| 1 |
// Special functions -*- C++ -*- |
| 2 |
|
| 3 |
// Copyright (C) 2006-2021 Free Software Foundation, Inc. |
| 4 |
// |
| 5 |
// This file is part of the GNU ISO C++ Library. This library is free |
| 6 |
// software; you can redistribute it and/or modify it under the |
| 7 |
// terms of the GNU General Public License as published by the |
| 8 |
// Free Software Foundation; either version 3, or (at your option) |
| 9 |
// any later version. |
| 10 |
// |
| 11 |
// This library is distributed in the hope that it will be useful, |
| 12 |
// but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 13 |
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 14 |
// GNU General Public License for more details. |
| 15 |
// |
| 16 |
// Under Section 7 of GPL version 3, you are granted additional |
| 17 |
// permissions described in the GCC Runtime Library Exception, version |
| 18 |
// 3.1, as published by the Free Software Foundation. |
| 19 |
|
| 20 |
// You should have received a copy of the GNU General Public License and |
| 21 |
// a copy of the GCC Runtime Library Exception along with this program; |
| 22 |
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see |
| 23 |
// <http://www.gnu.org/licenses/>. |
| 24 |
|
| 25 |
/** @file tr1/beta_function.tcc |
| 26 |
* This is an internal header file, included by other library headers. |
| 27 |
* Do not attempt to use it directly. @headername{tr1/cmath} |
| 28 |
*/ |
| 29 |
|
| 30 |
// |
| 31 |
// ISO C++ 14882 TR1: 5.2 Special functions |
| 32 |
// |
| 33 |
|
| 34 |
// Written by Edward Smith-Rowland based on: |
| 35 |
// (1) Handbook of Mathematical Functions, |
| 36 |
// ed. Milton Abramowitz and Irene A. Stegun, |
| 37 |
// Dover Publications, |
| 38 |
// Section 6, pp. 253-266 |
| 39 |
// (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl |
| 40 |
// (3) Numerical Recipes in C, by W. H. Press, S. A. Teukolsky, |
| 41 |
// W. T. Vetterling, B. P. Flannery, Cambridge University Press (1992), |
| 42 |
// 2nd ed, pp. 213-216 |
| 43 |
// (4) Gamma, Exploring Euler's Constant, Julian Havil, |
| 44 |
// Princeton, 2003. |
| 45 |
|
| 46 |
#ifndef _GLIBCXX_TR1_BETA_FUNCTION_TCC |
| 47 |
#define _GLIBCXX_TR1_BETA_FUNCTION_TCC 1 |
| 48 |
|
| 49 |
namespace std _GLIBCXX_VISIBILITY(default) |
| 50 |
{ |
| 51 |
_GLIBCXX_BEGIN_NAMESPACE_VERSION |
| 52 |
|
| 53 |
#if _GLIBCXX_USE_STD_SPEC_FUNCS |
| 54 |
# define _GLIBCXX_MATH_NS ::std |
| 55 |
#elif defined(_GLIBCXX_TR1_CMATH) |
| 56 |
namespace tr1 |
| 57 |
{ |
| 58 |
# define _GLIBCXX_MATH_NS ::std::tr1 |
| 59 |
#else |
| 60 |
# error do not include this header directly, use <cmath> or <tr1/cmath> |
| 61 |
#endif |
| 62 |
// [5.2] Special functions |
| 63 |
|
| 64 |
// Implementation-space details. |
| 65 |
namespace __detail |
| 66 |
{ |
| 67 |
/** |
| 68 |
* @brief Return the beta function: \f$B(x,y)\f$. |
| 69 |
* |
| 70 |
* The beta function is defined by |
| 71 |
* @f[ |
| 72 |
* B(x,y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)} |
| 73 |
* @f] |
| 74 |
* |
| 75 |
* @param __x The first argument of the beta function. |
| 76 |
* @param __y The second argument of the beta function. |
| 77 |
* @return The beta function. |
| 78 |
*/ |
| 79 |
template<typename _Tp> |
| 80 |
_Tp |
| 81 |
__beta_gamma(_Tp __x, _Tp __y) |
| 82 |
{ |
| 83 |
|
| 84 |
_Tp __bet; |
| 85 |
#if _GLIBCXX_USE_C99_MATH_TR1 |
| 86 |
if (__x > __y) |
| 87 |
{ |
| 88 |
__bet = _GLIBCXX_MATH_NS::tgamma(__x) |
| 89 |
/ _GLIBCXX_MATH_NS::tgamma(__x + __y); |
| 90 |
__bet *= _GLIBCXX_MATH_NS::tgamma(__y); |
| 91 |
} |
| 92 |
else |
| 93 |
{ |
| 94 |
__bet = _GLIBCXX_MATH_NS::tgamma(__y) |
| 95 |
/ _GLIBCXX_MATH_NS::tgamma(__x + __y); |
| 96 |
__bet *= _GLIBCXX_MATH_NS::tgamma(__x); |
| 97 |
} |
| 98 |
#else |
| 99 |
if (__x > __y) |
| 100 |
{ |
| 101 |
__bet = __gamma(__x) / __gamma(__x + __y); |
| 102 |
__bet *= __gamma(__y); |
| 103 |
} |
| 104 |
else |
| 105 |
{ |
| 106 |
__bet = __gamma(__y) / __gamma(__x + __y); |
| 107 |
__bet *= __gamma(__x); |
| 108 |
} |
| 109 |
#endif |
| 110 |
|
| 111 |
return __bet; |
| 112 |
} |
| 113 |
|
| 114 |
/** |
| 115 |
* @brief Return the beta function \f$B(x,y)\f$ using |
| 116 |
* the log gamma functions. |
| 117 |
* |
| 118 |
* The beta function is defined by |
| 119 |
* @f[ |
| 120 |
* B(x,y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)} |
| 121 |
* @f] |
| 122 |
* |
| 123 |
* @param __x The first argument of the beta function. |
| 124 |
* @param __y The second argument of the beta function. |
| 125 |
* @return The beta function. |
| 126 |
*/ |
| 127 |
template<typename _Tp> |
| 128 |
_Tp |
| 129 |
__beta_lgamma(_Tp __x, _Tp __y) |
| 130 |
{ |
| 131 |
#if _GLIBCXX_USE_C99_MATH_TR1 |
| 132 |
_Tp __bet = _GLIBCXX_MATH_NS::lgamma(__x) |
| 133 |
+ _GLIBCXX_MATH_NS::lgamma(__y) |
| 134 |
- _GLIBCXX_MATH_NS::lgamma(__x + __y); |
| 135 |
#else |
| 136 |
_Tp __bet = __log_gamma(__x) |
| 137 |
+ __log_gamma(__y) |
| 138 |
- __log_gamma(__x + __y); |
| 139 |
#endif |
| 140 |
__bet = std::exp(__bet); |
| 141 |
return __bet; |
| 142 |
} |
| 143 |
|
| 144 |
|
| 145 |
/** |
| 146 |
* @brief Return the beta function \f$B(x,y)\f$ using |
| 147 |
* the product form. |
| 148 |
* |
| 149 |
* The beta function is defined by |
| 150 |
* @f[ |
| 151 |
* B(x,y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)} |
| 152 |
* @f] |
| 153 |
* |
| 154 |
* @param __x The first argument of the beta function. |
| 155 |
* @param __y The second argument of the beta function. |
| 156 |
* @return The beta function. |
| 157 |
*/ |
| 158 |
template<typename _Tp> |
| 159 |
_Tp |
| 160 |
__beta_product(_Tp __x, _Tp __y) |
| 161 |
{ |
| 162 |
|
| 163 |
_Tp __bet = (__x + __y) / (__x * __y); |
| 164 |
|
| 165 |
unsigned int __max_iter = 1000000; |
| 166 |
for (unsigned int __k = 1; __k < __max_iter; ++__k) |
| 167 |
{ |
| 168 |
_Tp __term = (_Tp(1) + (__x + __y) / __k) |
| 169 |
/ ((_Tp(1) + __x / __k) * (_Tp(1) + __y / __k)); |
| 170 |
__bet *= __term; |
| 171 |
} |
| 172 |
|
| 173 |
return __bet; |
| 174 |
} |
| 175 |
|
| 176 |
|
| 177 |
/** |
| 178 |
* @brief Return the beta function \f$ B(x,y) \f$. |
| 179 |
* |
| 180 |
* The beta function is defined by |
| 181 |
* @f[ |
| 182 |
* B(x,y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)} |
| 183 |
* @f] |
| 184 |
* |
| 185 |
* @param __x The first argument of the beta function. |
| 186 |
* @param __y The second argument of the beta function. |
| 187 |
* @return The beta function. |
| 188 |
*/ |
| 189 |
template<typename _Tp> |
| 190 |
inline _Tp |
| 191 |
__beta(_Tp __x, _Tp __y) |
| 192 |
{ |
| 193 |
if (__isnan(__x) || __isnan(__y)) |
| 194 |
return std::numeric_limits<_Tp>::quiet_NaN(); |
| 195 |
else |
| 196 |
return __beta_lgamma(__x, __y); |
| 197 |
} |
| 198 |
} // namespace __detail |
| 199 |
#undef _GLIBCXX_MATH_NS |
| 200 |
#if ! _GLIBCXX_USE_STD_SPEC_FUNCS && defined(_GLIBCXX_TR1_CMATH) |
| 201 |
} // namespace tr1 |
| 202 |
#endif |
| 203 |
|
| 204 |
_GLIBCXX_END_NAMESPACE_VERSION |
| 205 |
} |
| 206 |
|
| 207 |
#endif // _GLIBCXX_TR1_BETA_FUNCTION_TCC |