| 1 |
// Special functions -*- C++ -*- |
| 2 |
|
| 3 |
// Copyright (C) 2006-2021 Free Software Foundation, Inc. |
| 4 |
// |
| 5 |
// This file is part of the GNU ISO C++ Library. This library is free |
| 6 |
// software; you can redistribute it and/or modify it under the |
| 7 |
// terms of the GNU General Public License as published by the |
| 8 |
// Free Software Foundation; either version 3, or (at your option) |
| 9 |
// any later version. |
| 10 |
// |
| 11 |
// This library is distributed in the hope that it will be useful, |
| 12 |
// but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 13 |
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 14 |
// GNU General Public License for more details. |
| 15 |
// |
| 16 |
// Under Section 7 of GPL version 3, you are granted additional |
| 17 |
// permissions described in the GCC Runtime Library Exception, version |
| 18 |
// 3.1, as published by the Free Software Foundation. |
| 19 |
|
| 20 |
// You should have received a copy of the GNU General Public License and |
| 21 |
// a copy of the GCC Runtime Library Exception along with this program; |
| 22 |
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see |
| 23 |
// <http://www.gnu.org/licenses/>. |
| 24 |
|
| 25 |
/** @file tr1/ell_integral.tcc |
| 26 |
* This is an internal header file, included by other library headers. |
| 27 |
* Do not attempt to use it directly. @headername{tr1/cmath} |
| 28 |
*/ |
| 29 |
|
| 30 |
// |
| 31 |
// ISO C++ 14882 TR1: 5.2 Special functions |
| 32 |
// |
| 33 |
|
| 34 |
// Written by Edward Smith-Rowland based on: |
| 35 |
// (1) B. C. Carlson Numer. Math. 33, 1 (1979) |
| 36 |
// (2) B. C. Carlson, Special Functions of Applied Mathematics (1977) |
| 37 |
// (3) The Gnu Scientific Library, http://www.gnu.org/software/gsl |
| 38 |
// (4) Numerical Recipes in C, 2nd ed, by W. H. Press, S. A. Teukolsky, |
| 39 |
// W. T. Vetterling, B. P. Flannery, Cambridge University Press |
| 40 |
// (1992), pp. 261-269 |
| 41 |
|
| 42 |
#ifndef _GLIBCXX_TR1_ELL_INTEGRAL_TCC |
| 43 |
#define _GLIBCXX_TR1_ELL_INTEGRAL_TCC 1 |
| 44 |
|
| 45 |
namespace std _GLIBCXX_VISIBILITY(default) |
| 46 |
{ |
| 47 |
_GLIBCXX_BEGIN_NAMESPACE_VERSION |
| 48 |
|
| 49 |
#if _GLIBCXX_USE_STD_SPEC_FUNCS |
| 50 |
#elif defined(_GLIBCXX_TR1_CMATH) |
| 51 |
namespace tr1 |
| 52 |
{ |
| 53 |
#else |
| 54 |
# error do not include this header directly, use <cmath> or <tr1/cmath> |
| 55 |
#endif |
| 56 |
// [5.2] Special functions |
| 57 |
|
| 58 |
// Implementation-space details. |
| 59 |
namespace __detail |
| 60 |
{ |
| 61 |
/** |
| 62 |
* @brief Return the Carlson elliptic function @f$ R_F(x,y,z) @f$ |
| 63 |
* of the first kind. |
| 64 |
* |
| 65 |
* The Carlson elliptic function of the first kind is defined by: |
| 66 |
* @f[ |
| 67 |
* R_F(x,y,z) = \frac{1}{2} \int_0^\infty |
| 68 |
* \frac{dt}{(t + x)^{1/2}(t + y)^{1/2}(t + z)^{1/2}} |
| 69 |
* @f] |
| 70 |
* |
| 71 |
* @param __x The first of three symmetric arguments. |
| 72 |
* @param __y The second of three symmetric arguments. |
| 73 |
* @param __z The third of three symmetric arguments. |
| 74 |
* @return The Carlson elliptic function of the first kind. |
| 75 |
*/ |
| 76 |
template<typename _Tp> |
| 77 |
_Tp |
| 78 |
__ellint_rf(_Tp __x, _Tp __y, _Tp __z) |
| 79 |
{ |
| 80 |
const _Tp __min = std::numeric_limits<_Tp>::min(); |
| 81 |
const _Tp __lolim = _Tp(5) * __min; |
| 82 |
|
| 83 |
if (__x < _Tp(0) || __y < _Tp(0) || __z < _Tp(0)) |
| 84 |
std::__throw_domain_error(__N("Argument less than zero " |
| 85 |
"in __ellint_rf.")); |
| 86 |
else if (__x + __y < __lolim || __x + __z < __lolim |
| 87 |
|| __y + __z < __lolim) |
| 88 |
std::__throw_domain_error(__N("Argument too small in __ellint_rf")); |
| 89 |
else |
| 90 |
{ |
| 91 |
const _Tp __c0 = _Tp(1) / _Tp(4); |
| 92 |
const _Tp __c1 = _Tp(1) / _Tp(24); |
| 93 |
const _Tp __c2 = _Tp(1) / _Tp(10); |
| 94 |
const _Tp __c3 = _Tp(3) / _Tp(44); |
| 95 |
const _Tp __c4 = _Tp(1) / _Tp(14); |
| 96 |
|
| 97 |
_Tp __xn = __x; |
| 98 |
_Tp __yn = __y; |
| 99 |
_Tp __zn = __z; |
| 100 |
|
| 101 |
const _Tp __eps = std::numeric_limits<_Tp>::epsilon(); |
| 102 |
const _Tp __errtol = std::pow(__eps, _Tp(1) / _Tp(6)); |
| 103 |
_Tp __mu; |
| 104 |
_Tp __xndev, __yndev, __zndev; |
| 105 |
|
| 106 |
const unsigned int __max_iter = 100; |
| 107 |
for (unsigned int __iter = 0; __iter < __max_iter; ++__iter) |
| 108 |
{ |
| 109 |
__mu = (__xn + __yn + __zn) / _Tp(3); |
| 110 |
__xndev = 2 - (__mu + __xn) / __mu; |
| 111 |
__yndev = 2 - (__mu + __yn) / __mu; |
| 112 |
__zndev = 2 - (__mu + __zn) / __mu; |
| 113 |
_Tp __epsilon = std::max(std::abs(__xndev), std::abs(__yndev)); |
| 114 |
__epsilon = std::max(__epsilon, std::abs(__zndev)); |
| 115 |
if (__epsilon < __errtol) |
| 116 |
break; |
| 117 |
const _Tp __xnroot = std::sqrt(__xn); |
| 118 |
const _Tp __ynroot = std::sqrt(__yn); |
| 119 |
const _Tp __znroot = std::sqrt(__zn); |
| 120 |
const _Tp __lambda = __xnroot * (__ynroot + __znroot) |
| 121 |
+ __ynroot * __znroot; |
| 122 |
__xn = __c0 * (__xn + __lambda); |
| 123 |
__yn = __c0 * (__yn + __lambda); |
| 124 |
__zn = __c0 * (__zn + __lambda); |
| 125 |
} |
| 126 |
|
| 127 |
const _Tp __e2 = __xndev * __yndev - __zndev * __zndev; |
| 128 |
const _Tp __e3 = __xndev * __yndev * __zndev; |
| 129 |
const _Tp __s = _Tp(1) + (__c1 * __e2 - __c2 - __c3 * __e3) * __e2 |
| 130 |
+ __c4 * __e3; |
| 131 |
|
| 132 |
return __s / std::sqrt(__mu); |
| 133 |
} |
| 134 |
} |
| 135 |
|
| 136 |
|
| 137 |
/** |
| 138 |
* @brief Return the complete elliptic integral of the first kind |
| 139 |
* @f$ K(k) @f$ by series expansion. |
| 140 |
* |
| 141 |
* The complete elliptic integral of the first kind is defined as |
| 142 |
* @f[ |
| 143 |
* K(k) = F(k,\pi/2) = \int_0^{\pi/2}\frac{d\theta} |
| 144 |
* {\sqrt{1 - k^2sin^2\theta}} |
| 145 |
* @f] |
| 146 |
* |
| 147 |
* This routine is not bad as long as |k| is somewhat smaller than 1 |
| 148 |
* but is not is good as the Carlson elliptic integral formulation. |
| 149 |
* |
| 150 |
* @param __k The argument of the complete elliptic function. |
| 151 |
* @return The complete elliptic function of the first kind. |
| 152 |
*/ |
| 153 |
template<typename _Tp> |
| 154 |
_Tp |
| 155 |
__comp_ellint_1_series(_Tp __k) |
| 156 |
{ |
| 157 |
|
| 158 |
const _Tp __kk = __k * __k; |
| 159 |
|
| 160 |
_Tp __term = __kk / _Tp(4); |
| 161 |
_Tp __sum = _Tp(1) + __term; |
| 162 |
|
| 163 |
const unsigned int __max_iter = 1000; |
| 164 |
for (unsigned int __i = 2; __i < __max_iter; ++__i) |
| 165 |
{ |
| 166 |
__term *= (2 * __i - 1) * __kk / (2 * __i); |
| 167 |
if (__term < std::numeric_limits<_Tp>::epsilon()) |
| 168 |
break; |
| 169 |
__sum += __term; |
| 170 |
} |
| 171 |
|
| 172 |
return __numeric_constants<_Tp>::__pi_2() * __sum; |
| 173 |
} |
| 174 |
|
| 175 |
|
| 176 |
/** |
| 177 |
* @brief Return the complete elliptic integral of the first kind |
| 178 |
* @f$ K(k) @f$ using the Carlson formulation. |
| 179 |
* |
| 180 |
* The complete elliptic integral of the first kind is defined as |
| 181 |
* @f[ |
| 182 |
* K(k) = F(k,\pi/2) = \int_0^{\pi/2}\frac{d\theta} |
| 183 |
* {\sqrt{1 - k^2 sin^2\theta}} |
| 184 |
* @f] |
| 185 |
* where @f$ F(k,\phi) @f$ is the incomplete elliptic integral of the |
| 186 |
* first kind. |
| 187 |
* |
| 188 |
* @param __k The argument of the complete elliptic function. |
| 189 |
* @return The complete elliptic function of the first kind. |
| 190 |
*/ |
| 191 |
template<typename _Tp> |
| 192 |
_Tp |
| 193 |
__comp_ellint_1(_Tp __k) |
| 194 |
{ |
| 195 |
|
| 196 |
if (__isnan(__k)) |
| 197 |
return std::numeric_limits<_Tp>::quiet_NaN(); |
| 198 |
else if (std::abs(__k) >= _Tp(1)) |
| 199 |
return std::numeric_limits<_Tp>::quiet_NaN(); |
| 200 |
else |
| 201 |
return __ellint_rf(_Tp(0), _Tp(1) - __k * __k, _Tp(1)); |
| 202 |
} |
| 203 |
|
| 204 |
|
| 205 |
/** |
| 206 |
* @brief Return the incomplete elliptic integral of the first kind |
| 207 |
* @f$ F(k,\phi) @f$ using the Carlson formulation. |
| 208 |
* |
| 209 |
* The incomplete elliptic integral of the first kind is defined as |
| 210 |
* @f[ |
| 211 |
* F(k,\phi) = \int_0^{\phi}\frac{d\theta} |
| 212 |
* {\sqrt{1 - k^2 sin^2\theta}} |
| 213 |
* @f] |
| 214 |
* |
| 215 |
* @param __k The argument of the elliptic function. |
| 216 |
* @param __phi The integral limit argument of the elliptic function. |
| 217 |
* @return The elliptic function of the first kind. |
| 218 |
*/ |
| 219 |
template<typename _Tp> |
| 220 |
_Tp |
| 221 |
__ellint_1(_Tp __k, _Tp __phi) |
| 222 |
{ |
| 223 |
|
| 224 |
if (__isnan(__k) || __isnan(__phi)) |
| 225 |
return std::numeric_limits<_Tp>::quiet_NaN(); |
| 226 |
else if (std::abs(__k) > _Tp(1)) |
| 227 |
std::__throw_domain_error(__N("Bad argument in __ellint_1.")); |
| 228 |
else |
| 229 |
{ |
| 230 |
// Reduce phi to -pi/2 < phi < +pi/2. |
| 231 |
const int __n = std::floor(__phi / __numeric_constants<_Tp>::__pi() |
| 232 |
+ _Tp(0.5L)); |
| 233 |
const _Tp __phi_red = __phi |
| 234 |
- __n * __numeric_constants<_Tp>::__pi(); |
| 235 |
|
| 236 |
const _Tp __s = std::sin(__phi_red); |
| 237 |
const _Tp __c = std::cos(__phi_red); |
| 238 |
|
| 239 |
const _Tp __F = __s |
| 240 |
* __ellint_rf(__c * __c, |
| 241 |
_Tp(1) - __k * __k * __s * __s, _Tp(1)); |
| 242 |
|
| 243 |
if (__n == 0) |
| 244 |
return __F; |
| 245 |
else |
| 246 |
return __F + _Tp(2) * __n * __comp_ellint_1(__k); |
| 247 |
} |
| 248 |
} |
| 249 |
|
| 250 |
|
| 251 |
/** |
| 252 |
* @brief Return the complete elliptic integral of the second kind |
| 253 |
* @f$ E(k) @f$ by series expansion. |
| 254 |
* |
| 255 |
* The complete elliptic integral of the second kind is defined as |
| 256 |
* @f[ |
| 257 |
* E(k,\pi/2) = \int_0^{\pi/2}\sqrt{1 - k^2 sin^2\theta} |
| 258 |
* @f] |
| 259 |
* |
| 260 |
* This routine is not bad as long as |k| is somewhat smaller than 1 |
| 261 |
* but is not is good as the Carlson elliptic integral formulation. |
| 262 |
* |
| 263 |
* @param __k The argument of the complete elliptic function. |
| 264 |
* @return The complete elliptic function of the second kind. |
| 265 |
*/ |
| 266 |
template<typename _Tp> |
| 267 |
_Tp |
| 268 |
__comp_ellint_2_series(_Tp __k) |
| 269 |
{ |
| 270 |
|
| 271 |
const _Tp __kk = __k * __k; |
| 272 |
|
| 273 |
_Tp __term = __kk; |
| 274 |
_Tp __sum = __term; |
| 275 |
|
| 276 |
const unsigned int __max_iter = 1000; |
| 277 |
for (unsigned int __i = 2; __i < __max_iter; ++__i) |
| 278 |
{ |
| 279 |
const _Tp __i2m = 2 * __i - 1; |
| 280 |
const _Tp __i2 = 2 * __i; |
| 281 |
__term *= __i2m * __i2m * __kk / (__i2 * __i2); |
| 282 |
if (__term < std::numeric_limits<_Tp>::epsilon()) |
| 283 |
break; |
| 284 |
__sum += __term / __i2m; |
| 285 |
} |
| 286 |
|
| 287 |
return __numeric_constants<_Tp>::__pi_2() * (_Tp(1) - __sum); |
| 288 |
} |
| 289 |
|
| 290 |
|
| 291 |
/** |
| 292 |
* @brief Return the Carlson elliptic function of the second kind |
| 293 |
* @f$ R_D(x,y,z) = R_J(x,y,z,z) @f$ where |
| 294 |
* @f$ R_J(x,y,z,p) @f$ is the Carlson elliptic function |
| 295 |
* of the third kind. |
| 296 |
* |
| 297 |
* The Carlson elliptic function of the second kind is defined by: |
| 298 |
* @f[ |
| 299 |
* R_D(x,y,z) = \frac{3}{2} \int_0^\infty |
| 300 |
* \frac{dt}{(t + x)^{1/2}(t + y)^{1/2}(t + z)^{3/2}} |
| 301 |
* @f] |
| 302 |
* |
| 303 |
* Based on Carlson's algorithms: |
| 304 |
* - B. C. Carlson Numer. Math. 33, 1 (1979) |
| 305 |
* - B. C. Carlson, Special Functions of Applied Mathematics (1977) |
| 306 |
* - Numerical Recipes in C, 2nd ed, pp. 261-269, |
| 307 |
* by Press, Teukolsky, Vetterling, Flannery (1992) |
| 308 |
* |
| 309 |
* @param __x The first of two symmetric arguments. |
| 310 |
* @param __y The second of two symmetric arguments. |
| 311 |
* @param __z The third argument. |
| 312 |
* @return The Carlson elliptic function of the second kind. |
| 313 |
*/ |
| 314 |
template<typename _Tp> |
| 315 |
_Tp |
| 316 |
__ellint_rd(_Tp __x, _Tp __y, _Tp __z) |
| 317 |
{ |
| 318 |
const _Tp __eps = std::numeric_limits<_Tp>::epsilon(); |
| 319 |
const _Tp __errtol = std::pow(__eps / _Tp(8), _Tp(1) / _Tp(6)); |
| 320 |
const _Tp __max = std::numeric_limits<_Tp>::max(); |
| 321 |
const _Tp __lolim = _Tp(2) / std::pow(__max, _Tp(2) / _Tp(3)); |
| 322 |
|
| 323 |
if (__x < _Tp(0) || __y < _Tp(0)) |
| 324 |
std::__throw_domain_error(__N("Argument less than zero " |
| 325 |
"in __ellint_rd.")); |
| 326 |
else if (__x + __y < __lolim || __z < __lolim) |
| 327 |
std::__throw_domain_error(__N("Argument too small " |
| 328 |
"in __ellint_rd.")); |
| 329 |
else |
| 330 |
{ |
| 331 |
const _Tp __c0 = _Tp(1) / _Tp(4); |
| 332 |
const _Tp __c1 = _Tp(3) / _Tp(14); |
| 333 |
const _Tp __c2 = _Tp(1) / _Tp(6); |
| 334 |
const _Tp __c3 = _Tp(9) / _Tp(22); |
| 335 |
const _Tp __c4 = _Tp(3) / _Tp(26); |
| 336 |
|
| 337 |
_Tp __xn = __x; |
| 338 |
_Tp __yn = __y; |
| 339 |
_Tp __zn = __z; |
| 340 |
_Tp __sigma = _Tp(0); |
| 341 |
_Tp __power4 = _Tp(1); |
| 342 |
|
| 343 |
_Tp __mu; |
| 344 |
_Tp __xndev, __yndev, __zndev; |
| 345 |
|
| 346 |
const unsigned int __max_iter = 100; |
| 347 |
for (unsigned int __iter = 0; __iter < __max_iter; ++__iter) |
| 348 |
{ |
| 349 |
__mu = (__xn + __yn + _Tp(3) * __zn) / _Tp(5); |
| 350 |
__xndev = (__mu - __xn) / __mu; |
| 351 |
__yndev = (__mu - __yn) / __mu; |
| 352 |
__zndev = (__mu - __zn) / __mu; |
| 353 |
_Tp __epsilon = std::max(std::abs(__xndev), std::abs(__yndev)); |
| 354 |
__epsilon = std::max(__epsilon, std::abs(__zndev)); |
| 355 |
if (__epsilon < __errtol) |
| 356 |
break; |
| 357 |
_Tp __xnroot = std::sqrt(__xn); |
| 358 |
_Tp __ynroot = std::sqrt(__yn); |
| 359 |
_Tp __znroot = std::sqrt(__zn); |
| 360 |
_Tp __lambda = __xnroot * (__ynroot + __znroot) |
| 361 |
+ __ynroot * __znroot; |
| 362 |
__sigma += __power4 / (__znroot * (__zn + __lambda)); |
| 363 |
__power4 *= __c0; |
| 364 |
__xn = __c0 * (__xn + __lambda); |
| 365 |
__yn = __c0 * (__yn + __lambda); |
| 366 |
__zn = __c0 * (__zn + __lambda); |
| 367 |
} |
| 368 |
|
| 369 |
_Tp __ea = __xndev * __yndev; |
| 370 |
_Tp __eb = __zndev * __zndev; |
| 371 |
_Tp __ec = __ea - __eb; |
| 372 |
_Tp __ed = __ea - _Tp(6) * __eb; |
| 373 |
_Tp __ef = __ed + __ec + __ec; |
| 374 |
_Tp __s1 = __ed * (-__c1 + __c3 * __ed |
| 375 |
/ _Tp(3) - _Tp(3) * __c4 * __zndev * __ef |
| 376 |
/ _Tp(2)); |
| 377 |
_Tp __s2 = __zndev |
| 378 |
* (__c2 * __ef |
| 379 |
+ __zndev * (-__c3 * __ec - __zndev * __c4 - __ea)); |
| 380 |
|
| 381 |
return _Tp(3) * __sigma + __power4 * (_Tp(1) + __s1 + __s2) |
| 382 |
/ (__mu * std::sqrt(__mu)); |
| 383 |
} |
| 384 |
} |
| 385 |
|
| 386 |
|
| 387 |
/** |
| 388 |
* @brief Return the complete elliptic integral of the second kind |
| 389 |
* @f$ E(k) @f$ using the Carlson formulation. |
| 390 |
* |
| 391 |
* The complete elliptic integral of the second kind is defined as |
| 392 |
* @f[ |
| 393 |
* E(k,\pi/2) = \int_0^{\pi/2}\sqrt{1 - k^2 sin^2\theta} |
| 394 |
* @f] |
| 395 |
* |
| 396 |
* @param __k The argument of the complete elliptic function. |
| 397 |
* @return The complete elliptic function of the second kind. |
| 398 |
*/ |
| 399 |
template<typename _Tp> |
| 400 |
_Tp |
| 401 |
__comp_ellint_2(_Tp __k) |
| 402 |
{ |
| 403 |
|
| 404 |
if (__isnan(__k)) |
| 405 |
return std::numeric_limits<_Tp>::quiet_NaN(); |
| 406 |
else if (std::abs(__k) == 1) |
| 407 |
return _Tp(1); |
| 408 |
else if (std::abs(__k) > _Tp(1)) |
| 409 |
std::__throw_domain_error(__N("Bad argument in __comp_ellint_2.")); |
| 410 |
else |
| 411 |
{ |
| 412 |
const _Tp __kk = __k * __k; |
| 413 |
|
| 414 |
return __ellint_rf(_Tp(0), _Tp(1) - __kk, _Tp(1)) |
| 415 |
- __kk * __ellint_rd(_Tp(0), _Tp(1) - __kk, _Tp(1)) / _Tp(3); |
| 416 |
} |
| 417 |
} |
| 418 |
|
| 419 |
|
| 420 |
/** |
| 421 |
* @brief Return the incomplete elliptic integral of the second kind |
| 422 |
* @f$ E(k,\phi) @f$ using the Carlson formulation. |
| 423 |
* |
| 424 |
* The incomplete elliptic integral of the second kind is defined as |
| 425 |
* @f[ |
| 426 |
* E(k,\phi) = \int_0^{\phi} \sqrt{1 - k^2 sin^2\theta} |
| 427 |
* @f] |
| 428 |
* |
| 429 |
* @param __k The argument of the elliptic function. |
| 430 |
* @param __phi The integral limit argument of the elliptic function. |
| 431 |
* @return The elliptic function of the second kind. |
| 432 |
*/ |
| 433 |
template<typename _Tp> |
| 434 |
_Tp |
| 435 |
__ellint_2(_Tp __k, _Tp __phi) |
| 436 |
{ |
| 437 |
|
| 438 |
if (__isnan(__k) || __isnan(__phi)) |
| 439 |
return std::numeric_limits<_Tp>::quiet_NaN(); |
| 440 |
else if (std::abs(__k) > _Tp(1)) |
| 441 |
std::__throw_domain_error(__N("Bad argument in __ellint_2.")); |
| 442 |
else |
| 443 |
{ |
| 444 |
// Reduce phi to -pi/2 < phi < +pi/2. |
| 445 |
const int __n = std::floor(__phi / __numeric_constants<_Tp>::__pi() |
| 446 |
+ _Tp(0.5L)); |
| 447 |
const _Tp __phi_red = __phi |
| 448 |
- __n * __numeric_constants<_Tp>::__pi(); |
| 449 |
|
| 450 |
const _Tp __kk = __k * __k; |
| 451 |
const _Tp __s = std::sin(__phi_red); |
| 452 |
const _Tp __ss = __s * __s; |
| 453 |
const _Tp __sss = __ss * __s; |
| 454 |
const _Tp __c = std::cos(__phi_red); |
| 455 |
const _Tp __cc = __c * __c; |
| 456 |
|
| 457 |
const _Tp __E = __s |
| 458 |
* __ellint_rf(__cc, _Tp(1) - __kk * __ss, _Tp(1)) |
| 459 |
- __kk * __sss |
| 460 |
* __ellint_rd(__cc, _Tp(1) - __kk * __ss, _Tp(1)) |
| 461 |
/ _Tp(3); |
| 462 |
|
| 463 |
if (__n == 0) |
| 464 |
return __E; |
| 465 |
else |
| 466 |
return __E + _Tp(2) * __n * __comp_ellint_2(__k); |
| 467 |
} |
| 468 |
} |
| 469 |
|
| 470 |
|
| 471 |
/** |
| 472 |
* @brief Return the Carlson elliptic function |
| 473 |
* @f$ R_C(x,y) = R_F(x,y,y) @f$ where @f$ R_F(x,y,z) @f$ |
| 474 |
* is the Carlson elliptic function of the first kind. |
| 475 |
* |
| 476 |
* The Carlson elliptic function is defined by: |
| 477 |
* @f[ |
| 478 |
* R_C(x,y) = \frac{1}{2} \int_0^\infty |
| 479 |
* \frac{dt}{(t + x)^{1/2}(t + y)} |
| 480 |
* @f] |
| 481 |
* |
| 482 |
* Based on Carlson's algorithms: |
| 483 |
* - B. C. Carlson Numer. Math. 33, 1 (1979) |
| 484 |
* - B. C. Carlson, Special Functions of Applied Mathematics (1977) |
| 485 |
* - Numerical Recipes in C, 2nd ed, pp. 261-269, |
| 486 |
* by Press, Teukolsky, Vetterling, Flannery (1992) |
| 487 |
* |
| 488 |
* @param __x The first argument. |
| 489 |
* @param __y The second argument. |
| 490 |
* @return The Carlson elliptic function. |
| 491 |
*/ |
| 492 |
template<typename _Tp> |
| 493 |
_Tp |
| 494 |
__ellint_rc(_Tp __x, _Tp __y) |
| 495 |
{ |
| 496 |
const _Tp __min = std::numeric_limits<_Tp>::min(); |
| 497 |
const _Tp __lolim = _Tp(5) * __min; |
| 498 |
|
| 499 |
if (__x < _Tp(0) || __y < _Tp(0) || __x + __y < __lolim) |
| 500 |
std::__throw_domain_error(__N("Argument less than zero " |
| 501 |
"in __ellint_rc.")); |
| 502 |
else |
| 503 |
{ |
| 504 |
const _Tp __c0 = _Tp(1) / _Tp(4); |
| 505 |
const _Tp __c1 = _Tp(1) / _Tp(7); |
| 506 |
const _Tp __c2 = _Tp(9) / _Tp(22); |
| 507 |
const _Tp __c3 = _Tp(3) / _Tp(10); |
| 508 |
const _Tp __c4 = _Tp(3) / _Tp(8); |
| 509 |
|
| 510 |
_Tp __xn = __x; |
| 511 |
_Tp __yn = __y; |
| 512 |
|
| 513 |
const _Tp __eps = std::numeric_limits<_Tp>::epsilon(); |
| 514 |
const _Tp __errtol = std::pow(__eps / _Tp(30), _Tp(1) / _Tp(6)); |
| 515 |
_Tp __mu; |
| 516 |
_Tp __sn; |
| 517 |
|
| 518 |
const unsigned int __max_iter = 100; |
| 519 |
for (unsigned int __iter = 0; __iter < __max_iter; ++__iter) |
| 520 |
{ |
| 521 |
__mu = (__xn + _Tp(2) * __yn) / _Tp(3); |
| 522 |
__sn = (__yn + __mu) / __mu - _Tp(2); |
| 523 |
if (std::abs(__sn) < __errtol) |
| 524 |
break; |
| 525 |
const _Tp __lambda = _Tp(2) * std::sqrt(__xn) * std::sqrt(__yn) |
| 526 |
+ __yn; |
| 527 |
__xn = __c0 * (__xn + __lambda); |
| 528 |
__yn = __c0 * (__yn + __lambda); |
| 529 |
} |
| 530 |
|
| 531 |
_Tp __s = __sn * __sn |
| 532 |
* (__c3 + __sn*(__c1 + __sn * (__c4 + __sn * __c2))); |
| 533 |
|
| 534 |
return (_Tp(1) + __s) / std::sqrt(__mu); |
| 535 |
} |
| 536 |
} |
| 537 |
|
| 538 |
|
| 539 |
/** |
| 540 |
* @brief Return the Carlson elliptic function @f$ R_J(x,y,z,p) @f$ |
| 541 |
* of the third kind. |
| 542 |
* |
| 543 |
* The Carlson elliptic function of the third kind is defined by: |
| 544 |
* @f[ |
| 545 |
* R_J(x,y,z,p) = \frac{3}{2} \int_0^\infty |
| 546 |
* \frac{dt}{(t + x)^{1/2}(t + y)^{1/2}(t + z)^{1/2}(t + p)} |
| 547 |
* @f] |
| 548 |
* |
| 549 |
* Based on Carlson's algorithms: |
| 550 |
* - B. C. Carlson Numer. Math. 33, 1 (1979) |
| 551 |
* - B. C. Carlson, Special Functions of Applied Mathematics (1977) |
| 552 |
* - Numerical Recipes in C, 2nd ed, pp. 261-269, |
| 553 |
* by Press, Teukolsky, Vetterling, Flannery (1992) |
| 554 |
* |
| 555 |
* @param __x The first of three symmetric arguments. |
| 556 |
* @param __y The second of three symmetric arguments. |
| 557 |
* @param __z The third of three symmetric arguments. |
| 558 |
* @param __p The fourth argument. |
| 559 |
* @return The Carlson elliptic function of the fourth kind. |
| 560 |
*/ |
| 561 |
template<typename _Tp> |
| 562 |
_Tp |
| 563 |
__ellint_rj(_Tp __x, _Tp __y, _Tp __z, _Tp __p) |
| 564 |
{ |
| 565 |
const _Tp __min = std::numeric_limits<_Tp>::min(); |
| 566 |
const _Tp __lolim = std::pow(_Tp(5) * __min, _Tp(1)/_Tp(3)); |
| 567 |
|
| 568 |
if (__x < _Tp(0) || __y < _Tp(0) || __z < _Tp(0)) |
| 569 |
std::__throw_domain_error(__N("Argument less than zero " |
| 570 |
"in __ellint_rj.")); |
| 571 |
else if (__x + __y < __lolim || __x + __z < __lolim |
| 572 |
|| __y + __z < __lolim || __p < __lolim) |
| 573 |
std::__throw_domain_error(__N("Argument too small " |
| 574 |
"in __ellint_rj")); |
| 575 |
else |
| 576 |
{ |
| 577 |
const _Tp __c0 = _Tp(1) / _Tp(4); |
| 578 |
const _Tp __c1 = _Tp(3) / _Tp(14); |
| 579 |
const _Tp __c2 = _Tp(1) / _Tp(3); |
| 580 |
const _Tp __c3 = _Tp(3) / _Tp(22); |
| 581 |
const _Tp __c4 = _Tp(3) / _Tp(26); |
| 582 |
|
| 583 |
_Tp __xn = __x; |
| 584 |
_Tp __yn = __y; |
| 585 |
_Tp __zn = __z; |
| 586 |
_Tp __pn = __p; |
| 587 |
_Tp __sigma = _Tp(0); |
| 588 |
_Tp __power4 = _Tp(1); |
| 589 |
|
| 590 |
const _Tp __eps = std::numeric_limits<_Tp>::epsilon(); |
| 591 |
const _Tp __errtol = std::pow(__eps / _Tp(8), _Tp(1) / _Tp(6)); |
| 592 |
|
| 593 |
_Tp __mu; |
| 594 |
_Tp __xndev, __yndev, __zndev, __pndev; |
| 595 |
|
| 596 |
const unsigned int __max_iter = 100; |
| 597 |
for (unsigned int __iter = 0; __iter < __max_iter; ++__iter) |
| 598 |
{ |
| 599 |
__mu = (__xn + __yn + __zn + _Tp(2) * __pn) / _Tp(5); |
| 600 |
__xndev = (__mu - __xn) / __mu; |
| 601 |
__yndev = (__mu - __yn) / __mu; |
| 602 |
__zndev = (__mu - __zn) / __mu; |
| 603 |
__pndev = (__mu - __pn) / __mu; |
| 604 |
_Tp __epsilon = std::max(std::abs(__xndev), std::abs(__yndev)); |
| 605 |
__epsilon = std::max(__epsilon, std::abs(__zndev)); |
| 606 |
__epsilon = std::max(__epsilon, std::abs(__pndev)); |
| 607 |
if (__epsilon < __errtol) |
| 608 |
break; |
| 609 |
const _Tp __xnroot = std::sqrt(__xn); |
| 610 |
const _Tp __ynroot = std::sqrt(__yn); |
| 611 |
const _Tp __znroot = std::sqrt(__zn); |
| 612 |
const _Tp __lambda = __xnroot * (__ynroot + __znroot) |
| 613 |
+ __ynroot * __znroot; |
| 614 |
const _Tp __alpha1 = __pn * (__xnroot + __ynroot + __znroot) |
| 615 |
+ __xnroot * __ynroot * __znroot; |
| 616 |
const _Tp __alpha2 = __alpha1 * __alpha1; |
| 617 |
const _Tp __beta = __pn * (__pn + __lambda) |
| 618 |
* (__pn + __lambda); |
| 619 |
__sigma += __power4 * __ellint_rc(__alpha2, __beta); |
| 620 |
__power4 *= __c0; |
| 621 |
__xn = __c0 * (__xn + __lambda); |
| 622 |
__yn = __c0 * (__yn + __lambda); |
| 623 |
__zn = __c0 * (__zn + __lambda); |
| 624 |
__pn = __c0 * (__pn + __lambda); |
| 625 |
} |
| 626 |
|
| 627 |
_Tp __ea = __xndev * (__yndev + __zndev) + __yndev * __zndev; |
| 628 |
_Tp __eb = __xndev * __yndev * __zndev; |
| 629 |
_Tp __ec = __pndev * __pndev; |
| 630 |
_Tp __e2 = __ea - _Tp(3) * __ec; |
| 631 |
_Tp __e3 = __eb + _Tp(2) * __pndev * (__ea - __ec); |
| 632 |
_Tp __s1 = _Tp(1) + __e2 * (-__c1 + _Tp(3) * __c3 * __e2 / _Tp(4) |
| 633 |
- _Tp(3) * __c4 * __e3 / _Tp(2)); |
| 634 |
_Tp __s2 = __eb * (__c2 / _Tp(2) |
| 635 |
+ __pndev * (-__c3 - __c3 + __pndev * __c4)); |
| 636 |
_Tp __s3 = __pndev * __ea * (__c2 - __pndev * __c3) |
| 637 |
- __c2 * __pndev * __ec; |
| 638 |
|
| 639 |
return _Tp(3) * __sigma + __power4 * (__s1 + __s2 + __s3) |
| 640 |
/ (__mu * std::sqrt(__mu)); |
| 641 |
} |
| 642 |
} |
| 643 |
|
| 644 |
|
| 645 |
/** |
| 646 |
* @brief Return the complete elliptic integral of the third kind |
| 647 |
* @f$ \Pi(k,\nu) = \Pi(k,\nu,\pi/2) @f$ using the |
| 648 |
* Carlson formulation. |
| 649 |
* |
| 650 |
* The complete elliptic integral of the third kind is defined as |
| 651 |
* @f[ |
| 652 |
* \Pi(k,\nu) = \int_0^{\pi/2} |
| 653 |
* \frac{d\theta} |
| 654 |
* {(1 - \nu \sin^2\theta)\sqrt{1 - k^2 \sin^2\theta}} |
| 655 |
* @f] |
| 656 |
* |
| 657 |
* @param __k The argument of the elliptic function. |
| 658 |
* @param __nu The second argument of the elliptic function. |
| 659 |
* @return The complete elliptic function of the third kind. |
| 660 |
*/ |
| 661 |
template<typename _Tp> |
| 662 |
_Tp |
| 663 |
__comp_ellint_3(_Tp __k, _Tp __nu) |
| 664 |
{ |
| 665 |
|
| 666 |
if (__isnan(__k) || __isnan(__nu)) |
| 667 |
return std::numeric_limits<_Tp>::quiet_NaN(); |
| 668 |
else if (__nu == _Tp(1)) |
| 669 |
return std::numeric_limits<_Tp>::infinity(); |
| 670 |
else if (std::abs(__k) > _Tp(1)) |
| 671 |
std::__throw_domain_error(__N("Bad argument in __comp_ellint_3.")); |
| 672 |
else |
| 673 |
{ |
| 674 |
const _Tp __kk = __k * __k; |
| 675 |
|
| 676 |
return __ellint_rf(_Tp(0), _Tp(1) - __kk, _Tp(1)) |
| 677 |
+ __nu |
| 678 |
* __ellint_rj(_Tp(0), _Tp(1) - __kk, _Tp(1), _Tp(1) - __nu) |
| 679 |
/ _Tp(3); |
| 680 |
} |
| 681 |
} |
| 682 |
|
| 683 |
|
| 684 |
/** |
| 685 |
* @brief Return the incomplete elliptic integral of the third kind |
| 686 |
* @f$ \Pi(k,\nu,\phi) @f$ using the Carlson formulation. |
| 687 |
* |
| 688 |
* The incomplete elliptic integral of the third kind is defined as |
| 689 |
* @f[ |
| 690 |
* \Pi(k,\nu,\phi) = \int_0^{\phi} |
| 691 |
* \frac{d\theta} |
| 692 |
* {(1 - \nu \sin^2\theta) |
| 693 |
* \sqrt{1 - k^2 \sin^2\theta}} |
| 694 |
* @f] |
| 695 |
* |
| 696 |
* @param __k The argument of the elliptic function. |
| 697 |
* @param __nu The second argument of the elliptic function. |
| 698 |
* @param __phi The integral limit argument of the elliptic function. |
| 699 |
* @return The elliptic function of the third kind. |
| 700 |
*/ |
| 701 |
template<typename _Tp> |
| 702 |
_Tp |
| 703 |
__ellint_3(_Tp __k, _Tp __nu, _Tp __phi) |
| 704 |
{ |
| 705 |
|
| 706 |
if (__isnan(__k) || __isnan(__nu) || __isnan(__phi)) |
| 707 |
return std::numeric_limits<_Tp>::quiet_NaN(); |
| 708 |
else if (std::abs(__k) > _Tp(1)) |
| 709 |
std::__throw_domain_error(__N("Bad argument in __ellint_3.")); |
| 710 |
else |
| 711 |
{ |
| 712 |
// Reduce phi to -pi/2 < phi < +pi/2. |
| 713 |
const int __n = std::floor(__phi / __numeric_constants<_Tp>::__pi() |
| 714 |
+ _Tp(0.5L)); |
| 715 |
const _Tp __phi_red = __phi |
| 716 |
- __n * __numeric_constants<_Tp>::__pi(); |
| 717 |
|
| 718 |
const _Tp __kk = __k * __k; |
| 719 |
const _Tp __s = std::sin(__phi_red); |
| 720 |
const _Tp __ss = __s * __s; |
| 721 |
const _Tp __sss = __ss * __s; |
| 722 |
const _Tp __c = std::cos(__phi_red); |
| 723 |
const _Tp __cc = __c * __c; |
| 724 |
|
| 725 |
const _Tp __Pi = __s |
| 726 |
* __ellint_rf(__cc, _Tp(1) - __kk * __ss, _Tp(1)) |
| 727 |
+ __nu * __sss |
| 728 |
* __ellint_rj(__cc, _Tp(1) - __kk * __ss, _Tp(1), |
| 729 |
_Tp(1) - __nu * __ss) / _Tp(3); |
| 730 |
|
| 731 |
if (__n == 0) |
| 732 |
return __Pi; |
| 733 |
else |
| 734 |
return __Pi + _Tp(2) * __n * __comp_ellint_3(__k, __nu); |
| 735 |
} |
| 736 |
} |
| 737 |
} // namespace __detail |
| 738 |
#if ! _GLIBCXX_USE_STD_SPEC_FUNCS && defined(_GLIBCXX_TR1_CMATH) |
| 739 |
} // namespace tr1 |
| 740 |
#endif |
| 741 |
|
| 742 |
_GLIBCXX_END_NAMESPACE_VERSION |
| 743 |
} |
| 744 |
|
| 745 |
#endif // _GLIBCXX_TR1_ELL_INTEGRAL_TCC |
| 746 |
|