| 1 | 
 // Special functions -*- C++ -*- | 
 
 
 
 
 
 | 2 | 
  | 
 
 
 
 
 
 | 3 | 
 // Copyright (C) 2006-2021 Free Software Foundation, Inc. | 
 
 
 
 
 
 | 4 | 
 // | 
 
 
 
 
 
 | 5 | 
 // This file is part of the GNU ISO C++ Library.  This library is free | 
 
 
 
 
 
 | 6 | 
 // software; you can redistribute it and/or modify it under the | 
 
 
 
 
 
 | 7 | 
 // terms of the GNU General Public License as published by the | 
 
 
 
 
 
 | 8 | 
 // Free Software Foundation; either version 3, or (at your option) | 
 
 
 
 
 
 | 9 | 
 // any later version. | 
 
 
 
 
 
 | 10 | 
 // | 
 
 
 
 
 
 | 11 | 
 // This library is distributed in the hope that it will be useful, | 
 
 
 
 
 
 | 12 | 
 // but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 
 
 
 
 
 | 13 | 
 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
 
 
 
 
 
 | 14 | 
 // GNU General Public License for more details. | 
 
 
 
 
 
 | 15 | 
 // | 
 
 
 
 
 
 | 16 | 
 // Under Section 7 of GPL version 3, you are granted additional | 
 
 
 
 
 
 | 17 | 
 // permissions described in the GCC Runtime Library Exception, version | 
 
 
 
 
 
 | 18 | 
 // 3.1, as published by the Free Software Foundation. | 
 
 
 
 
 
 | 19 | 
  | 
 
 
 
 
 
 | 20 | 
 // You should have received a copy of the GNU General Public License and | 
 
 
 
 
 
 | 21 | 
 // a copy of the GCC Runtime Library Exception along with this program; | 
 
 
 
 
 
 | 22 | 
 // see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see | 
 
 
 
 
 
 | 23 | 
 // <http://www.gnu.org/licenses/>. | 
 
 
 
 
 
 | 24 | 
  | 
 
 
 
 
 
 | 25 | 
 /** @file tr1/gamma.tcc | 
 
 
 
 
 
 | 26 | 
  *  This is an internal header file, included by other library headers. | 
 
 
 
 
 
 | 27 | 
  *  Do not attempt to use it directly. @headername{tr1/cmath} | 
 
 
 
 
 
 | 28 | 
  */ | 
 
 
 
 
 
 | 29 | 
  | 
 
 
 
 
 
 | 30 | 
 // | 
 
 
 
 
 
 | 31 | 
 // ISO C++ 14882 TR1: 5.2  Special functions | 
 
 
 
 
 
 | 32 | 
 // | 
 
 
 
 
 
 | 33 | 
  | 
 
 
 
 
 
 | 34 | 
 // Written by Edward Smith-Rowland based on: | 
 
 
 
 
 
 | 35 | 
 //   (1) Handbook of Mathematical Functions, | 
 
 
 
 
 
 | 36 | 
 //       ed. Milton Abramowitz and Irene A. Stegun, | 
 
 
 
 
 
 | 37 | 
 //       Dover Publications, | 
 
 
 
 
 
 | 38 | 
 //       Section 6, pp. 253-266 | 
 
 
 
 
 
 | 39 | 
 //   (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl | 
 
 
 
 
 
 | 40 | 
 //   (3) Numerical Recipes in C, by W. H. Press, S. A. Teukolsky, | 
 
 
 
 
 
 | 41 | 
 //       W. T. Vetterling, B. P. Flannery, Cambridge University Press (1992), | 
 
 
 
 
 
 | 42 | 
 //       2nd ed, pp. 213-216 | 
 
 
 
 
 
 | 43 | 
 //   (4) Gamma, Exploring Euler's Constant, Julian Havil, | 
 
 
 
 
 
 | 44 | 
 //       Princeton, 2003. | 
 
 
 
 
 
 | 45 | 
  | 
 
 
 
 
 
 | 46 | 
 #ifndef _GLIBCXX_TR1_GAMMA_TCC | 
 
 
 
 
 
 | 47 | 
 #define _GLIBCXX_TR1_GAMMA_TCC 1 | 
 
 
 
 
 
 | 48 | 
  | 
 
 
 
 
 
 | 49 | 
 #include <tr1/special_function_util.h> | 
 
 
 
 
 
 | 50 | 
  | 
 
 
 
 
 
 | 51 | 
 namespace std _GLIBCXX_VISIBILITY(default) | 
 
 
 
 
 
 | 52 | 
 { | 
 
 
 
 
 
 | 53 | 
 _GLIBCXX_BEGIN_NAMESPACE_VERSION | 
 
 
 
 
 
 | 54 | 
  | 
 
 
 
 
 
 | 55 | 
 #if _GLIBCXX_USE_STD_SPEC_FUNCS | 
 
 
 
 
 
 | 56 | 
 # define _GLIBCXX_MATH_NS ::std | 
 
 
 
 
 
 | 57 | 
 #elif defined(_GLIBCXX_TR1_CMATH) | 
 
 
 
 
 
 | 58 | 
 namespace tr1 | 
 
 
 
 
 
 | 59 | 
 { | 
 
 
 
 
 
 | 60 | 
 # define _GLIBCXX_MATH_NS ::std::tr1 | 
 
 
 
 
 
 | 61 | 
 #else | 
 
 
 
 
 
 | 62 | 
 # error do not include this header directly, use <cmath> or <tr1/cmath> | 
 
 
 
 
 
 | 63 | 
 #endif | 
 
 
 
 
 
 | 64 | 
   // Implementation-space details. | 
 
 
 
 
 
 | 65 | 
   namespace __detail | 
 
 
 
 
 
 | 66 | 
   { | 
 
 
 
 
 
 | 67 | 
     /** | 
 
 
 
 
 
 | 68 | 
      *   @brief This returns Bernoulli numbers from a table or by summation | 
 
 
 
 
 
 | 69 | 
      *          for larger values. | 
 
 
 
 
 
 | 70 | 
      * | 
 
 
 
 
 
 | 71 | 
      *   Recursion is unstable. | 
 
 
 
 
 
 | 72 | 
      * | 
 
 
 
 
 
 | 73 | 
      *   @param __n the order n of the Bernoulli number. | 
 
 
 
 
 
 | 74 | 
      *   @return  The Bernoulli number of order n. | 
 
 
 
 
 
 | 75 | 
      */ | 
 
 
 
 
 
 | 76 | 
     template <typename _Tp> | 
 
 
 
 
 
 | 77 | 
     _Tp | 
 
 
 
 
 
 | 78 | 
     __bernoulli_series(unsigned int __n) | 
 
 
 
 
 
 | 79 | 
     { | 
 
 
 
 
 
 | 80 | 
  | 
 
 
 
 
 
 | 81 | 
       static const _Tp __num[28] = { | 
 
 
 
 
 
 | 82 | 
         _Tp(1UL),                        -_Tp(1UL) / _Tp(2UL), | 
 
 
 
 
 
 | 83 | 
         _Tp(1UL) / _Tp(6UL),             _Tp(0UL), | 
 
 
 
 
 
 | 84 | 
         -_Tp(1UL) / _Tp(30UL),           _Tp(0UL), | 
 
 
 
 
 
 | 85 | 
         _Tp(1UL) / _Tp(42UL),            _Tp(0UL), | 
 
 
 
 
 
 | 86 | 
         -_Tp(1UL) / _Tp(30UL),           _Tp(0UL), | 
 
 
 
 
 
 | 87 | 
         _Tp(5UL) / _Tp(66UL),            _Tp(0UL), | 
 
 
 
 
 
 | 88 | 
         -_Tp(691UL) / _Tp(2730UL),       _Tp(0UL), | 
 
 
 
 
 
 | 89 | 
         _Tp(7UL) / _Tp(6UL),             _Tp(0UL), | 
 
 
 
 
 
 | 90 | 
         -_Tp(3617UL) / _Tp(510UL),       _Tp(0UL), | 
 
 
 
 
 
 | 91 | 
         _Tp(43867UL) / _Tp(798UL),       _Tp(0UL), | 
 
 
 
 
 
 | 92 | 
         -_Tp(174611) / _Tp(330UL),       _Tp(0UL), | 
 
 
 
 
 
 | 93 | 
         _Tp(854513UL) / _Tp(138UL),      _Tp(0UL), | 
 
 
 
 
 
 | 94 | 
         -_Tp(236364091UL) / _Tp(2730UL), _Tp(0UL), | 
 
 
 
 
 
 | 95 | 
         _Tp(8553103UL) / _Tp(6UL),       _Tp(0UL) | 
 
 
 
 
 
 | 96 | 
       }; | 
 
 
 
 
 
 | 97 | 
  | 
 
 
 
 
 
 | 98 | 
       if (__n == 0) | 
 
 
 
 
 
 | 99 | 
         return _Tp(1); | 
 
 
 
 
 
 | 100 | 
  | 
 
 
 
 
 
 | 101 | 
       if (__n == 1) | 
 
 
 
 
 
 | 102 | 
         return -_Tp(1) / _Tp(2); | 
 
 
 
 
 
 | 103 | 
  | 
 
 
 
 
 
 | 104 | 
       //  Take care of the rest of the odd ones. | 
 
 
 
 
 
 | 105 | 
       if (__n % 2 == 1) | 
 
 
 
 
 
 | 106 | 
         return _Tp(0); | 
 
 
 
 
 
 | 107 | 
  | 
 
 
 
 
 
 | 108 | 
       //  Take care of some small evens that are painful for the series. | 
 
 
 
 
 
 | 109 | 
       if (__n < 28) | 
 
 
 
 
 
 | 110 | 
         return __num[__n]; | 
 
 
 
 
 
 | 111 | 
  | 
 
 
 
 
 
 | 112 | 
  | 
 
 
 
 
 
 | 113 | 
       _Tp __fact = _Tp(1); | 
 
 
 
 
 
 | 114 | 
       if ((__n / 2) % 2 == 0) | 
 
 
 
 
 
 | 115 | 
         __fact *= _Tp(-1); | 
 
 
 
 
 
 | 116 | 
       for (unsigned int __k = 1; __k <= __n; ++__k) | 
 
 
 
 
 
 | 117 | 
         __fact *= __k / (_Tp(2) * __numeric_constants<_Tp>::__pi()); | 
 
 
 
 
 
 | 118 | 
       __fact *= _Tp(2); | 
 
 
 
 
 
 | 119 | 
  | 
 
 
 
 
 
 | 120 | 
       _Tp __sum = _Tp(0); | 
 
 
 
 
 
 | 121 | 
       for (unsigned int __i = 1; __i < 1000; ++__i) | 
 
 
 
 
 
 | 122 | 
         { | 
 
 
 
 
 
 | 123 | 
           _Tp __term = std::pow(_Tp(__i), -_Tp(__n)); | 
 
 
 
 
 
 | 124 | 
           if (__term < std::numeric_limits<_Tp>::epsilon()) | 
 
 
 
 
 
 | 125 | 
             break; | 
 
 
 
 
 
 | 126 | 
           __sum += __term; | 
 
 
 
 
 
 | 127 | 
         } | 
 
 
 
 
 
 | 128 | 
  | 
 
 
 
 
 
 | 129 | 
       return __fact * __sum; | 
 
 
 
 
 
 | 130 | 
     } | 
 
 
 
 
 
 | 131 | 
  | 
 
 
 
 
 
 | 132 | 
  | 
 
 
 
 
 
 | 133 | 
     /** | 
 
 
 
 
 
 | 134 | 
      *   @brief This returns Bernoulli number \f$B_n\f$. | 
 
 
 
 
 
 | 135 | 
      * | 
 
 
 
 
 
 | 136 | 
      *   @param __n the order n of the Bernoulli number. | 
 
 
 
 
 
 | 137 | 
      *   @return  The Bernoulli number of order n. | 
 
 
 
 
 
 | 138 | 
      */ | 
 
 
 
 
 
 | 139 | 
     template<typename _Tp> | 
 
 
 
 
 
 | 140 | 
     inline _Tp | 
 
 
 
 
 
 | 141 | 
     __bernoulli(int __n) | 
 
 
 
 
 
 | 142 | 
     { return __bernoulli_series<_Tp>(__n); } | 
 
 
 
 
 
 | 143 | 
  | 
 
 
 
 
 
 | 144 | 
  | 
 
 
 
 
 
 | 145 | 
     /** | 
 
 
 
 
 
 | 146 | 
      *   @brief Return \f$log(\Gamma(x))\f$ by asymptotic expansion | 
 
 
 
 
 
 | 147 | 
      *          with Bernoulli number coefficients.  This is like | 
 
 
 
 
 
 | 148 | 
      *          Sterling's approximation. | 
 
 
 
 
 
 | 149 | 
      * | 
 
 
 
 
 
 | 150 | 
      *   @param __x The argument of the log of the gamma function. | 
 
 
 
 
 
 | 151 | 
      *   @return  The logarithm of the gamma function. | 
 
 
 
 
 
 | 152 | 
      */ | 
 
 
 
 
 
 | 153 | 
     template<typename _Tp> | 
 
 
 
 
 
 | 154 | 
     _Tp | 
 
 
 
 
 
 | 155 | 
     __log_gamma_bernoulli(_Tp __x) | 
 
 
 
 
 
 | 156 | 
     { | 
 
 
 
 
 
 | 157 | 
       _Tp __lg = (__x - _Tp(0.5L)) * std::log(__x) - __x | 
 
 
 
 
 
 | 158 | 
                + _Tp(0.5L) * std::log(_Tp(2) | 
 
 
 
 
 
 | 159 | 
                * __numeric_constants<_Tp>::__pi()); | 
 
 
 
 
 
 | 160 | 
  | 
 
 
 
 
 
 | 161 | 
       const _Tp __xx = __x * __x; | 
 
 
 
 
 
 | 162 | 
       _Tp __help = _Tp(1) / __x; | 
 
 
 
 
 
 | 163 | 
       for ( unsigned int __i = 1; __i < 20; ++__i ) | 
 
 
 
 
 
 | 164 | 
         { | 
 
 
 
 
 
 | 165 | 
           const _Tp __2i = _Tp(2 * __i); | 
 
 
 
 
 
 | 166 | 
           __help /= __2i * (__2i - _Tp(1)) * __xx; | 
 
 
 
 
 
 | 167 | 
           __lg += __bernoulli<_Tp>(2 * __i) * __help; | 
 
 
 
 
 
 | 168 | 
         } | 
 
 
 
 
 
 | 169 | 
  | 
 
 
 
 
 
 | 170 | 
       return __lg; | 
 
 
 
 
 
 | 171 | 
     } | 
 
 
 
 
 
 | 172 | 
  | 
 
 
 
 
 
 | 173 | 
  | 
 
 
 
 
 
 | 174 | 
     /** | 
 
 
 
 
 
 | 175 | 
      *   @brief Return \f$log(\Gamma(x))\f$ by the Lanczos method. | 
 
 
 
 
 
 | 176 | 
      *          This method dominates all others on the positive axis I think. | 
 
 
 
 
 
 | 177 | 
      * | 
 
 
 
 
 
 | 178 | 
      *   @param __x The argument of the log of the gamma function. | 
 
 
 
 
 
 | 179 | 
      *   @return  The logarithm of the gamma function. | 
 
 
 
 
 
 | 180 | 
      */ | 
 
 
 
 
 
 | 181 | 
     template<typename _Tp> | 
 
 
 
 
 
 | 182 | 
     _Tp | 
 
 
 
 
 
 | 183 | 
     __log_gamma_lanczos(_Tp __x) | 
 
 
 
 
 
 | 184 | 
     { | 
 
 
 
 
 
 | 185 | 
       const _Tp __xm1 = __x - _Tp(1); | 
 
 
 
 
 
 | 186 | 
  | 
 
 
 
 
 
 | 187 | 
       static const _Tp __lanczos_cheb_7[9] = { | 
 
 
 
 
 
 | 188 | 
        _Tp( 0.99999999999980993227684700473478L), | 
 
 
 
 
 
 | 189 | 
        _Tp( 676.520368121885098567009190444019L), | 
 
 
 
 
 
 | 190 | 
        _Tp(-1259.13921672240287047156078755283L), | 
 
 
 
 
 
 | 191 | 
        _Tp( 771.3234287776530788486528258894L), | 
 
 
 
 
 
 | 192 | 
        _Tp(-176.61502916214059906584551354L), | 
 
 
 
 
 
 | 193 | 
        _Tp( 12.507343278686904814458936853L), | 
 
 
 
 
 
 | 194 | 
        _Tp(-0.13857109526572011689554707L), | 
 
 
 
 
 
 | 195 | 
        _Tp( 9.984369578019570859563e-6L), | 
 
 
 
 
 
 | 196 | 
        _Tp( 1.50563273514931155834e-7L) | 
 
 
 
 
 
 | 197 | 
       }; | 
 
 
 
 
 
 | 198 | 
  | 
 
 
 
 
 
 | 199 | 
       static const _Tp __LOGROOT2PI | 
 
 
 
 
 
 | 200 | 
           = _Tp(0.9189385332046727417803297364056176L); | 
 
 
 
 
 
 | 201 | 
  | 
 
 
 
 
 
 | 202 | 
       _Tp __sum = __lanczos_cheb_7[0]; | 
 
 
 
 
 
 | 203 | 
       for(unsigned int __k = 1; __k < 9; ++__k) | 
 
 
 
 
 
 | 204 | 
         __sum += __lanczos_cheb_7[__k] / (__xm1 + __k); | 
 
 
 
 
 
 | 205 | 
  | 
 
 
 
 
 
 | 206 | 
       const _Tp __term1 = (__xm1 + _Tp(0.5L)) | 
 
 
 
 
 
 | 207 | 
                         * std::log((__xm1 + _Tp(7.5L)) | 
 
 
 
 
 
 | 208 | 
                        / __numeric_constants<_Tp>::__euler()); | 
 
 
 
 
 
 | 209 | 
       const _Tp __term2 = __LOGROOT2PI + std::log(__sum); | 
 
 
 
 
 
 | 210 | 
       const _Tp __result = __term1 + (__term2 - _Tp(7)); | 
 
 
 
 
 
 | 211 | 
  | 
 
 
 
 
 
 | 212 | 
       return __result; | 
 
 
 
 
 
 | 213 | 
     } | 
 
 
 
 
 
 | 214 | 
  | 
 
 
 
 
 
 | 215 | 
  | 
 
 
 
 
 
 | 216 | 
     /** | 
 
 
 
 
 
 | 217 | 
      *   @brief Return \f$ log(|\Gamma(x)|) \f$. | 
 
 
 
 
 
 | 218 | 
      *          This will return values even for \f$ x < 0 \f$. | 
 
 
 
 
 
 | 219 | 
      *          To recover the sign of \f$ \Gamma(x) \f$ for | 
 
 
 
 
 
 | 220 | 
      *          any argument use @a __log_gamma_sign. | 
 
 
 
 
 
 | 221 | 
      * | 
 
 
 
 
 
 | 222 | 
      *   @param __x The argument of the log of the gamma function. | 
 
 
 
 
 
 | 223 | 
      *   @return  The logarithm of the gamma function. | 
 
 
 
 
 
 | 224 | 
      */ | 
 
 
 
 
 
 | 225 | 
     template<typename _Tp> | 
 
 
 
 
 
 | 226 | 
     _Tp | 
 
 
 
 
 
 | 227 | 
     __log_gamma(_Tp __x) | 
 
 
 
 
 
 | 228 | 
     { | 
 
 
 
 
 
 | 229 | 
       if (__x > _Tp(0.5L)) | 
 
 
 
 
 
 | 230 | 
         return __log_gamma_lanczos(__x); | 
 
 
 
 
 
 | 231 | 
       else | 
 
 
 
 
 
 | 232 | 
         { | 
 
 
 
 
 
 | 233 | 
           const _Tp __sin_fact | 
 
 
 
 
 
 | 234 | 
                  = std::abs(std::sin(__numeric_constants<_Tp>::__pi() * __x)); | 
 
 
 
 
 
 | 235 | 
           if (__sin_fact == _Tp(0)) | 
 
 
 
 
 
 | 236 | 
             std::__throw_domain_error(__N("Argument is nonpositive integer " | 
 
 
 
 
 
 | 237 | 
                                           "in __log_gamma")); | 
 
 
 
 
 
 | 238 | 
           return __numeric_constants<_Tp>::__lnpi() | 
 
 
 
 
 
 | 239 | 
                      - std::log(__sin_fact) | 
 
 
 
 
 
 | 240 | 
                      - __log_gamma_lanczos(_Tp(1) - __x); | 
 
 
 
 
 
 | 241 | 
         } | 
 
 
 
 
 
 | 242 | 
     } | 
 
 
 
 
 
 | 243 | 
  | 
 
 
 
 
 
 | 244 | 
  | 
 
 
 
 
 
 | 245 | 
     /** | 
 
 
 
 
 
 | 246 | 
      *   @brief Return the sign of \f$ \Gamma(x) \f$. | 
 
 
 
 
 
 | 247 | 
      *          At nonpositive integers zero is returned. | 
 
 
 
 
 
 | 248 | 
      * | 
 
 
 
 
 
 | 249 | 
      *   @param __x The argument of the gamma function. | 
 
 
 
 
 
 | 250 | 
      *   @return  The sign of the gamma function. | 
 
 
 
 
 
 | 251 | 
      */ | 
 
 
 
 
 
 | 252 | 
     template<typename _Tp> | 
 
 
 
 
 
 | 253 | 
     _Tp | 
 
 
 
 
 
 | 254 | 
     __log_gamma_sign(_Tp __x) | 
 
 
 
 
 
 | 255 | 
     { | 
 
 
 
 
 
 | 256 | 
       if (__x > _Tp(0)) | 
 
 
 
 
 
 | 257 | 
         return _Tp(1); | 
 
 
 
 
 
 | 258 | 
       else | 
 
 
 
 
 
 | 259 | 
         { | 
 
 
 
 
 
 | 260 | 
           const _Tp __sin_fact | 
 
 
 
 
 
 | 261 | 
                   = std::sin(__numeric_constants<_Tp>::__pi() * __x); | 
 
 
 
 
 
 | 262 | 
           if (__sin_fact > _Tp(0)) | 
 
 
 
 
 
 | 263 | 
             return (1); | 
 
 
 
 
 
 | 264 | 
           else if (__sin_fact < _Tp(0)) | 
 
 
 
 
 
 | 265 | 
             return -_Tp(1); | 
 
 
 
 
 
 | 266 | 
           else | 
 
 
 
 
 
 | 267 | 
             return _Tp(0); | 
 
 
 
 
 
 | 268 | 
         } | 
 
 
 
 
 
 | 269 | 
     } | 
 
 
 
 
 
 | 270 | 
  | 
 
 
 
 
 
 | 271 | 
  | 
 
 
 
 
 
 | 272 | 
     /** | 
 
 
 
 
 
 | 273 | 
      *   @brief Return the logarithm of the binomial coefficient. | 
 
 
 
 
 
 | 274 | 
      *   The binomial coefficient is given by: | 
 
 
 
 
 
 | 275 | 
      *   @f[ | 
 
 
 
 
 
 | 276 | 
      *   \left(  \right) = \frac{n!}{(n-k)! k!} | 
 
 
 
 
 
 | 277 | 
      *   @f] | 
 
 
 
 
 
 | 278 | 
      * | 
 
 
 
 
 
 | 279 | 
      *   @param __n The first argument of the binomial coefficient. | 
 
 
 
 
 
 | 280 | 
      *   @param __k The second argument of the binomial coefficient. | 
 
 
 
 
 
 | 281 | 
      *   @return  The binomial coefficient. | 
 
 
 
 
 
 | 282 | 
      */ | 
 
 
 
 
 
 | 283 | 
     template<typename _Tp> | 
 
 
 
 
 
 | 284 | 
     _Tp | 
 
 
 
 
 
 | 285 | 
     __log_bincoef(unsigned int __n, unsigned int __k) | 
 
 
 
 
 
 | 286 | 
     { | 
 
 
 
 
 
 | 287 | 
       //  Max e exponent before overflow. | 
 
 
 
 
 
 | 288 | 
       static const _Tp __max_bincoeff | 
 
 
 
 
 
 | 289 | 
                       = std::numeric_limits<_Tp>::max_exponent10 | 
 
 
 
 
 
 | 290 | 
                       * std::log(_Tp(10)) - _Tp(1); | 
 
 
 
 
 
 | 291 | 
 #if _GLIBCXX_USE_C99_MATH_TR1 | 
 
 
 
 
 
 | 292 | 
       _Tp __coeff =  _GLIBCXX_MATH_NS::lgamma(_Tp(1 + __n)) | 
 
 
 
 
 
 | 293 | 
                   - _GLIBCXX_MATH_NS::lgamma(_Tp(1 + __k)) | 
 
 
 
 
 
 | 294 | 
                   - _GLIBCXX_MATH_NS::lgamma(_Tp(1 + __n - __k)); | 
 
 
 
 
 
 | 295 | 
 #else | 
 
 
 
 
 
 | 296 | 
       _Tp __coeff =  __log_gamma(_Tp(1 + __n)) | 
 
 
 
 
 
 | 297 | 
                   - __log_gamma(_Tp(1 + __k)) | 
 
 
 
 
 
 | 298 | 
                   - __log_gamma(_Tp(1 + __n - __k)); | 
 
 
 
 
 
 | 299 | 
 #endif | 
 
 
 
 
 
 | 300 | 
     } | 
 
 
 
 
 
 | 301 | 
  | 
 
 
 
 
 
 | 302 | 
  | 
 
 
 
 
 
 | 303 | 
     /** | 
 
 
 
 
 
 | 304 | 
      *   @brief Return the binomial coefficient. | 
 
 
 
 
 
 | 305 | 
      *   The binomial coefficient is given by: | 
 
 
 
 
 
 | 306 | 
      *   @f[ | 
 
 
 
 
 
 | 307 | 
      *   \left(  \right) = \frac{n!}{(n-k)! k!} | 
 
 
 
 
 
 | 308 | 
      *   @f] | 
 
 
 
 
 
 | 309 | 
      * | 
 
 
 
 
 
 | 310 | 
      *   @param __n The first argument of the binomial coefficient. | 
 
 
 
 
 
 | 311 | 
      *   @param __k The second argument of the binomial coefficient. | 
 
 
 
 
 
 | 312 | 
      *   @return  The binomial coefficient. | 
 
 
 
 
 
 | 313 | 
      */ | 
 
 
 
 
 
 | 314 | 
     template<typename _Tp> | 
 
 
 
 
 
 | 315 | 
     _Tp | 
 
 
 
 
 
 | 316 | 
     __bincoef(unsigned int __n, unsigned int __k) | 
 
 
 
 
 
 | 317 | 
     { | 
 
 
 
 
 
 | 318 | 
       //  Max e exponent before overflow. | 
 
 
 
 
 
 | 319 | 
       static const _Tp __max_bincoeff | 
 
 
 
 
 
 | 320 | 
                       = std::numeric_limits<_Tp>::max_exponent10 | 
 
 
 
 
 
 | 321 | 
                       * std::log(_Tp(10)) - _Tp(1); | 
 
 
 
 
 
 | 322 | 
  | 
 
 
 
 
 
 | 323 | 
       const _Tp __log_coeff = __log_bincoef<_Tp>(__n, __k); | 
 
 
 
 
 
 | 324 | 
       if (__log_coeff > __max_bincoeff) | 
 
 
 
 
 
 | 325 | 
         return std::numeric_limits<_Tp>::quiet_NaN(); | 
 
 
 
 
 
 | 326 | 
       else | 
 
 
 
 
 
 | 327 | 
         return std::exp(__log_coeff); | 
 
 
 
 
 
 | 328 | 
     } | 
 
 
 
 
 
 | 329 | 
  | 
 
 
 
 
 
 | 330 | 
  | 
 
 
 
 
 
 | 331 | 
     /** | 
 
 
 
 
 
 | 332 | 
      *   @brief Return \f$ \Gamma(x) \f$. | 
 
 
 
 
 
 | 333 | 
      * | 
 
 
 
 
 
 | 334 | 
      *   @param __x The argument of the gamma function. | 
 
 
 
 
 
 | 335 | 
      *   @return  The gamma function. | 
 
 
 
 
 
 | 336 | 
      */ | 
 
 
 
 
 
 | 337 | 
     template<typename _Tp> | 
 
 
 
 
 
 | 338 | 
     inline _Tp | 
 
 
 
 
 
 | 339 | 
     __gamma(_Tp __x) | 
 
 
 
 
 
 | 340 | 
     { return std::exp(__log_gamma(__x)); } | 
 
 
 
 
 
 | 341 | 
  | 
 
 
 
 
 
 | 342 | 
  | 
 
 
 
 
 
 | 343 | 
     /** | 
 
 
 
 
 
 | 344 | 
      *   @brief  Return the digamma function by series expansion. | 
 
 
 
 
 
 | 345 | 
      *   The digamma or @f$ \psi(x) @f$ function is defined by | 
 
 
 
 
 
 | 346 | 
      *   @f[ | 
 
 
 
 
 
 | 347 | 
      *     \psi(x) = \frac{\Gamma'(x)}{\Gamma(x)} | 
 
 
 
 
 
 | 348 | 
      *   @f] | 
 
 
 
 
 
 | 349 | 
      * | 
 
 
 
 
 
 | 350 | 
      *   The series is given by: | 
 
 
 
 
 
 | 351 | 
      *   @f[ | 
 
 
 
 
 
 | 352 | 
      *     \psi(x) = -\gamma_E - \frac{1}{x} | 
 
 
 
 
 
 | 353 | 
      *              \sum_{k=1}^{\infty} \frac{x}{k(x + k)} | 
 
 
 
 
 
 | 354 | 
      *   @f] | 
 
 
 
 
 
 | 355 | 
      */ | 
 
 
 
 
 
 | 356 | 
     template<typename _Tp> | 
 
 
 
 
 
 | 357 | 
     _Tp | 
 
 
 
 
 
 | 358 | 
     __psi_series(_Tp __x) | 
 
 
 
 
 
 | 359 | 
     { | 
 
 
 
 
 
 | 360 | 
       _Tp __sum = -__numeric_constants<_Tp>::__gamma_e() - _Tp(1) / __x; | 
 
 
 
 
 
 | 361 | 
       const unsigned int __max_iter = 100000; | 
 
 
 
 
 
 | 362 | 
       for (unsigned int __k = 1; __k < __max_iter; ++__k) | 
 
 
 
 
 
 | 363 | 
         { | 
 
 
 
 
 
 | 364 | 
           const _Tp __term = __x / (__k * (__k + __x)); | 
 
 
 
 
 
 | 365 | 
           __sum += __term; | 
 
 
 
 
 
 | 366 | 
           if (std::abs(__term / __sum) < std::numeric_limits<_Tp>::epsilon()) | 
 
 
 
 
 
 | 367 | 
             break; | 
 
 
 
 
 
 | 368 | 
         } | 
 
 
 
 
 
 | 369 | 
       return __sum; | 
 
 
 
 
 
 | 370 | 
     } | 
 
 
 
 
 
 | 371 | 
  | 
 
 
 
 
 
 | 372 | 
  | 
 
 
 
 
 
 | 373 | 
     /** | 
 
 
 
 
 
 | 374 | 
      *   @brief  Return the digamma function for large argument. | 
 
 
 
 
 
 | 375 | 
      *   The digamma or @f$ \psi(x) @f$ function is defined by | 
 
 
 
 
 
 | 376 | 
      *   @f[ | 
 
 
 
 
 
 | 377 | 
      *     \psi(x) = \frac{\Gamma'(x)}{\Gamma(x)} | 
 
 
 
 
 
 | 378 | 
      *   @f] | 
 
 
 
 
 
 | 379 | 
      * | 
 
 
 
 
 
 | 380 | 
      *   The asymptotic series is given by: | 
 
 
 
 
 
 | 381 | 
      *   @f[ | 
 
 
 
 
 
 | 382 | 
      *     \psi(x) = \ln(x) - \frac{1}{2x} | 
 
 
 
 
 
 | 383 | 
      *             - \sum_{n=1}^{\infty} \frac{B_{2n}}{2 n x^{2n}} | 
 
 
 
 
 
 | 384 | 
      *   @f] | 
 
 
 
 
 
 | 385 | 
      */ | 
 
 
 
 
 
 | 386 | 
     template<typename _Tp> | 
 
 
 
 
 
 | 387 | 
     _Tp | 
 
 
 
 
 
 | 388 | 
     __psi_asymp(_Tp __x) | 
 
 
 
 
 
 | 389 | 
     { | 
 
 
 
 
 
 | 390 | 
       _Tp __sum = std::log(__x) - _Tp(0.5L) / __x; | 
 
 
 
 
 
 | 391 | 
       const _Tp __xx = __x * __x; | 
 
 
 
 
 
 | 392 | 
       _Tp __xp = __xx; | 
 
 
 
 
 
 | 393 | 
       const unsigned int __max_iter = 100; | 
 
 
 
 
 
 | 394 | 
       for (unsigned int __k = 1; __k < __max_iter; ++__k) | 
 
 
 
 
 
 | 395 | 
         { | 
 
 
 
 
 
 | 396 | 
           const _Tp __term = __bernoulli<_Tp>(2 * __k) / (2 * __k * __xp); | 
 
 
 
 
 
 | 397 | 
           __sum -= __term; | 
 
 
 
 
 
 | 398 | 
           if (std::abs(__term / __sum) < std::numeric_limits<_Tp>::epsilon()) | 
 
 
 
 
 
 | 399 | 
             break; | 
 
 
 
 
 
 | 400 | 
           __xp *= __xx; | 
 
 
 
 
 
 | 401 | 
         } | 
 
 
 
 
 
 | 402 | 
       return __sum; | 
 
 
 
 
 
 | 403 | 
     } | 
 
 
 
 
 
 | 404 | 
  | 
 
 
 
 
 
 | 405 | 
  | 
 
 
 
 
 
 | 406 | 
     /** | 
 
 
 
 
 
 | 407 | 
      *   @brief  Return the digamma function. | 
 
 
 
 
 
 | 408 | 
      *   The digamma or @f$ \psi(x) @f$ function is defined by | 
 
 
 
 
 
 | 409 | 
      *   @f[ | 
 
 
 
 
 
 | 410 | 
      *     \psi(x) = \frac{\Gamma'(x)}{\Gamma(x)} | 
 
 
 
 
 
 | 411 | 
      *   @f] | 
 
 
 
 
 
 | 412 | 
      *   For negative argument the reflection formula is used: | 
 
 
 
 
 
 | 413 | 
      *   @f[ | 
 
 
 
 
 
 | 414 | 
      *     \psi(x) = \psi(1-x) - \pi \cot(\pi x) | 
 
 
 
 
 
 | 415 | 
      *   @f] | 
 
 
 
 
 
 | 416 | 
      */ | 
 
 
 
 
 
 | 417 | 
     template<typename _Tp> | 
 
 
 
 
 
 | 418 | 
     _Tp | 
 
 
 
 
 
 | 419 | 
     __psi(_Tp __x) | 
 
 
 
 
 
 | 420 | 
     { | 
 
 
 
 
 
 | 421 | 
       const int __n = static_cast<int>(__x + 0.5L); | 
 
 
 
 
 
 | 422 | 
       const _Tp __eps = _Tp(4) * std::numeric_limits<_Tp>::epsilon(); | 
 
 
 
 
 
 | 423 | 
       if (__n <= 0 && std::abs(__x - _Tp(__n)) < __eps) | 
 
 
 
 
 
 | 424 | 
         return std::numeric_limits<_Tp>::quiet_NaN(); | 
 
 
 
 
 
 | 425 | 
       else if (__x < _Tp(0)) | 
 
 
 
 
 
 | 426 | 
         { | 
 
 
 
 
 
 | 427 | 
           const _Tp __pi = __numeric_constants<_Tp>::__pi(); | 
 
 
 
 
 
 | 428 | 
           return __psi(_Tp(1) - __x) | 
 
 
 
 
 
 | 429 | 
                - __pi * std::cos(__pi * __x) / std::sin(__pi * __x); | 
 
 
 
 
 
 | 430 | 
         } | 
 
 
 
 
 
 | 431 | 
       else if (__x > _Tp(100)) | 
 
 
 
 
 
 | 432 | 
         return __psi_asymp(__x); | 
 
 
 
 
 
 | 433 | 
       else | 
 
 
 
 
 
 | 434 | 
         return __psi_series(__x); | 
 
 
 
 
 
 | 435 | 
     } | 
 
 
 
 
 
 | 436 | 
  | 
 
 
 
 
 
 | 437 | 
  | 
 
 
 
 
 
 | 438 | 
     /** | 
 
 
 
 
 
 | 439 | 
      *   @brief  Return the polygamma function @f$ \psi^{(n)}(x) @f$. | 
 
 
 
 
 
 | 440 | 
      *  | 
 
 
 
 
 
 | 441 | 
      *   The polygamma function is related to the Hurwitz zeta function: | 
 
 
 
 
 
 | 442 | 
      *   @f[ | 
 
 
 
 
 
 | 443 | 
      *     \psi^{(n)}(x) = (-1)^{n+1} m! \zeta(m+1,x) | 
 
 
 
 
 
 | 444 | 
      *   @f] | 
 
 
 
 
 
 | 445 | 
      */ | 
 
 
 
 
 
 | 446 | 
     template<typename _Tp> | 
 
 
 
 
 
 | 447 | 
     _Tp | 
 
 
 
 
 
 | 448 | 
     __psi(unsigned int __n, _Tp __x) | 
 
 
 
 
 
 | 449 | 
     { | 
 
 
 
 
 
 | 450 | 
       if (__x <= _Tp(0)) | 
 
 
 
 
 
 | 451 | 
         std::__throw_domain_error(__N("Argument out of range " | 
 
 
 
 
 
 | 452 | 
                                       "in __psi")); | 
 
 
 
 
 
 | 453 | 
       else if (__n == 0) | 
 
 
 
 
 
 | 454 | 
         return __psi(__x); | 
 
 
 
 
 
 | 455 | 
       else | 
 
 
 
 
 
 | 456 | 
         { | 
 
 
 
 
 
 | 457 | 
           const _Tp __hzeta = __hurwitz_zeta(_Tp(__n + 1), __x); | 
 
 
 
 
 
 | 458 | 
 #if _GLIBCXX_USE_C99_MATH_TR1 | 
 
 
 
 
 
 | 459 | 
           const _Tp __ln_nfact = _GLIBCXX_MATH_NS::lgamma(_Tp(__n + 1)); | 
 
 
 
 
 
 | 460 | 
 #else | 
 
 
 
 
 
 | 461 | 
           const _Tp __ln_nfact = __log_gamma(_Tp(__n + 1)); | 
 
 
 
 
 
 | 462 | 
 #endif | 
 
 
 
 
 
 | 463 | 
           _Tp __result = std::exp(__ln_nfact) * __hzeta; | 
 
 
 
 
 
 | 464 | 
           if (__n % 2 == 1) | 
 
 
 
 
 
 | 465 | 
             __result = -__result; | 
 
 
 
 
 
 | 466 | 
           return __result; | 
 
 
 
 
 
 | 467 | 
         } | 
 
 
 
 
 
 | 468 | 
     } | 
 
 
 
 
 
 | 469 | 
   } // namespace __detail | 
 
 
 
 
 
 | 470 | 
 #undef _GLIBCXX_MATH_NS | 
 
 
 
 
 
 | 471 | 
 #if ! _GLIBCXX_USE_STD_SPEC_FUNCS && defined(_GLIBCXX_TR1_CMATH) | 
 
 
 
 
 
 | 472 | 
 } // namespace tr1 | 
 
 
 
 
 
 | 473 | 
 #endif | 
 
 
 
 
 
 | 474 | 
  | 
 
 
 
 
 
 | 475 | 
 _GLIBCXX_END_NAMESPACE_VERSION | 
 
 
 
 
 
 | 476 | 
 } // namespace std | 
 
 
 
 
 
 | 477 | 
  | 
 
 
 
 
 
 | 478 | 
 #endif // _GLIBCXX_TR1_GAMMA_TCC | 
 
 
 
 
 
 | 479 | 
  |