| 1 | // Special functions -*- C++ -*- | 
 
 
 
 
 | 2 |  | 
 
 
 
 
 | 3 | // Copyright (C) 2006-2021 Free Software Foundation, Inc. | 
 
 
 
 
 | 4 | // | 
 
 
 
 
 | 5 | // This file is part of the GNU ISO C++ Library.  This library is free | 
 
 
 
 
 | 6 | // software; you can redistribute it and/or modify it under the | 
 
 
 
 
 | 7 | // terms of the GNU General Public License as published by the | 
 
 
 
 
 | 8 | // Free Software Foundation; either version 3, or (at your option) | 
 
 
 
 
 | 9 | // any later version. | 
 
 
 
 
 | 10 | // | 
 
 
 
 
 | 11 | // This library is distributed in the hope that it will be useful, | 
 
 
 
 
 | 12 | // but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 
 
 
 
 | 13 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
 
 
 
 
 | 14 | // GNU General Public License for more details. | 
 
 
 
 
 | 15 | // | 
 
 
 
 
 | 16 | // Under Section 7 of GPL version 3, you are granted additional | 
 
 
 
 
 | 17 | // permissions described in the GCC Runtime Library Exception, version | 
 
 
 
 
 | 18 | // 3.1, as published by the Free Software Foundation. | 
 
 
 
 
 | 19 |  | 
 
 
 
 
 | 20 | // You should have received a copy of the GNU General Public License and | 
 
 
 
 
 | 21 | // a copy of the GCC Runtime Library Exception along with this program; | 
 
 
 
 
 | 22 | // see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see | 
 
 
 
 
 | 23 | // <http://www.gnu.org/licenses/>. | 
 
 
 
 
 | 24 |  | 
 
 
 
 
 | 25 | /** @file tr1/gamma.tcc | 
 
 
 
 
 | 26 | *  This is an internal header file, included by other library headers. | 
 
 
 
 
 | 27 | *  Do not attempt to use it directly. @headername{tr1/cmath} | 
 
 
 
 
 | 28 | */ | 
 
 
 
 
 | 29 |  | 
 
 
 
 
 | 30 | // | 
 
 
 
 
 | 31 | // ISO C++ 14882 TR1: 5.2  Special functions | 
 
 
 
 
 | 32 | // | 
 
 
 
 
 | 33 |  | 
 
 
 
 
 | 34 | // Written by Edward Smith-Rowland based on: | 
 
 
 
 
 | 35 | //   (1) Handbook of Mathematical Functions, | 
 
 
 
 
 | 36 | //       ed. Milton Abramowitz and Irene A. Stegun, | 
 
 
 
 
 | 37 | //       Dover Publications, | 
 
 
 
 
 | 38 | //       Section 6, pp. 253-266 | 
 
 
 
 
 | 39 | //   (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl | 
 
 
 
 
 | 40 | //   (3) Numerical Recipes in C, by W. H. Press, S. A. Teukolsky, | 
 
 
 
 
 | 41 | //       W. T. Vetterling, B. P. Flannery, Cambridge University Press (1992), | 
 
 
 
 
 | 42 | //       2nd ed, pp. 213-216 | 
 
 
 
 
 | 43 | //   (4) Gamma, Exploring Euler's Constant, Julian Havil, | 
 
 
 
 
 | 44 | //       Princeton, 2003. | 
 
 
 
 
 | 45 |  | 
 
 
 
 
 | 46 | #ifndef _GLIBCXX_TR1_GAMMA_TCC | 
 
 
 
 
 | 47 | #define _GLIBCXX_TR1_GAMMA_TCC 1 | 
 
 
 
 
 | 48 |  | 
 
 
 
 
 | 49 | #include <tr1/special_function_util.h> | 
 
 
 
 
 | 50 |  | 
 
 
 
 
 | 51 | namespace std _GLIBCXX_VISIBILITY(default) | 
 
 
 
 
 | 52 | { | 
 
 
 
 
 | 53 | _GLIBCXX_BEGIN_NAMESPACE_VERSION | 
 
 
 
 
 | 54 |  | 
 
 
 
 
 | 55 | #if _GLIBCXX_USE_STD_SPEC_FUNCS | 
 
 
 
 
 | 56 | # define _GLIBCXX_MATH_NS ::std | 
 
 
 
 
 | 57 | #elif defined(_GLIBCXX_TR1_CMATH) | 
 
 
 
 
 | 58 | namespace tr1 | 
 
 
 
 
 | 59 | { | 
 
 
 
 
 | 60 | # define _GLIBCXX_MATH_NS ::std::tr1 | 
 
 
 
 
 | 61 | #else | 
 
 
 
 
 | 62 | # error do not include this header directly, use <cmath> or <tr1/cmath> | 
 
 
 
 
 | 63 | #endif | 
 
 
 
 
 | 64 | // Implementation-space details. | 
 
 
 
 
 | 65 | namespace __detail | 
 
 
 
 
 | 66 | { | 
 
 
 
 
 | 67 | /** | 
 
 
 
 
 | 68 | *   @brief This returns Bernoulli numbers from a table or by summation | 
 
 
 
 
 | 69 | *          for larger values. | 
 
 
 
 
 | 70 | * | 
 
 
 
 
 | 71 | *   Recursion is unstable. | 
 
 
 
 
 | 72 | * | 
 
 
 
 
 | 73 | *   @param __n the order n of the Bernoulli number. | 
 
 
 
 
 | 74 | *   @return  The Bernoulli number of order n. | 
 
 
 
 
 | 75 | */ | 
 
 
 
 
 | 76 | template <typename _Tp> | 
 
 
 
 
 | 77 | _Tp | 
 
 
 
 
 | 78 | __bernoulli_series(unsigned int __n) | 
 
 
 
 
 | 79 | { | 
 
 
 
 
 | 80 |  | 
 
 
 
 
 | 81 | static const _Tp __num[28] = { | 
 
 
 
 
 | 82 | _Tp(1UL),                        -_Tp(1UL) / _Tp(2UL), | 
 
 
 
 
 | 83 | _Tp(1UL) / _Tp(6UL),             _Tp(0UL), | 
 
 
 
 
 | 84 | -_Tp(1UL) / _Tp(30UL),           _Tp(0UL), | 
 
 
 
 
 | 85 | _Tp(1UL) / _Tp(42UL),            _Tp(0UL), | 
 
 
 
 
 | 86 | -_Tp(1UL) / _Tp(30UL),           _Tp(0UL), | 
 
 
 
 
 | 87 | _Tp(5UL) / _Tp(66UL),            _Tp(0UL), | 
 
 
 
 
 | 88 | -_Tp(691UL) / _Tp(2730UL),       _Tp(0UL), | 
 
 
 
 
 | 89 | _Tp(7UL) / _Tp(6UL),             _Tp(0UL), | 
 
 
 
 
 | 90 | -_Tp(3617UL) / _Tp(510UL),       _Tp(0UL), | 
 
 
 
 
 | 91 | _Tp(43867UL) / _Tp(798UL),       _Tp(0UL), | 
 
 
 
 
 | 92 | -_Tp(174611) / _Tp(330UL),       _Tp(0UL), | 
 
 
 
 
 | 93 | _Tp(854513UL) / _Tp(138UL),      _Tp(0UL), | 
 
 
 
 
 | 94 | -_Tp(236364091UL) / _Tp(2730UL), _Tp(0UL), | 
 
 
 
 
 | 95 | _Tp(8553103UL) / _Tp(6UL),       _Tp(0UL) | 
 
 
 
 
 | 96 | }; | 
 
 
 
 
 | 97 |  | 
 
 
 
 
 | 98 | if (__n == 0) | 
 
 
 
 
 | 99 | return _Tp(1); | 
 
 
 
 
 | 100 |  | 
 
 
 
 
 | 101 | if (__n == 1) | 
 
 
 
 
 | 102 | return -_Tp(1) / _Tp(2); | 
 
 
 
 
 | 103 |  | 
 
 
 
 
 | 104 | //  Take care of the rest of the odd ones. | 
 
 
 
 
 | 105 | if (__n % 2 == 1) | 
 
 
 
 
 | 106 | return _Tp(0); | 
 
 
 
 
 | 107 |  | 
 
 
 
 
 | 108 | //  Take care of some small evens that are painful for the series. | 
 
 
 
 
 | 109 | if (__n < 28) | 
 
 
 
 
 | 110 | return __num[__n]; | 
 
 
 
 
 | 111 |  | 
 
 
 
 
 | 112 |  | 
 
 
 
 
 | 113 | _Tp __fact = _Tp(1); | 
 
 
 
 
 | 114 | if ((__n / 2) % 2 == 0) | 
 
 
 
 
 | 115 | __fact *= _Tp(-1); | 
 
 
 
 
 | 116 | for (unsigned int __k = 1; __k <= __n; ++__k) | 
 
 
 
 
 | 117 | __fact *= __k / (_Tp(2) * __numeric_constants<_Tp>::__pi()); | 
 
 
 
 
 | 118 | __fact *= _Tp(2); | 
 
 
 
 
 | 119 |  | 
 
 
 
 
 | 120 | _Tp __sum = _Tp(0); | 
 
 
 
 
 | 121 | for (unsigned int __i = 1; __i < 1000; ++__i) | 
 
 
 
 
 | 122 | { | 
 
 
 
 
 | 123 | _Tp __term = std::pow(_Tp(__i), -_Tp(__n)); | 
 
 
 
 
 | 124 | if (__term < std::numeric_limits<_Tp>::epsilon()) | 
 
 
 
 
 | 125 | break; | 
 
 
 
 
 | 126 | __sum += __term; | 
 
 
 
 
 | 127 | } | 
 
 
 
 
 | 128 |  | 
 
 
 
 
 | 129 | return __fact * __sum; | 
 
 
 
 
 | 130 | } | 
 
 
 
 
 | 131 |  | 
 
 
 
 
 | 132 |  | 
 
 
 
 
 | 133 | /** | 
 
 
 
 
 | 134 | *   @brief This returns Bernoulli number \f$B_n\f$. | 
 
 
 
 
 | 135 | * | 
 
 
 
 
 | 136 | *   @param __n the order n of the Bernoulli number. | 
 
 
 
 
 | 137 | *   @return  The Bernoulli number of order n. | 
 
 
 
 
 | 138 | */ | 
 
 
 
 
 | 139 | template<typename _Tp> | 
 
 
 
 
 | 140 | inline _Tp | 
 
 
 
 
 | 141 | __bernoulli(int __n) | 
 
 
 
 
 | 142 | { return __bernoulli_series<_Tp>(__n); } | 
 
 
 
 
 | 143 |  | 
 
 
 
 
 | 144 |  | 
 
 
 
 
 | 145 | /** | 
 
 
 
 
 | 146 | *   @brief Return \f$log(\Gamma(x))\f$ by asymptotic expansion | 
 
 
 
 
 | 147 | *          with Bernoulli number coefficients.  This is like | 
 
 
 
 
 | 148 | *          Sterling's approximation. | 
 
 
 
 
 | 149 | * | 
 
 
 
 
 | 150 | *   @param __x The argument of the log of the gamma function. | 
 
 
 
 
 | 151 | *   @return  The logarithm of the gamma function. | 
 
 
 
 
 | 152 | */ | 
 
 
 
 
 | 153 | template<typename _Tp> | 
 
 
 
 
 | 154 | _Tp | 
 
 
 
 
 | 155 | __log_gamma_bernoulli(_Tp __x) | 
 
 
 
 
 | 156 | { | 
 
 
 
 
 | 157 | _Tp __lg = (__x - _Tp(0.5L)) * std::log(__x) - __x | 
 
 
 
 
 | 158 | + _Tp(0.5L) * std::log(_Tp(2) | 
 
 
 
 
 | 159 | * __numeric_constants<_Tp>::__pi()); | 
 
 
 
 
 | 160 |  | 
 
 
 
 
 | 161 | const _Tp __xx = __x * __x; | 
 
 
 
 
 | 162 | _Tp __help = _Tp(1) / __x; | 
 
 
 
 
 | 163 | for ( unsigned int __i = 1; __i < 20; ++__i ) | 
 
 
 
 
 | 164 | { | 
 
 
 
 
 | 165 | const _Tp __2i = _Tp(2 * __i); | 
 
 
 
 
 | 166 | __help /= __2i * (__2i - _Tp(1)) * __xx; | 
 
 
 
 
 | 167 | __lg += __bernoulli<_Tp>(2 * __i) * __help; | 
 
 
 
 
 | 168 | } | 
 
 
 
 
 | 169 |  | 
 
 
 
 
 | 170 | return __lg; | 
 
 
 
 
 | 171 | } | 
 
 
 
 
 | 172 |  | 
 
 
 
 
 | 173 |  | 
 
 
 
 
 | 174 | /** | 
 
 
 
 
 | 175 | *   @brief Return \f$log(\Gamma(x))\f$ by the Lanczos method. | 
 
 
 
 
 | 176 | *          This method dominates all others on the positive axis I think. | 
 
 
 
 
 | 177 | * | 
 
 
 
 
 | 178 | *   @param __x The argument of the log of the gamma function. | 
 
 
 
 
 | 179 | *   @return  The logarithm of the gamma function. | 
 
 
 
 
 | 180 | */ | 
 
 
 
 
 | 181 | template<typename _Tp> | 
 
 
 
 
 | 182 | _Tp | 
 
 
 
 
 | 183 | __log_gamma_lanczos(_Tp __x) | 
 
 
 
 
 | 184 | { | 
 
 
 
 
 | 185 | const _Tp __xm1 = __x - _Tp(1); | 
 
 
 
 
 | 186 |  | 
 
 
 
 
 | 187 | static const _Tp __lanczos_cheb_7[9] = { | 
 
 
 
 
 | 188 | _Tp( 0.99999999999980993227684700473478L), | 
 
 
 
 
 | 189 | _Tp( 676.520368121885098567009190444019L), | 
 
 
 
 
 | 190 | _Tp(-1259.13921672240287047156078755283L), | 
 
 
 
 
 | 191 | _Tp( 771.3234287776530788486528258894L), | 
 
 
 
 
 | 192 | _Tp(-176.61502916214059906584551354L), | 
 
 
 
 
 | 193 | _Tp( 12.507343278686904814458936853L), | 
 
 
 
 
 | 194 | _Tp(-0.13857109526572011689554707L), | 
 
 
 
 
 | 195 | _Tp( 9.984369578019570859563e-6L), | 
 
 
 
 
 | 196 | _Tp( 1.50563273514931155834e-7L) | 
 
 
 
 
 | 197 | }; | 
 
 
 
 
 | 198 |  | 
 
 
 
 
 | 199 | static const _Tp __LOGROOT2PI | 
 
 
 
 
 | 200 | = _Tp(0.9189385332046727417803297364056176L); | 
 
 
 
 
 | 201 |  | 
 
 
 
 
 | 202 | _Tp __sum = __lanczos_cheb_7[0]; | 
 
 
 
 
 | 203 | for(unsigned int __k = 1; __k < 9; ++__k) | 
 
 
 
 
 | 204 | __sum += __lanczos_cheb_7[__k] / (__xm1 + __k); | 
 
 
 
 
 | 205 |  | 
 
 
 
 
 | 206 | const _Tp __term1 = (__xm1 + _Tp(0.5L)) | 
 
 
 
 
 | 207 | * std::log((__xm1 + _Tp(7.5L)) | 
 
 
 
 
 | 208 | / __numeric_constants<_Tp>::__euler()); | 
 
 
 
 
 | 209 | const _Tp __term2 = __LOGROOT2PI + std::log(__sum); | 
 
 
 
 
 | 210 | const _Tp __result = __term1 + (__term2 - _Tp(7)); | 
 
 
 
 
 | 211 |  | 
 
 
 
 
 | 212 | return __result; | 
 
 
 
 
 | 213 | } | 
 
 
 
 
 | 214 |  | 
 
 
 
 
 | 215 |  | 
 
 
 
 
 | 216 | /** | 
 
 
 
 
 | 217 | *   @brief Return \f$ log(|\Gamma(x)|) \f$. | 
 
 
 
 
 | 218 | *          This will return values even for \f$ x < 0 \f$. | 
 
 
 
 
 | 219 | *          To recover the sign of \f$ \Gamma(x) \f$ for | 
 
 
 
 
 | 220 | *          any argument use @a __log_gamma_sign. | 
 
 
 
 
 | 221 | * | 
 
 
 
 
 | 222 | *   @param __x The argument of the log of the gamma function. | 
 
 
 
 
 | 223 | *   @return  The logarithm of the gamma function. | 
 
 
 
 
 | 224 | */ | 
 
 
 
 
 | 225 | template<typename _Tp> | 
 
 
 
 
 | 226 | _Tp | 
 
 
 
 
 | 227 | __log_gamma(_Tp __x) | 
 
 
 
 
 | 228 | { | 
 
 
 
 
 | 229 | if (__x > _Tp(0.5L)) | 
 
 
 
 
 | 230 | return __log_gamma_lanczos(__x); | 
 
 
 
 
 | 231 | else | 
 
 
 
 
 | 232 | { | 
 
 
 
 
 | 233 | const _Tp __sin_fact | 
 
 
 
 
 | 234 | = std::abs(std::sin(__numeric_constants<_Tp>::__pi() * __x)); | 
 
 
 
 
 | 235 | if (__sin_fact == _Tp(0)) | 
 
 
 
 
 | 236 | std::__throw_domain_error(__N("Argument is nonpositive integer " | 
 
 
 
 
 | 237 | "in __log_gamma")); | 
 
 
 
 
 | 238 | return __numeric_constants<_Tp>::__lnpi() | 
 
 
 
 
 | 239 | - std::log(__sin_fact) | 
 
 
 
 
 | 240 | - __log_gamma_lanczos(_Tp(1) - __x); | 
 
 
 
 
 | 241 | } | 
 
 
 
 
 | 242 | } | 
 
 
 
 
 | 243 |  | 
 
 
 
 
 | 244 |  | 
 
 
 
 
 | 245 | /** | 
 
 
 
 
 | 246 | *   @brief Return the sign of \f$ \Gamma(x) \f$. | 
 
 
 
 
 | 247 | *          At nonpositive integers zero is returned. | 
 
 
 
 
 | 248 | * | 
 
 
 
 
 | 249 | *   @param __x The argument of the gamma function. | 
 
 
 
 
 | 250 | *   @return  The sign of the gamma function. | 
 
 
 
 
 | 251 | */ | 
 
 
 
 
 | 252 | template<typename _Tp> | 
 
 
 
 
 | 253 | _Tp | 
 
 
 
 
 | 254 | __log_gamma_sign(_Tp __x) | 
 
 
 
 
 | 255 | { | 
 
 
 
 
 | 256 | if (__x > _Tp(0)) | 
 
 
 
 
 | 257 | return _Tp(1); | 
 
 
 
 
 | 258 | else | 
 
 
 
 
 | 259 | { | 
 
 
 
 
 | 260 | const _Tp __sin_fact | 
 
 
 
 
 | 261 | = std::sin(__numeric_constants<_Tp>::__pi() * __x); | 
 
 
 
 
 | 262 | if (__sin_fact > _Tp(0)) | 
 
 
 
 
 | 263 | return (1); | 
 
 
 
 
 | 264 | else if (__sin_fact < _Tp(0)) | 
 
 
 
 
 | 265 | return -_Tp(1); | 
 
 
 
 
 | 266 | else | 
 
 
 
 
 | 267 | return _Tp(0); | 
 
 
 
 
 | 268 | } | 
 
 
 
 
 | 269 | } | 
 
 
 
 
 | 270 |  | 
 
 
 
 
 | 271 |  | 
 
 
 
 
 | 272 | /** | 
 
 
 
 
 | 273 | *   @brief Return the logarithm of the binomial coefficient. | 
 
 
 
 
 | 274 | *   The binomial coefficient is given by: | 
 
 
 
 
 | 275 | *   @f[ | 
 
 
 
 
 | 276 | *   \left(  \right) = \frac{n!}{(n-k)! k!} | 
 
 
 
 
 | 277 | *   @f] | 
 
 
 
 
 | 278 | * | 
 
 
 
 
 | 279 | *   @param __n The first argument of the binomial coefficient. | 
 
 
 
 
 | 280 | *   @param __k The second argument of the binomial coefficient. | 
 
 
 
 
 | 281 | *   @return  The binomial coefficient. | 
 
 
 
 
 | 282 | */ | 
 
 
 
 
 | 283 | template<typename _Tp> | 
 
 
 
 
 | 284 | _Tp | 
 
 
 
 
 | 285 | __log_bincoef(unsigned int __n, unsigned int __k) | 
 
 
 
 
 | 286 | { | 
 
 
 
 
 | 287 | //  Max e exponent before overflow. | 
 
 
 
 
 | 288 | static const _Tp __max_bincoeff | 
 
 
 
 
 | 289 | = std::numeric_limits<_Tp>::max_exponent10 | 
 
 
 
 
 | 290 | * std::log(_Tp(10)) - _Tp(1); | 
 
 
 
 
 | 291 | #if _GLIBCXX_USE_C99_MATH_TR1 | 
 
 
 
 
 | 292 | _Tp __coeff =  _GLIBCXX_MATH_NS::lgamma(_Tp(1 + __n)) | 
 
 
 
 
 | 293 | - _GLIBCXX_MATH_NS::lgamma(_Tp(1 + __k)) | 
 
 
 
 
 | 294 | - _GLIBCXX_MATH_NS::lgamma(_Tp(1 + __n - __k)); | 
 
 
 
 
 | 295 | #else | 
 
 
 
 
 | 296 | _Tp __coeff =  __log_gamma(_Tp(1 + __n)) | 
 
 
 
 
 | 297 | - __log_gamma(_Tp(1 + __k)) | 
 
 
 
 
 | 298 | - __log_gamma(_Tp(1 + __n - __k)); | 
 
 
 
 
 | 299 | #endif | 
 
 
 
 
 | 300 | } | 
 
 
 
 
 | 301 |  | 
 
 
 
 
 | 302 |  | 
 
 
 
 
 | 303 | /** | 
 
 
 
 
 | 304 | *   @brief Return the binomial coefficient. | 
 
 
 
 
 | 305 | *   The binomial coefficient is given by: | 
 
 
 
 
 | 306 | *   @f[ | 
 
 
 
 
 | 307 | *   \left(  \right) = \frac{n!}{(n-k)! k!} | 
 
 
 
 
 | 308 | *   @f] | 
 
 
 
 
 | 309 | * | 
 
 
 
 
 | 310 | *   @param __n The first argument of the binomial coefficient. | 
 
 
 
 
 | 311 | *   @param __k The second argument of the binomial coefficient. | 
 
 
 
 
 | 312 | *   @return  The binomial coefficient. | 
 
 
 
 
 | 313 | */ | 
 
 
 
 
 | 314 | template<typename _Tp> | 
 
 
 
 
 | 315 | _Tp | 
 
 
 
 
 | 316 | __bincoef(unsigned int __n, unsigned int __k) | 
 
 
 
 
 | 317 | { | 
 
 
 
 
 | 318 | //  Max e exponent before overflow. | 
 
 
 
 
 | 319 | static const _Tp __max_bincoeff | 
 
 
 
 
 | 320 | = std::numeric_limits<_Tp>::max_exponent10 | 
 
 
 
 
 | 321 | * std::log(_Tp(10)) - _Tp(1); | 
 
 
 
 
 | 322 |  | 
 
 
 
 
 | 323 | const _Tp __log_coeff = __log_bincoef<_Tp>(__n, __k); | 
 
 
 
 
 | 324 | if (__log_coeff > __max_bincoeff) | 
 
 
 
 
 | 325 | return std::numeric_limits<_Tp>::quiet_NaN(); | 
 
 
 
 
 | 326 | else | 
 
 
 
 
 | 327 | return std::exp(__log_coeff); | 
 
 
 
 
 | 328 | } | 
 
 
 
 
 | 329 |  | 
 
 
 
 
 | 330 |  | 
 
 
 
 
 | 331 | /** | 
 
 
 
 
 | 332 | *   @brief Return \f$ \Gamma(x) \f$. | 
 
 
 
 
 | 333 | * | 
 
 
 
 
 | 334 | *   @param __x The argument of the gamma function. | 
 
 
 
 
 | 335 | *   @return  The gamma function. | 
 
 
 
 
 | 336 | */ | 
 
 
 
 
 | 337 | template<typename _Tp> | 
 
 
 
 
 | 338 | inline _Tp | 
 
 
 
 
 | 339 | __gamma(_Tp __x) | 
 
 
 
 
 | 340 | { return std::exp(__log_gamma(__x)); } | 
 
 
 
 
 | 341 |  | 
 
 
 
 
 | 342 |  | 
 
 
 
 
 | 343 | /** | 
 
 
 
 
 | 344 | *   @brief  Return the digamma function by series expansion. | 
 
 
 
 
 | 345 | *   The digamma or @f$ \psi(x) @f$ function is defined by | 
 
 
 
 
 | 346 | *   @f[ | 
 
 
 
 
 | 347 | *     \psi(x) = \frac{\Gamma'(x)}{\Gamma(x)} | 
 
 
 
 
 | 348 | *   @f] | 
 
 
 
 
 | 349 | * | 
 
 
 
 
 | 350 | *   The series is given by: | 
 
 
 
 
 | 351 | *   @f[ | 
 
 
 
 
 | 352 | *     \psi(x) = -\gamma_E - \frac{1}{x} | 
 
 
 
 
 | 353 | *              \sum_{k=1}^{\infty} \frac{x}{k(x + k)} | 
 
 
 
 
 | 354 | *   @f] | 
 
 
 
 
 | 355 | */ | 
 
 
 
 
 | 356 | template<typename _Tp> | 
 
 
 
 
 | 357 | _Tp | 
 
 
 
 
 | 358 | __psi_series(_Tp __x) | 
 
 
 
 
 | 359 | { | 
 
 
 
 
 | 360 | _Tp __sum = -__numeric_constants<_Tp>::__gamma_e() - _Tp(1) / __x; | 
 
 
 
 
 | 361 | const unsigned int __max_iter = 100000; | 
 
 
 
 
 | 362 | for (unsigned int __k = 1; __k < __max_iter; ++__k) | 
 
 
 
 
 | 363 | { | 
 
 
 
 
 | 364 | const _Tp __term = __x / (__k * (__k + __x)); | 
 
 
 
 
 | 365 | __sum += __term; | 
 
 
 
 
 | 366 | if (std::abs(__term / __sum) < std::numeric_limits<_Tp>::epsilon()) | 
 
 
 
 
 | 367 | break; | 
 
 
 
 
 | 368 | } | 
 
 
 
 
 | 369 | return __sum; | 
 
 
 
 
 | 370 | } | 
 
 
 
 
 | 371 |  | 
 
 
 
 
 | 372 |  | 
 
 
 
 
 | 373 | /** | 
 
 
 
 
 | 374 | *   @brief  Return the digamma function for large argument. | 
 
 
 
 
 | 375 | *   The digamma or @f$ \psi(x) @f$ function is defined by | 
 
 
 
 
 | 376 | *   @f[ | 
 
 
 
 
 | 377 | *     \psi(x) = \frac{\Gamma'(x)}{\Gamma(x)} | 
 
 
 
 
 | 378 | *   @f] | 
 
 
 
 
 | 379 | * | 
 
 
 
 
 | 380 | *   The asymptotic series is given by: | 
 
 
 
 
 | 381 | *   @f[ | 
 
 
 
 
 | 382 | *     \psi(x) = \ln(x) - \frac{1}{2x} | 
 
 
 
 
 | 383 | *             - \sum_{n=1}^{\infty} \frac{B_{2n}}{2 n x^{2n}} | 
 
 
 
 
 | 384 | *   @f] | 
 
 
 
 
 | 385 | */ | 
 
 
 
 
 | 386 | template<typename _Tp> | 
 
 
 
 
 | 387 | _Tp | 
 
 
 
 
 | 388 | __psi_asymp(_Tp __x) | 
 
 
 
 
 | 389 | { | 
 
 
 
 
 | 390 | _Tp __sum = std::log(__x) - _Tp(0.5L) / __x; | 
 
 
 
 
 | 391 | const _Tp __xx = __x * __x; | 
 
 
 
 
 | 392 | _Tp __xp = __xx; | 
 
 
 
 
 | 393 | const unsigned int __max_iter = 100; | 
 
 
 
 
 | 394 | for (unsigned int __k = 1; __k < __max_iter; ++__k) | 
 
 
 
 
 | 395 | { | 
 
 
 
 
 | 396 | const _Tp __term = __bernoulli<_Tp>(2 * __k) / (2 * __k * __xp); | 
 
 
 
 
 | 397 | __sum -= __term; | 
 
 
 
 
 | 398 | if (std::abs(__term / __sum) < std::numeric_limits<_Tp>::epsilon()) | 
 
 
 
 
 | 399 | break; | 
 
 
 
 
 | 400 | __xp *= __xx; | 
 
 
 
 
 | 401 | } | 
 
 
 
 
 | 402 | return __sum; | 
 
 
 
 
 | 403 | } | 
 
 
 
 
 | 404 |  | 
 
 
 
 
 | 405 |  | 
 
 
 
 
 | 406 | /** | 
 
 
 
 
 | 407 | *   @brief  Return the digamma function. | 
 
 
 
 
 | 408 | *   The digamma or @f$ \psi(x) @f$ function is defined by | 
 
 
 
 
 | 409 | *   @f[ | 
 
 
 
 
 | 410 | *     \psi(x) = \frac{\Gamma'(x)}{\Gamma(x)} | 
 
 
 
 
 | 411 | *   @f] | 
 
 
 
 
 | 412 | *   For negative argument the reflection formula is used: | 
 
 
 
 
 | 413 | *   @f[ | 
 
 
 
 
 | 414 | *     \psi(x) = \psi(1-x) - \pi \cot(\pi x) | 
 
 
 
 
 | 415 | *   @f] | 
 
 
 
 
 | 416 | */ | 
 
 
 
 
 | 417 | template<typename _Tp> | 
 
 
 
 
 | 418 | _Tp | 
 
 
 
 
 | 419 | __psi(_Tp __x) | 
 
 
 
 
 | 420 | { | 
 
 
 
 
 | 421 | const int __n = static_cast<int>(__x + 0.5L); | 
 
 
 
 
 | 422 | const _Tp __eps = _Tp(4) * std::numeric_limits<_Tp>::epsilon(); | 
 
 
 
 
 | 423 | if (__n <= 0 && std::abs(__x - _Tp(__n)) < __eps) | 
 
 
 
 
 | 424 | return std::numeric_limits<_Tp>::quiet_NaN(); | 
 
 
 
 
 | 425 | else if (__x < _Tp(0)) | 
 
 
 
 
 | 426 | { | 
 
 
 
 
 | 427 | const _Tp __pi = __numeric_constants<_Tp>::__pi(); | 
 
 
 
 
 | 428 | return __psi(_Tp(1) - __x) | 
 
 
 
 
 | 429 | - __pi * std::cos(__pi * __x) / std::sin(__pi * __x); | 
 
 
 
 
 | 430 | } | 
 
 
 
 
 | 431 | else if (__x > _Tp(100)) | 
 
 
 
 
 | 432 | return __psi_asymp(__x); | 
 
 
 
 
 | 433 | else | 
 
 
 
 
 | 434 | return __psi_series(__x); | 
 
 
 
 
 | 435 | } | 
 
 
 
 
 | 436 |  | 
 
 
 
 
 | 437 |  | 
 
 
 
 
 | 438 | /** | 
 
 
 
 
 | 439 | *   @brief  Return the polygamma function @f$ \psi^{(n)}(x) @f$. | 
 
 
 
 
 | 440 | * | 
 
 
 
 
 | 441 | *   The polygamma function is related to the Hurwitz zeta function: | 
 
 
 
 
 | 442 | *   @f[ | 
 
 
 
 
 | 443 | *     \psi^{(n)}(x) = (-1)^{n+1} m! \zeta(m+1,x) | 
 
 
 
 
 | 444 | *   @f] | 
 
 
 
 
 | 445 | */ | 
 
 
 
 
 | 446 | template<typename _Tp> | 
 
 
 
 
 | 447 | _Tp | 
 
 
 
 
 | 448 | __psi(unsigned int __n, _Tp __x) | 
 
 
 
 
 | 449 | { | 
 
 
 
 
 | 450 | if (__x <= _Tp(0)) | 
 
 
 
 
 | 451 | std::__throw_domain_error(__N("Argument out of range " | 
 
 
 
 
 | 452 | "in __psi")); | 
 
 
 
 
 | 453 | else if (__n == 0) | 
 
 
 
 
 | 454 | return __psi(__x); | 
 
 
 
 
 | 455 | else | 
 
 
 
 
 | 456 | { | 
 
 
 
 
 | 457 | const _Tp __hzeta = __hurwitz_zeta(_Tp(__n + 1), __x); | 
 
 
 
 
 | 458 | #if _GLIBCXX_USE_C99_MATH_TR1 | 
 
 
 
 
 | 459 | const _Tp __ln_nfact = _GLIBCXX_MATH_NS::lgamma(_Tp(__n + 1)); | 
 
 
 
 
 | 460 | #else | 
 
 
 
 
 | 461 | const _Tp __ln_nfact = __log_gamma(_Tp(__n + 1)); | 
 
 
 
 
 | 462 | #endif | 
 
 
 
 
 | 463 | _Tp __result = std::exp(__ln_nfact) * __hzeta; | 
 
 
 
 
 | 464 | if (__n % 2 == 1) | 
 
 
 
 
 | 465 | __result = -__result; | 
 
 
 
 
 | 466 | return __result; | 
 
 
 
 
 | 467 | } | 
 
 
 
 
 | 468 | } | 
 
 
 
 
 | 469 | } // namespace __detail | 
 
 
 
 
 | 470 | #undef _GLIBCXX_MATH_NS | 
 
 
 
 
 | 471 | #if ! _GLIBCXX_USE_STD_SPEC_FUNCS && defined(_GLIBCXX_TR1_CMATH) | 
 
 
 
 
 | 472 | } // namespace tr1 | 
 
 
 
 
 | 473 | #endif | 
 
 
 
 
 | 474 |  | 
 
 
 
 
 | 475 | _GLIBCXX_END_NAMESPACE_VERSION | 
 
 
 
 
 | 476 | } // namespace std | 
 
 
 
 
 | 477 |  | 
 
 
 
 
 | 478 | #endif // _GLIBCXX_TR1_GAMMA_TCC | 
 
 
 
 
 | 479 |  |