anm1 | 
 
 
 
 
 | 164 | + (__E + __F2 * __x) * __x * __Anm2 + __F3 * __x3 * __Anm3; | 
 
 
 
 
 | 165 | _Tp __Bn = (_Tp(1) + __F1 * __x) * __Bnm1 | 
 
 
 
 
 | 166 | + (__E + __F2 * __x) * __x * __Bnm2 + __F3 * __x3 * __Bnm3; | 
 
 
 
 
 | 167 | _Tp __r = __An / __Bn; | 
 
 
 
 
 | 168 |  | 
 
 
 
 
 | 169 | __prec = std::abs((__F - __r) / __F); | 
 
 
 
 
 | 170 | __F = __r; | 
 
 
 
 
 | 171 |  | 
 
 
 
 
 | 172 | if (__prec < __eps || __n > __nmax) | 
 
 
 
 
 | 173 | break; | 
 
 
 
 
 | 174 |  | 
 
 
 
 
 | 175 | if (std::abs(__An) > __big || std::abs(__Bn) > __big) | 
 
 
 
 
 | 176 | { | 
 
 
 
 
 | 177 | __An   /= __big; | 
 
 
 
 
 | 178 | __Bn   /= __big; | 
 
 
 
 
 | 179 | __Anm1 /= __big; | 
 
 
 
 
 | 180 | __Bnm1 /= __big; | 
 
 
 
 
 | 181 | __Anm2 /= __big; | 
 
 
 
 
 | 182 | __Bnm2 /= __big; | 
 
 
 
 
 | 183 | __Anm3 /= __big; | 
 
 
 
 
 | 184 | __Bnm3 /= __big; | 
 
 
 
 
 | 185 | } | 
 
 
 
 
 | 186 | else if (std::abs(__An) < _Tp(1) / __big | 
 
 
 
 
 | 187 | || std::abs(__Bn) < _Tp(1) / __big) | 
 
 
 
 
 | 188 | { | 
 
 
 
 
 | 189 | __An   *= __big; | 
 
 
 
 
 | 190 | __Bn   *= __big; | 
 
 
 
 
 | 191 | __Anm1 *= __big; | 
 
 
 
 
 | 192 | __Bnm1 *= __big; | 
 
 
 
 
 | 193 | __Anm2 *= __big; | 
 
 
 
 
 | 194 | __Bnm2 *= __big; | 
 
 
 
 
 | 195 | __Anm3 *= __big; | 
 
 
 
 
 | 196 | __Bnm3 *= __big; | 
 
 
 
 
 | 197 | } | 
 
 
 
 
 | 198 |  | 
 
 
 
 
 | 199 | ++__n; | 
 
 
 
 
 | 200 | __Bnm3 = __Bnm2; | 
 
 
 
 
 | 201 | __Bnm2 = __Bnm1; | 
 
 
 
 
 | 202 | __Bnm1 = __Bn; | 
 
 
 
 
 | 203 | __Anm3 = __Anm2; | 
 
 
 
 
 | 204 | __Anm2 = __Anm1; | 
 
 
 
 
 | 205 | __Anm1 = __An; | 
 
 
 
 
 | 206 | } | 
 
 
 
 
 | 207 |  | 
 
 
 
 
 | 208 | if (__n >= __nmax) | 
 
 
 
 
 | 209 | std::__throw_runtime_error(__N("Iteration failed to converge " | 
 
 
 
 
 | 210 | "in __conf_hyperg_luke.")); | 
 
 
 
 
 | 211 |  | 
 
 
 
 
 | 212 | return __F; | 
 
 
 
 
 | 213 | } | 
 
 
 
 
 | 214 |  | 
 
 
 
 
 | 215 |  | 
 
 
 
 
 | 216 | /** | 
 
 
 
 
 | 217 | *   @brief  Return the confluent hypogeometric function | 
 
 
 
 
 | 218 | *           @f$ _1F_1(a;c;x) @f$. | 
 
 
 
 
 | 219 | * | 
 
 
 
 
 | 220 | *   @todo  Handle b == nonpositive integer blowup - return NaN. | 
 
 
 
 
 | 221 | * | 
 
 
 
 
 | 222 | *   @param  __a  The @a numerator parameter. | 
 
 
 
 
 | 223 | *   @param  __c  The @a denominator parameter. | 
 
 
 
 
 | 224 | *   @param  __x  The argument of the confluent hypergeometric function. | 
 
 
 
 
 | 225 | *   @return  The confluent hypergeometric function. | 
 
 
 
 
 | 226 | */ | 
 
 
 
 
 | 227 | template<typename _Tp> | 
 
 
 
 
 | 228 | _Tp | 
 
 
 
 
 | 229 | __conf_hyperg(_Tp __a, _Tp __c, _Tp __x) | 
 
 
 
 
 | 230 | { | 
 
 
 
 
 | 231 | #if _GLIBCXX_USE_C99_MATH_TR1 | 
 
 
 
 
 | 232 | const _Tp __c_nint = _GLIBCXX_MATH_NS::nearbyint(__c); | 
 
 
 
 
 | 233 | #else | 
 
 
 
 
 | 234 | const _Tp __c_nint = static_cast<int>(__c + _Tp(0.5L)); | 
 
 
 
 
 | 235 | #endif | 
 
 
 
 
 | 236 | if (__isnan(__a) || __isnan(__c) || __isnan(__x)) | 
 
 
 
 
 | 237 | return std::numeric_limits<_Tp>::quiet_NaN(); | 
 
 
 
 
 | 238 | else if (__c_nint == __c && __c_nint <= 0) | 
 
 
 
 
 | 239 | return std::numeric_limits<_Tp>::infinity(); | 
 
 
 
 
 | 240 | else if (__a == _Tp(0)) | 
 
 
 
 
 | 241 | return _Tp(1); | 
 
 
 
 
 | 242 | else if (__c == __a) | 
 
 
 
 
 | 243 | return std::exp(__x); | 
 
 
 
 
 | 244 | else if (__x < _Tp(0)) | 
 
 
 
 
 | 245 | return __conf_hyperg_luke(__a, __c, __x); | 
 
 
 
 
 | 246 | else | 
 
 
 
 
 | 247 | return __conf_hyperg_series(__a, __c, __x); | 
 
 
 
 
 | 248 | } | 
 
 
 
 
 | 249 |  | 
 
 
 
 
 | 250 |  | 
 
 
 
 
 | 251 | /** | 
 
 
 
 
 | 252 | *   @brief Return the hypogeometric function @f$ _2F_1(a,b;c;x) @f$ | 
 
 
 
 
 | 253 | *   by series expansion. | 
 
 
 
 
 | 254 | * | 
 
 
 
 
 | 255 | *   The hypogeometric function is defined by | 
 
 
 
 
 | 256 | *   @f[ | 
 
 
 
 
 | 257 | *     _2F_1(a,b;c;x) = \frac{\Gamma(c)}{\Gamma(a)\Gamma(b)} | 
 
 
 
 
 | 258 | *                      \sum_{n=0}^{\infty} | 
 
 
 
 
 | 259 | *                      \frac{\Gamma(a+n)\Gamma(b+n)}{\Gamma(c+n)} | 
 
 
 
 
 | 260 | *                      \frac{x^n}{n!} | 
 
 
 
 
 | 261 | *   @f] | 
 
 
 
 
 | 262 | * | 
 
 
 
 
 | 263 | *   This works and it's pretty fast. | 
 
 
 
 
 | 264 | * | 
 
 
 
 
 | 265 | *   @param  __a  The first @a numerator parameter. | 
 
 
 
 
 | 266 | *   @param  __a  The second @a numerator parameter. | 
 
 
 
 
 | 267 | *   @param  __c  The @a denominator parameter. | 
 
 
 
 
 | 268 | *   @param  __x  The argument of the confluent hypergeometric function. | 
 
 
 
 
 | 269 | *   @return  The confluent hypergeometric function. | 
 
 
 
 
 | 270 | */ | 
 
 
 
 
 | 271 | template<typename _Tp> | 
 
 
 
 
 | 272 | _Tp | 
 
 
 
 
 | 273 | __hyperg_series(_Tp __a, _Tp __b, _Tp __c, _Tp __x) | 
 
 
 
 
 | 274 | { | 
 
 
 
 
 | 275 | const _Tp __eps = std::numeric_limits<_Tp>::epsilon(); | 
 
 
 
 
 | 276 |  | 
 
 
 
 
 | 277 | _Tp __term = _Tp(1); | 
 
 
 
 
 | 278 | _Tp __Fabc = _Tp(1); | 
 
 
 
 
 | 279 | const unsigned int __max_iter = 100000; | 
 
 
 
 
 | 280 | unsigned int __i; | 
 
 
 
 
 | 281 | for (__i = 0; __i < __max_iter; ++__i) | 
 
 
 
 
 | 282 | { | 
 
 
 
 
 | 283 | __term *= (__a + _Tp(__i)) * (__b + _Tp(__i)) * __x | 
 
 
 
 
 | 284 | / ((__c + _Tp(__i)) * _Tp(1 + __i)); | 
 
 
 
 
 | 285 | if (std::abs(__term) < __eps) | 
 
 
 
 
 | 286 | { | 
 
 
 
 
 | 287 | break; | 
 
 
 
 
 | 288 | } | 
 
 
 
 
 | 289 | __Fabc += __term; | 
 
 
 
 
 | 290 | } | 
 
 
 
 
 | 291 | if (__i == __max_iter) | 
 
 
 
 
 | 292 | std::__throw_runtime_error(__N("Series failed to converge " | 
 
 
 
 
 | 293 | "in __hyperg_series.")); | 
 
 
 
 
 | 294 |  | 
 
 
 
 
 | 295 | return __Fabc; | 
 
 
 
 
 | 296 | } | 
 
 
 
 
 | 297 |  | 
 
 
 
 
 | 298 |  | 
 
 
 
 
 | 299 | /** | 
 
 
 
 
 | 300 | *   @brief  Return the hypogeometric function @f$ _2F_1(a,b;c;x) @f$ | 
 
 
 
 
 | 301 | *           by an iterative procedure described in | 
 
 
 
 
 | 302 | *           Luke, Algorithms for the Computation of Mathematical Functions. | 
 
 
 
 
 | 303 | */ | 
 
 
 
 
 | 304 | template<typename _Tp> | 
 
 
 
 
 | 305 | _Tp | 
 
 
 
 
 | 306 | __hyperg_luke(_Tp __a, _Tp __b, _Tp __c, _Tp __xin) | 
 
 
 
 
 | 307 | { | 
 
 
 
 
 | 308 | const _Tp __big = std::pow(std::numeric_limits<_Tp>::max(), _Tp(0.16L)); | 
 
 
 
 
 | 309 | const int __nmax = 20000; | 
 
 
 
 
 | 310 | const _Tp __eps = std::numeric_limits<_Tp>::epsilon(); | 
 
 
 
 
 | 311 | const _Tp __x  = -__xin; | 
 
 
 
 
 | 312 | const _Tp __x3 = __x * __x * __x; | 
 
 
 
 
 | 313 | const _Tp __t0 = __a * __b / __c; | 
 
 
 
 
 | 314 | const _Tp __t1 = (__a + _Tp(1)) * (__b + _Tp(1)) / (_Tp(2) * __c); | 
 
 
 
 
 | 315 | const _Tp __t2 = (__a + _Tp(2)) * (__b + _Tp(2)) | 
 
 
 
 
 | 316 | / (_Tp(2) * (__c + _Tp(1))); | 
 
 
 
 
 | 317 |  | 
 
 
 
 
 | 318 | _Tp __F = _Tp(1); | 
 
 
 
 
 | 319 |  | 
 
 
 
 
 | 320 | _Tp __Bnm3 = _Tp(1); | 
 
 
 
 
 | 321 | _Tp __Bnm2 = _Tp(1) + __t1 * __x; | 
 
 
 
 
 | 322 | _Tp __Bnm1 = _Tp(1) + __t2 * __x * (_Tp(1) + __t1 / _Tp(3) * __x); | 
 
 
 
 
 | 323 |  | 
 
 
 
 
 | 324 | _Tp __Anm3 = _Tp(1); | 
 
 
 
 
 | 325 | _Tp __Anm2 = __Bnm2 - __t0 * __x; | 
 
 
 
 
 | 326 | _Tp __Anm1 = __Bnm1 - __t0 * (_Tp(1) + __t2 * __x) * __x | 
 
 
 
 
 | 327 | + __t0 * __t1 * (__c / (__c + _Tp(1))) * __x * __x; | 
 
 
 
 
 | 328 |  | 
 
 
 
 
 | 329 | int __n = 3; | 
 
 
 
 
 | 330 | while (1) | 
 
 
 
 
 | 331 | { | 
 
 
 
 
 | 332 | const _Tp __npam1 = _Tp(__n - 1) + __a; | 
 
 
 
 
 | 333 | const _Tp __npbm1 = _Tp(__n - 1) + __b; | 
 
 
 
 
 | 334 | const _Tp __npcm1 = _Tp(__n - 1) + __c; | 
 
 
 
 
 | 335 | const _Tp __npam2 = _Tp(__n - 2) + __a; | 
 
 
 
 
 | 336 | const _Tp __npbm2 = _Tp(__n - 2) + __b; | 
 
 
 
 
 | 337 | const _Tp __npcm2 = _Tp(__n - 2) + __c; | 
 
 
 
 
 | 338 | const _Tp __tnm1  = _Tp(2 * __n - 1); | 
 
 
 
 
 | 339 | const _Tp __tnm3  = _Tp(2 * __n - 3); | 
 
 
 
 
 | 340 | const _Tp __tnm5  = _Tp(2 * __n - 5); | 
 
 
 
 
 | 341 | const _Tp __n2 = __n * __n; | 
 
 
 
 
 | 342 | const _Tp __F1 = (_Tp(3) * __n2 + (__a + __b - _Tp(6)) * __n | 
 
 
 
 
 | 343 | + _Tp(2) - __a * __b - _Tp(2) * (__a + __b)) | 
 
 
 
 
 | 344 | / (_Tp(2) * __tnm3 * __npcm1); | 
 
 
 
 
 | 345 | const _Tp __F2 = -(_Tp(3) * __n2 - (__a + __b + _Tp(6)) * __n | 
 
 
 
 
 | 346 | + _Tp(2) - __a * __b) * __npam1 * __npbm1 | 
 
 
 
 
 | 347 | / (_Tp(4) * __tnm1 * __tnm3 * __npcm2 * __npcm1); | 
 
 
 
 
 | 348 | const _Tp __F3 = (__npam2 * __npam1 * __npbm2 * __npbm1 | 
 
 
 
 
 | 349 | * (_Tp(__n - 2) - __a) * (_Tp(__n - 2) - __b)) | 
 
 
 
 
 | 350 | / (_Tp(8) * __tnm3 * __tnm3 * __tnm5 | 
 
 
 
 
 | 351 | * (_Tp(__n - 3) + __c) * __npcm2 * __npcm1); | 
 
 
 
 
 | 352 | const _Tp __E  = -__npam1 * __npbm1 * (_Tp(__n - 1) - __c) | 
 
 
 
 
 | 353 | / (_Tp(2) * __tnm3 * __npcm2 * __npcm1); | 
 
 
 
 
 | 354 |  | 
 
 
 
 
 | 355 | _Tp __An = (_Tp(1) + __F1 * __x) * __Anm1 | 
 
 
 
 
 | 356 | + (__E + __F2 * __x) * __x * __Anm2 + __F3 * __x3 * __Anm3; | 
 
 
 
 
 | 357 | _Tp __Bn = (_Tp(1) + __F1 * __x) * __Bnm1 | 
 
 
 
 
 | 358 | + (__E + __F2 * __x) * __x * __Bnm2 + __F3 * __x3 * __Bnm3; | 
 
 
 
 
 | 359 | const _Tp __r = __An / __Bn; | 
 
 
 
 
 | 360 |  | 
 
 
 
 
 | 361 | const _Tp __prec = std::abs((__F - __r) / __F); | 
 
 
 
 
 | 362 | __F = __r; | 
 
 
 
 
 | 363 |  | 
 
 
 
 
 | 364 | if (__prec < __eps || __n > __nmax) | 
 
 
 
 
 | 365 | break; | 
 
 
 
 
 | 366 |  | 
 
 
 
 
 | 367 | if (std::abs(__An) > __big || std::abs(__Bn) > __big) | 
 
 
 
 
 | 368 | { | 
 
 
 
 
 | 369 | __An   /= __big; | 
 
 
 
 
 | 370 | __Bn   /= __big; | 
 
 
 
 
 | 371 | __Anm1 /= __big; | 
 
 
 
 
 | 372 | __Bnm1 /= __big; | 
 
 
 
 
 | 373 | __Anm2 /= __big; | 
 
 
 
 
 | 374 | __Bnm2 /= __big; | 
 
 
 
 
 | 375 | __Anm3 /= __big; | 
 
 
 
 
 | 376 | __Bnm3 /= __big; | 
 
 
 
 
 | 377 | } | 
 
 
 
 
 | 378 | else if (std::abs(__An) < _Tp(1) / __big | 
 
 
 
 
 | 379 | || std::abs(__Bn) < _Tp(1) / __big) | 
 
 
 
 
 | 380 | { | 
 
 
 
 
 | 381 | __An   *= __big; | 
 
 
 
 
 | 382 | __Bn   *= __big; | 
 
 
 
 
 | 383 | __Anm1 *= __big; | 
 
 
 
 
 | 384 | __Bnm1 *= __big; | 
 
 
 
 
 | 385 | __Anm2 *= __big; | 
 
 
 
 
 | 386 | __Bnm2 *= __big; | 
 
 
 
 
 | 387 | __Anm3 *= __big; | 
 
 
 
 
 | 388 | __Bnm3 *= __big; | 
 
 
 
 
 | 389 | } | 
 
 
 
 
 | 390 |  | 
 
 
 
 
 | 391 | ++__n; | 
 
 
 
 
 | 392 | __Bnm3 = __Bnm2; | 
 
 
 
 
 | 393 | __Bnm2 = __Bnm1; | 
 
 
 
 
 | 394 | __Bnm1 = __Bn; | 
 
 
 
 
 | 395 | __Anm3 = __Anm2; | 
 
 
 
 
 | 396 | __Anm2 = __Anm1; | 
 
 
 
 
 | 397 | __Anm1 = __An; | 
 
 
 
 
 | 398 | } | 
 
 
 
 
 | 399 |  | 
 
 
 
 
 | 400 | if (__n >= __nmax) | 
 
 
 
 
 | 401 | std::__throw_runtime_error(__N("Iteration failed to converge " | 
 
 
 
 
 | 402 | "in __hyperg_luke.")); | 
 
 
 
 
 | 403 |  | 
 
 
 
 
 | 404 | return __F; | 
 
 
 
 
 | 405 | } | 
 
 
 
 
 | 406 |  | 
 
 
 
 
 | 407 |  | 
 
 
 
 
 | 408 | /** | 
 
 
 
 
 | 409 | *  @brief  Return the hypogeometric function @f$ _2F_1(a,b;c;x) @f$ | 
 
 
 
 
 | 410 | *  by the reflection formulae in Abramowitz & Stegun formula | 
 
 
 
 
 | 411 | *  15.3.6 for d = c - a - b not integral and formula 15.3.11 for | 
 
 
 
 
 | 412 | *  d = c - a - b integral.  This assumes a, b, c != negative | 
 
 
 
 
 | 413 | *  integer. | 
 
 
 
 
 | 414 | * | 
 
 
 
 
 | 415 | *   The hypogeometric function is defined by | 
 
 
 
 
 | 416 | *   @f[ | 
 
 
 
 
 | 417 | *     _2F_1(a,b;c;x) = \frac{\Gamma(c)}{\Gamma(a)\Gamma(b)} | 
 
 
 
 
 | 418 | *                      \sum_{n=0}^{\infty} | 
 
 
 
 
 | 419 | *                      \frac{\Gamma(a+n)\Gamma(b+n)}{\Gamma(c+n)} | 
 
 
 
 
 | 420 | *                      \frac{x^n}{n!} | 
 
 
 
 
 | 421 | *   @f] | 
 
 
 
 
 | 422 | * | 
 
 
 
 
 | 423 | *   The reflection formula for nonintegral @f$ d = c - a - b @f$ is: | 
 
 
 
 
 | 424 | *   @f[ | 
 
 
 
 
 | 425 | *     _2F_1(a,b;c;x) = \frac{\Gamma(c)\Gamma(d)}{\Gamma(c-a)\Gamma(c-b)} | 
 
 
 
 
 | 426 | *                            _2F_1(a,b;1-d;1-x) | 
 
 
 
 
 | 427 | *                    + \frac{\Gamma(c)\Gamma(-d)}{\Gamma(a)\Gamma(b)} | 
 
 
 
 
 | 428 | *                            _2F_1(c-a,c-b;1+d;1-x) | 
 
 
 
 
 | 429 | *   @f] | 
 
 
 
 
 | 430 | * | 
 
 
 
 
 | 431 | *   The reflection formula for integral @f$ m = c - a - b @f$ is: | 
 
 
 
 
 | 432 | *   @f[ | 
 
 
 
 
 | 433 | *     _2F_1(a,b;a+b+m;x) = \frac{\Gamma(m)\Gamma(a+b+m)}{\Gamma(a+m)\Gamma(b+m)} | 
 
 
 
 
 | 434 | *                        \sum_{k=0}^{m-1} \frac{(m+a)_k(m+b)_k}{k!(1-m)_k} | 
 
 
 
 
 | 435 | *                      - | 
 
 
 
 
 | 436 | *   @f] | 
 
 
 
 
 | 437 | */ | 
 
 
 
 
 | 438 | template<typename _Tp> | 
 
 
 
 
 | 439 | _Tp | 
 
 
 
 
 | 440 | __hyperg_reflect(_Tp __a, _Tp __b, _Tp __c, _Tp __x) | 
 
 
 
 
 | 441 | { | 
 
 
 
 
 | 442 | const _Tp __d = __c - __a - __b; | 
 
 
 
 
 | 443 | const int __intd  = std::floor(__d + _Tp(0.5L)); | 
 
 
 
 
 | 444 | const _Tp __eps = std::numeric_limits<_Tp>::epsilon(); | 
 
 
 
 
 | 445 | const _Tp __toler = _Tp(1000) * __eps; | 
 
 
 
 
 | 446 | const _Tp __log_max = std::log(std::numeric_limits<_Tp>::max()); | 
 
 
 
 
 | 447 | const bool __d_integer = (std::abs(__d - __intd) < __toler); | 
 
 
 
 
 | 448 |  | 
 
 
 
 
 | 449 | if (__d_integer) | 
 
 
 
 
 | 450 | { | 
 
 
 
 
 | 451 | const _Tp __ln_omx = std::log(_Tp(1) - __x); | 
 
 
 
 
 | 452 | const _Tp __ad = std::abs(__d); | 
 
 
 
 
 | 453 | _Tp __F1, __F2; | 
 
 
 
 
 | 454 |  | 
 
 
 
 
 | 455 | _Tp __d1, __d2; | 
 
 
 
 
 | 456 | if (__d >= _Tp(0)) | 
 
 
 
 
 | 457 | { | 
 
 
 
 
 | 458 | __d1 = __d; | 
 
 
 
 
 | 459 | __d2 = _Tp(0); | 
 
 
 
 
 | 460 | } | 
 
 
 
 
 | 461 | else | 
 
 
 
 
 | 462 | { | 
 
 
 
 
 | 463 | __d1 = _Tp(0); | 
 
 
 
 
 | 464 | __d2 = __d; | 
 
 
 
 
 | 465 | } | 
 
 
 
 
 | 466 |  | 
 
 
 
 
 | 467 | const _Tp __lng_c = __log_gamma(__c); | 
 
 
 
 
 | 468 |  | 
 
 
 
 
 | 469 | //  Evaluate F1. | 
 
 
 
 
 | 470 | if (__ad < __eps) | 
 
 
 
 
 | 471 | { | 
 
 
 
 
 | 472 | //  d = c - a - b = 0. | 
 
 
 
 
 | 473 | __F1 = _Tp(0); | 
 
 
 
 
 | 474 | } | 
 
 
 
 
 | 475 | else | 
 
 
 
 
 | 476 | { | 
 
 
 
 
 | 477 |  | 
 
 
 
 
 | 478 | bool __ok_d1 = true; | 
 
 
 
 
 | 479 | _Tp __lng_ad, __lng_ad1, __lng_bd1; | 
 
 
 
 
 | 480 | __try | 
 
 
 
 
 | 481 | { | 
 
 
 
 
 | 482 | __lng_ad = __log_gamma(__ad); | 
 
 
 
 
 | 483 | __lng_ad1 = __log_gamma(__a + __d1); | 
 
 
 
 
 | 484 | __lng_bd1 = __log_gamma(__b + __d1); | 
 
 
 
 
 | 485 | } | 
 
 
 
 
 | 486 | __catch(...) | 
 
 
 
 
 | 487 | { | 
 
 
 
 
 | 488 | __ok_d1 = false; | 
 
 
 
 
 | 489 | } | 
 
 
 
 
 | 490 |  | 
 
 
 
 
 | 491 | if (__ok_d1) | 
 
 
 
 
 | 492 | { | 
 
 
 
 
 | 493 | /* Gamma functions in the denominator are ok. | 
 
 
 
 
 | 494 | * Proceed with evaluation. | 
 
 
 
 
 | 495 | */ | 
 
 
 
 
 | 496 | _Tp __sum1 = _Tp(1); | 
 
 
 
 
 | 497 | _Tp __term = _Tp(1); | 
 
 
 
 
 | 498 | _Tp __ln_pre1 = __lng_ad + __lng_c + __d2 * __ln_omx | 
 
 
 
 
 | 499 | - __lng_ad1 - __lng_bd1; | 
 
 
 
 
 | 500 |  | 
 
 
 
 
 | 501 | /* Do F1 sum. | 
 
 
 
 
 | 502 | */ | 
 
 
 
 
 | 503 | for (int __i = 1; __i < __ad; ++__i) | 
 
 
 
 
 | 504 | { | 
 
 
 
 
 | 505 | const int __j = __i - 1; | 
 
 
 
 
 | 506 | __term *= (__a + __d2 + __j) * (__b + __d2 + __j) | 
 
 
 
 
 | 507 | / (_Tp(1) + __d2 + __j) / __i * (_Tp(1) - __x); | 
 
 
 
 
 | 508 | __sum1 += __term; | 
 
 
 
 
 | 509 | } | 
 
 
 
 
 | 510 |  | 
 
 
 
 
 | 511 | if (__ln_pre1 > __log_max) | 
 
 
 
 
 | 512 | std::__throw_runtime_error(__N("Overflow of gamma functions" | 
 
 
 
 
 | 513 | " in __hyperg_luke.")); | 
 
 
 
 
 | 514 | else | 
 
 
 
 
 | 515 | __F1 = std::exp(__ln_pre1) * __sum1; | 
 
 
 
 
 | 516 | } | 
 
 
 
 
 | 517 | else | 
 
 
 
 
 | 518 | { | 
 
 
 
 
 | 519 | //  Gamma functions in the denominator were not ok. | 
 
 
 
 
 | 520 | //  So the F1 term is zero. | 
 
 
 
 
 | 521 | __F1 = _Tp(0); | 
 
 
 
 
 | 522 | } | 
 
 
 
 
 | 523 | } // end F1 evaluation | 
 
 
 
 
 | 524 |  | 
 
 
 
 
 | 525 | // Evaluate F2. | 
 
 
 
 
 | 526 | bool __ok_d2 = true; | 
 
 
 
 
 | 527 | _Tp __lng_ad2, __lng_bd2; | 
 
 
 
 
 | 528 | __try | 
 
 
 
 
 | 529 | { | 
 
 
 
 
 | 530 | __lng_ad2 = __log_gamma(__a + __d2); | 
 
 
 
 
 | 531 | __lng_bd2 = __log_gamma(__b + __d2); | 
 
 
 
 
 | 532 | } | 
 
 
 
 
 | 533 | __catch(...) | 
 
 
 
 
 | 534 | { | 
 
 
 
 
 | 535 | __ok_d2 = false; | 
 
 
 
 
 | 536 | } | 
 
 
 
 
 | 537 |  | 
 
 
 
 
 | 538 | if (__ok_d2) | 
 
 
 
 
 | 539 | { | 
 
 
 
 
 | 540 | //  Gamma functions in the denominator are ok. | 
 
 
 
 
 | 541 | //  Proceed with evaluation. | 
 
 
 
 
 | 542 | const int __maxiter = 2000; | 
 
 
 
 
 | 543 | const _Tp __psi_1 = -__numeric_constants<_Tp>::__gamma_e(); | 
 
 
 
 
 | 544 | const _Tp __psi_1pd = __psi(_Tp(1) + __ad); | 
 
 
 
 
 | 545 | const _Tp __psi_apd1 = __psi(__a + __d1); | 
 
 
 
 
 | 546 | const _Tp __psi_bpd1 = __psi(__b + __d1); | 
 
 
 
 
 | 547 |  | 
 
 
 
 
 | 548 | _Tp __psi_term = __psi_1 + __psi_1pd - __psi_apd1 | 
 
 
 
 
 | 549 | - __psi_bpd1 - __ln_omx; | 
 
 
 
 
 | 550 | _Tp __fact = _Tp(1); | 
 
 
 
 
 | 551 | _Tp __sum2 = __psi_term; | 
 
 
 
 
 | 552 | _Tp __ln_pre2 = __lng_c + __d1 * __ln_omx | 
 
 
 
 
 | 553 | - __lng_ad2 - __lng_bd2; | 
 
 
 
 
 | 554 |  | 
 
 
 
 
 | 555 | // Do F2 sum. | 
 
 
 
 
 | 556 | int __j; | 
 
 
 
 
 | 557 | for (__j = 1; __j < __maxiter; ++__j) | 
 
 
 
 
 | 558 | { | 
 
 
 
 
 | 559 | //  Values for psi functions use recurrence; | 
 
 
 
 
 | 560 | //  Abramowitz & Stegun 6.3.5 | 
 
 
 
 
 | 561 | const _Tp __term1 = _Tp(1) / _Tp(__j) | 
 
 
 
 
 | 562 | + _Tp(1) / (__ad + __j); | 
 
 
 
 
 | 563 | const _Tp __term2 = _Tp(1) / (__a + __d1 + _Tp(__j - 1)) | 
 
 
 
 
 | 564 | + _Tp(1) / (__b + __d1 + _Tp(__j - 1)); | 
 
 
 
 
 | 565 | __psi_term += __term1 - __term2; | 
 
 
 
 
 | 566 | __fact *= (__a + __d1 + _Tp(__j - 1)) | 
 
 
 
 
 | 567 | * (__b + __d1 + _Tp(__j - 1)) | 
 
 
 
 
 | 568 | / ((__ad + __j) * __j) * (_Tp(1) - __x); | 
 
 
 
 
 | 569 | const _Tp __delta = __fact * __psi_term; | 
 
 
 
 
 | 570 | __sum2 += __delta; | 
 
 
 
 
 | 571 | if (std::abs(__delta) < __eps * std::abs(__sum2)) | 
 
 
 
 
 | 572 | break; | 
 
 
 
 
 | 573 | } | 
 
 
 
 
 | 574 | if (__j == __maxiter) | 
 
 
 
 
 | 575 | std::__throw_runtime_error(__N("Sum F2 failed to converge " | 
 
 
 
 
 | 576 | "in __hyperg_reflect")); | 
 
 
 
 
 | 577 |  | 
 
 
 
 
 | 578 | if (__sum2 == _Tp(0)) | 
 
 
 
 
 | 579 | __F2 = _Tp(0); | 
 
 
 
 
 | 580 | else | 
 
 
 
 
 | 581 | __F2 = std::exp(__ln_pre2) * __sum2; | 
 
 
 
 
 | 582 | } | 
 
 
 
 
 | 583 | else | 
 
 
 
 
 | 584 | { | 
 
 
 
 
 | 585 | // Gamma functions in the denominator not ok. | 
 
 
 
 
 | 586 | // So the F2 term is zero. | 
 
 
 
 
 | 587 | __F2 = _Tp(0); | 
 
 
 
 
 | 588 | } // end F2 evaluation | 
 
 
 
 
 | 589 |  | 
 
 
 
 
 | 590 | const _Tp __sgn_2 = (__intd % 2 == 1 ? -_Tp(1) : _Tp(1)); | 
 
 
 
 
 | 591 | const _Tp __F = __F1 + __sgn_2 * __F2; | 
 
 
 
 
 | 592 |  | 
 
 
 
 
 | 593 | return __F; | 
 
 
 
 
 | 594 | } | 
 
 
 
 
 | 595 | else | 
 
 
 
 
 | 596 | { | 
 
 
 
 
 | 597 | //  d = c - a - b not an integer. | 
 
 
 
 
 | 598 |  | 
 
 
 
 
 | 599 | //  These gamma functions appear in the denominator, so we | 
 
 
 
 
 | 600 | //  catch their harmless domain errors and set the terms to zero. | 
 
 
 
 
 | 601 | bool __ok1 = true; | 
 
 
 
 
 | 602 | _Tp __sgn_g1ca = _Tp(0), __ln_g1ca = _Tp(0); | 
 
 
 
 
 | 603 | _Tp __sgn_g1cb = _Tp(0), __ln_g1cb = _Tp(0); | 
 
 
 
 
 | 604 | __try | 
 
 
 
 
 | 605 | { | 
 
 
 
 
 | 606 | __sgn_g1ca = __log_gamma_sign(__c - __a); | 
 
 
 
 
 | 607 | __ln_g1ca = __log_gamma(__c - __a); | 
 
 
 
 
 | 608 | __sgn_g1cb = __log_gamma_sign(__c - __b); | 
 
 
 
 
 | 609 | __ln_g1cb = __log_gamma(__c - __b); | 
 
 
 
 
 | 610 | } | 
 
 
 
 
 | 611 | __catch(...) | 
 
 
 
 
 | 612 | { | 
 
 
 
 
 | 613 | __ok1 = false; | 
 
 
 
 
 | 614 | } | 
 
 
 
 
 | 615 |  | 
 
 
 
 
 | 616 | bool __ok2 = true; | 
 
 
 
 
 | 617 | _Tp __sgn_g2a = _Tp(0), __ln_g2a = _Tp(0); | 
 
 
 
 
 | 618 | _Tp __sgn_g2b = _Tp(0), __ln_g2b = _Tp(0); | 
 
 
 
 
 | 619 | __try | 
 
 
 
 
 | 620 | { | 
 
 
 
 
 | 621 | __sgn_g2a = __log_gamma_sign(__a); | 
 
 
 
 
 | 622 | __ln_g2a = __log_gamma(__a); | 
 
 
 
 
 | 623 | __sgn_g2b = __log_gamma_sign(__b); | 
 
 
 
 
 | 624 | __ln_g2b = __log_gamma(__b); | 
 
 
 
 
 | 625 | } | 
 
 
 
 
 | 626 | __catch(...) | 
 
 
 
 
 | 627 | { | 
 
 
 
 
 | 628 | __ok2 = false; | 
 
 
 
 
 | 629 | } | 
 
 
 
 
 | 630 |  | 
 
 
 
 
 | 631 | const _Tp __sgn_gc = __log_gamma_sign(__c); | 
 
 
 
 
 | 632 | const _Tp __ln_gc = __log_gamma(__c); | 
 
 
 
 
 | 633 | const _Tp __sgn_gd = __log_gamma_sign(__d); | 
 
 
 
 
 | 634 | const _Tp __ln_gd = __log_gamma(__d); | 
 
 
 
 
 | 635 | const _Tp __sgn_gmd = __log_gamma_sign(-__d); | 
 
 
 
 
 | 636 | const _Tp __ln_gmd = __log_gamma(-__d); | 
 
 
 
 
 | 637 |  | 
 
 
 
 
 | 638 | const _Tp __sgn1 = __sgn_gc * __sgn_gd  * __sgn_g1ca * __sgn_g1cb; | 
 
 
 
 
 | 639 | const _Tp __sgn2 = __sgn_gc * __sgn_gmd * __sgn_g2a  * __sgn_g2b; | 
 
 
 
 
 | 640 |  | 
 
 
 
 
 | 641 | _Tp __pre1, __pre2; | 
 
 
 
 
 | 642 | if (__ok1 && __ok2) | 
 
 
 
 
 | 643 | { | 
 
 
 
 
 | 644 | _Tp __ln_pre1 = __ln_gc + __ln_gd  - __ln_g1ca - __ln_g1cb; | 
 
 
 
 
 | 645 | _Tp __ln_pre2 = __ln_gc + __ln_gmd - __ln_g2a  - __ln_g2b | 
 
 
 
 
 | 646 | + __d * std::log(_Tp(1) - __x); | 
 
 
 
 
 | 647 | if (__ln_pre1 < __log_max && __ln_pre2 < __log_max) | 
 
 
 
 
 | 648 | { | 
 
 
 
 
 | 649 | __pre1 = std::exp(__ln_pre1); | 
 
 
 
 
 | 650 | __pre2 = std::exp(__ln_pre2); | 
 
 
 
 
 | 651 | __pre1 *= __sgn1; | 
 
 
 
 
 | 652 | __pre2 *= __sgn2; | 
 
 
 
 
 | 653 | } | 
 
 
 
 
 | 654 | else | 
 
 
 
 
 | 655 | { | 
 
 
 
 
 | 656 | std::__throw_runtime_error(__N("Overflow of gamma functions " | 
 
 
 
 
 | 657 | "in __hyperg_reflect")); | 
 
 
 
 
 | 658 | } | 
 
 
 
 
 | 659 | } | 
 
 
 
 
 | 660 | else if (__ok1 && !__ok2) | 
 
 
 
 
 | 661 | { | 
 
 
 
 
 | 662 | _Tp __ln_pre1 = __ln_gc + __ln_gd - __ln_g1ca - __ln_g1cb; | 
 
 
 
 
 | 663 | if (__ln_pre1 < __log_max) | 
 
 
 
 
 | 664 | { | 
 
 
 
 
 | 665 | __pre1 = std::exp(__ln_pre1); | 
 
 
 
 
 | 666 | __pre1 *= __sgn1; | 
 
 
 
 
 | 667 | __pre2 = _Tp(0); | 
 
 
 
 
 | 668 | } | 
 
 
 
 
 | 669 | else | 
 
 
 
 
 | 670 | { | 
 
 
 
 
 | 671 | std::__throw_runtime_error(__N("Overflow of gamma functions " | 
 
 
 
 
 | 672 | "in __hyperg_reflect")); | 
 
 
 
 
 | 673 | } | 
 
 
 
 
 | 674 | } | 
 
 
 
 
 | 675 | else if (!__ok1 && __ok2) | 
 
 
 
 
 | 676 | { | 
 
 
 
 
 | 677 | _Tp __ln_pre2 = __ln_gc + __ln_gmd - __ln_g2a - __ln_g2b | 
 
 
 
 
 | 678 | + __d * std::log(_Tp(1) - __x); | 
 
 
 
 
 | 679 | if (__ln_pre2 < __log_max) | 
 
 
 
 
 | 680 | { | 
 
 
 
 
 | 681 | __pre1 = _Tp(0); | 
 
 
 
 
 | 682 | __pre2 = std::exp(__ln_pre2); | 
 
 
 
 
 | 683 | __pre2 *= __sgn2; | 
 
 
 
 
 | 684 | } | 
 
 
 
 
 | 685 | else | 
 
 
 
 
 | 686 | { | 
 
 
 
 
 | 687 | std::__throw_runtime_error(__N("Overflow of gamma functions " | 
 
 
 
 
 | 688 | "in __hyperg_reflect")); | 
 
 
 
 
 | 689 | } | 
 
 
 
 
 | 690 | } | 
 
 
 
 
 | 691 | else | 
 
 
 
 
 | 692 | { | 
 
 
 
 
 | 693 | __pre1 = _Tp(0); | 
 
 
 
 
 | 694 | __pre2 = _Tp(0); | 
 
 
 
 
 | 695 | std::__throw_runtime_error(__N("Underflow of gamma functions " | 
 
 
 
 
 | 696 | "in __hyperg_reflect")); | 
 
 
 
 
 | 697 | } | 
 
 
 
 
 | 698 |  | 
 
 
 
 
 | 699 | const _Tp __F1 = __hyperg_series(__a, __b, _Tp(1) - __d, | 
 
 
 
 
 | 700 | _Tp(1) - __x); | 
 
 
 
 
 | 701 | const _Tp __F2 = __hyperg_series(__c - __a, __c - __b, _Tp(1) + __d, | 
 
 
 
 
 | 702 | _Tp(1) - __x); | 
 
 
 
 
 | 703 |  | 
 
 
 
 
 | 704 | const _Tp __F = __pre1 * __F1 + __pre2 * __F2; | 
 
 
 
 
 | 705 |  | 
 
 
 
 
 | 706 | return __F; | 
 
 
 
 
 | 707 | } | 
 
 
 
 
 | 708 | } | 
 
 
 
 
 | 709 |  | 
 
 
 
 
 | 710 |  | 
 
 
 
 
 | 711 | /** | 
 
 
 
 
 | 712 | *   @brief Return the hypogeometric function @f$ _2F_1(a,b;c;x) @f$. | 
 
 
 
 
 | 713 | * | 
 
 
 
 
 | 714 | *   The hypogeometric function is defined by | 
 
 
 
 
 | 715 | *   @f[ | 
 
 
 
 
 | 716 | *     _2F_1(a,b;c;x) = \frac{\Gamma(c)}{\Gamma(a)\Gamma(b)} | 
 
 
 
 
 | 717 | *                      \sum_{n=0}^{\infty} | 
 
 
 
 
 | 718 | *                      \frac{\Gamma(a+n)\Gamma(b+n)}{\Gamma(c+n)} | 
 
 
 
 
 | 719 | *                      \frac{x^n}{n!} | 
 
 
 
 
 | 720 | *   @f] | 
 
 
 
 
 | 721 | * | 
 
 
 
 
 | 722 | *   @param  __a  The first @a numerator parameter. | 
 
 
 
 
 | 723 | *   @param  __a  The second @a numerator parameter. | 
 
 
 
 
 | 724 | *   @param  __c  The @a denominator parameter. | 
 
 
 
 
 | 725 | *   @param  __x  The argument of the confluent hypergeometric function. | 
 
 
 
 
 | 726 | *   @return  The confluent hypergeometric function. | 
 
 
 
 
 | 727 | */ | 
 
 
 
 
 | 728 | template<typename _Tp> | 
 
 
 
 
 | 729 | _Tp | 
 
 
 
 
 | 730 | __hyperg(_Tp __a, _Tp __b, _Tp __c, _Tp __x) | 
 
 
 
 
 | 731 | { | 
 
 
 
 
 | 732 | #if _GLIBCXX_USE_C99_MATH_TR1 | 
 
 
 
 
 | 733 | const _Tp __a_nint = _GLIBCXX_MATH_NS::nearbyint(__a); | 
 
 
 
 
 | 734 | const _Tp __b_nint = _GLIBCXX_MATH_NS::nearbyint(__b); | 
 
 
 
 
 | 735 | const _Tp __c_nint = _GLIBCXX_MATH_NS::nearbyint(__c); | 
 
 
 
 
 | 736 | #else | 
 
 
 
 
 | 737 | const _Tp __a_nint = static_cast<int>(__a + _Tp(0.5L)); | 
 
 
 
 
 | 738 | const _Tp __b_nint = static_cast<int>(__b + _Tp(0.5L)); | 
 
 
 
 
 | 739 | const _Tp __c_nint = static_cast<int>(__c + _Tp(0.5L)); | 
 
 
 
 
 | 740 | #endif | 
 
 
 
 
 | 741 | const _Tp __toler = _Tp(1000) * std::numeric_limits<_Tp>::epsilon(); | 
 
 
 
 
 | 742 | if (std::abs(__x) >= _Tp(1)) | 
 
 
 
 
 | 743 | std::__throw_domain_error(__N("Argument outside unit circle " | 
 
 
 
 
 | 744 | "in __hyperg.")); | 
 
 
 
 
 | 745 | else if (__isnan(__a) || __isnan(__b) | 
 
 
 
 
 | 746 | || __isnan(__c) || __isnan(__x)) | 
 
 
 
 
 | 747 | return std::numeric_limits<_Tp>::quiet_NaN(); | 
 
 
 
 
 | 748 | else if (__c_nint == __c && __c_nint <= _Tp(0)) | 
 
 
 
 
 | 749 | return std::numeric_limits<_Tp>::infinity(); | 
 
 
 
 
 | 750 | else if (std::abs(__c - __b) < __toler || std::abs(__c - __a) < __toler) | 
 
 
 
 
 | 751 | return std::pow(_Tp(1) - __x, __c - __a - __b); | 
 
 
 
 
 | 752 | else if (__a >= _Tp(0) && __b >= _Tp(0) && __c >= _Tp(0) | 
 
 
 
 
 | 753 | && __x >= _Tp(0) && __x < _Tp(0.995L)) | 
 
 
 
 
 | 754 | return __hyperg_series(__a, __b, __c, __x); | 
 
 
 
 
 | 755 | else if (std::abs(__a) < _Tp(10) && std::abs(__b) < _Tp(10)) | 
 
 
 
 
 | 756 | { | 
 
 
 
 
 | 757 | //  For integer a and b the hypergeometric function is a | 
 
 
 
 
 | 758 | //  finite polynomial. | 
 
 
 
 
 | 759 | if (__a < _Tp(0)  &&  std::abs(__a - __a_nint) < __toler) | 
 
 
 
 
 | 760 | return __hyperg_series(__a_nint, __b, __c, __x); | 
 
 
 
 
 | 761 | else if (__b < _Tp(0)  &&  std::abs(__b - __b_nint) < __toler) | 
 
 
 
 
 | 762 | return __hyperg_series(__a, __b_nint, __c, __x); | 
 
 
 
 
 | 763 | else if (__x < -_Tp(0.25L)) | 
 
 
 
 
 | 764 | return __hyperg_luke(__a, __b, __c, __x); | 
 
 
 
 
 | 765 | else if (__x < _Tp(0.5L)) | 
 
 
 
 
 | 766 | return __hyperg_series(__a, __b, __c, __x); | 
 
 
 
 
 | 767 | else | 
 
 
 
 
 | 768 | if (std::abs(__c) > _Tp(10)) | 
 
 
 
 
 | 769 | return __hyperg_series(__a, __b, __c, __x); | 
 
 
 
 
 | 770 | else | 
 
 
 
 
 | 771 | return __hyperg_reflect(__a, __b, __c, __x); | 
 
 
 
 
 | 772 | } | 
 
 
 
 
 | 773 | else | 
 
 
 
 
 | 774 | return __hyperg_luke(__a, __b, __c, __x); | 
 
 
 
 
 | 775 | } | 
 
 
 
 
 | 776 | } // namespace __detail | 
 
 
 
 
 | 777 | #undef _GLIBCXX_MATH_NS | 
 
 
 
 
 | 778 | #if ! _GLIBCXX_USE_STD_SPEC_FUNCS && defined(_GLIBCXX_TR1_CMATH) | 
 
 
 
 
 | 779 | } // namespace tr1 | 
 
 
 
 
 | 780 | #endif | 
 
 
 
 
 | 781 |  | 
 
 
 
 
 | 782 | _GLIBCXX_END_NAMESPACE_VERSION | 
 
 
 
 
 | 783 | } | 
 
 
 
 
 | 784 |  | 
 
 
 
 
 | 785 | #endif // _GLIBCXX_TR1_HYPERGEOMETRIC_TCC |