| 1 |
// Random number extensions -*- C++ -*- |
| 2 |
|
| 3 |
// Copyright (C) 2012-2021 Free Software Foundation, Inc. |
| 4 |
// |
| 5 |
// This file is part of the GNU ISO C++ Library. This library is free |
| 6 |
// software; you can redistribute it and/or modify it under the |
| 7 |
// terms of the GNU General Public License as published by the |
| 8 |
// Free Software Foundation; either version 3, or (at your option) |
| 9 |
// any later version. |
| 10 |
|
| 11 |
// This library is distributed in the hope that it will be useful, |
| 12 |
// but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 13 |
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 14 |
// GNU General Public License for more details. |
| 15 |
|
| 16 |
// Under Section 7 of GPL version 3, you are granted additional |
| 17 |
// permissions described in the GCC Runtime Library Exception, version |
| 18 |
// 3.1, as published by the Free Software Foundation. |
| 19 |
|
| 20 |
// You should have received a copy of the GNU General Public License and |
| 21 |
// a copy of the GCC Runtime Library Exception along with this program; |
| 22 |
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see |
| 23 |
// <http://www.gnu.org/licenses/>. |
| 24 |
|
| 25 |
/** @file ext/random |
| 26 |
* This file is a GNU extension to the Standard C++ Library. |
| 27 |
*/ |
| 28 |
|
| 29 |
#ifndef _EXT_RANDOM |
| 30 |
#define _EXT_RANDOM 1 |
| 31 |
|
| 32 |
#pragma GCC system_header |
| 33 |
|
| 34 |
#if __cplusplus < 201103L |
| 35 |
# include <bits/c++0x_warning.h> |
| 36 |
#else |
| 37 |
|
| 38 |
#include <random> |
| 39 |
#include <algorithm> |
| 40 |
#include <array> |
| 41 |
#include <ext/cmath> |
| 42 |
#ifdef __SSE2__ |
| 43 |
# include <emmintrin.h> |
| 44 |
#endif |
| 45 |
|
| 46 |
#if defined(_GLIBCXX_USE_C99_STDINT_TR1) && defined(UINT32_C) |
| 47 |
|
| 48 |
namespace __gnu_cxx _GLIBCXX_VISIBILITY(default) |
| 49 |
{ |
| 50 |
_GLIBCXX_BEGIN_NAMESPACE_VERSION |
| 51 |
|
| 52 |
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ |
| 53 |
|
| 54 |
/* Mersenne twister implementation optimized for vector operations. |
| 55 |
* |
| 56 |
* Reference: http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/SFMT/ |
| 57 |
*/ |
| 58 |
template<typename _UIntType, size_t __m, |
| 59 |
size_t __pos1, size_t __sl1, size_t __sl2, |
| 60 |
size_t __sr1, size_t __sr2, |
| 61 |
uint32_t __msk1, uint32_t __msk2, |
| 62 |
uint32_t __msk3, uint32_t __msk4, |
| 63 |
uint32_t __parity1, uint32_t __parity2, |
| 64 |
uint32_t __parity3, uint32_t __parity4> |
| 65 |
class simd_fast_mersenne_twister_engine |
| 66 |
{ |
| 67 |
static_assert(std::is_unsigned<_UIntType>::value, "template argument " |
| 68 |
"substituting _UIntType not an unsigned integral type"); |
| 69 |
static_assert(__sr1 < 32, "first right shift too large"); |
| 70 |
static_assert(__sr2 < 16, "second right shift too large"); |
| 71 |
static_assert(__sl1 < 32, "first left shift too large"); |
| 72 |
static_assert(__sl2 < 16, "second left shift too large"); |
| 73 |
|
| 74 |
public: |
| 75 |
typedef _UIntType result_type; |
| 76 |
|
| 77 |
private: |
| 78 |
static constexpr size_t m_w = sizeof(result_type) * 8; |
| 79 |
static constexpr size_t _M_nstate = __m / 128 + 1; |
| 80 |
static constexpr size_t _M_nstate32 = _M_nstate * 4; |
| 81 |
|
| 82 |
static_assert(std::is_unsigned<_UIntType>::value, "template argument " |
| 83 |
"substituting _UIntType not an unsigned integral type"); |
| 84 |
static_assert(__pos1 < _M_nstate, "POS1 not smaller than state size"); |
| 85 |
static_assert(16 % sizeof(_UIntType) == 0, |
| 86 |
"UIntType size must divide 16"); |
| 87 |
|
| 88 |
template<typename _Sseq> |
| 89 |
using _If_seed_seq |
| 90 |
= typename std::enable_if<std::__detail::__is_seed_seq< |
| 91 |
_Sseq, simd_fast_mersenne_twister_engine, result_type>::value |
| 92 |
>::type; |
| 93 |
|
| 94 |
public: |
| 95 |
static constexpr size_t state_size = _M_nstate * (16 |
| 96 |
/ sizeof(result_type)); |
| 97 |
static constexpr result_type default_seed = 5489u; |
| 98 |
|
| 99 |
// constructors and member functions |
| 100 |
|
| 101 |
simd_fast_mersenne_twister_engine() |
| 102 |
: simd_fast_mersenne_twister_engine(default_seed) |
| 103 |
{ } |
| 104 |
|
| 105 |
explicit |
| 106 |
simd_fast_mersenne_twister_engine(result_type __sd) |
| 107 |
{ seed(__sd); } |
| 108 |
|
| 109 |
template<typename _Sseq, typename = _If_seed_seq<_Sseq>> |
| 110 |
explicit |
| 111 |
simd_fast_mersenne_twister_engine(_Sseq& __q) |
| 112 |
{ seed(__q); } |
| 113 |
|
| 114 |
void |
| 115 |
seed(result_type __sd = default_seed); |
| 116 |
|
| 117 |
template<typename _Sseq> |
| 118 |
_If_seed_seq<_Sseq> |
| 119 |
seed(_Sseq& __q); |
| 120 |
|
| 121 |
static constexpr result_type |
| 122 |
min() |
| 123 |
{ return 0; } |
| 124 |
|
| 125 |
static constexpr result_type |
| 126 |
max() |
| 127 |
{ return std::numeric_limits<result_type>::max(); } |
| 128 |
|
| 129 |
void |
| 130 |
discard(unsigned long long __z); |
| 131 |
|
| 132 |
result_type |
| 133 |
operator()() |
| 134 |
{ |
| 135 |
if (__builtin_expect(_M_pos >= state_size, 0)) |
| 136 |
_M_gen_rand(); |
| 137 |
|
| 138 |
return _M_stateT[_M_pos++]; |
| 139 |
} |
| 140 |
|
| 141 |
template<typename _UIntType_2, size_t __m_2, |
| 142 |
size_t __pos1_2, size_t __sl1_2, size_t __sl2_2, |
| 143 |
size_t __sr1_2, size_t __sr2_2, |
| 144 |
uint32_t __msk1_2, uint32_t __msk2_2, |
| 145 |
uint32_t __msk3_2, uint32_t __msk4_2, |
| 146 |
uint32_t __parity1_2, uint32_t __parity2_2, |
| 147 |
uint32_t __parity3_2, uint32_t __parity4_2> |
| 148 |
friend bool |
| 149 |
operator==(const simd_fast_mersenne_twister_engine<_UIntType_2, |
| 150 |
__m_2, __pos1_2, __sl1_2, __sl2_2, __sr1_2, __sr2_2, |
| 151 |
__msk1_2, __msk2_2, __msk3_2, __msk4_2, |
| 152 |
__parity1_2, __parity2_2, __parity3_2, __parity4_2>& __lhs, |
| 153 |
const simd_fast_mersenne_twister_engine<_UIntType_2, |
| 154 |
__m_2, __pos1_2, __sl1_2, __sl2_2, __sr1_2, __sr2_2, |
| 155 |
__msk1_2, __msk2_2, __msk3_2, __msk4_2, |
| 156 |
__parity1_2, __parity2_2, __parity3_2, __parity4_2>& __rhs); |
| 157 |
|
| 158 |
template<typename _UIntType_2, size_t __m_2, |
| 159 |
size_t __pos1_2, size_t __sl1_2, size_t __sl2_2, |
| 160 |
size_t __sr1_2, size_t __sr2_2, |
| 161 |
uint32_t __msk1_2, uint32_t __msk2_2, |
| 162 |
uint32_t __msk3_2, uint32_t __msk4_2, |
| 163 |
uint32_t __parity1_2, uint32_t __parity2_2, |
| 164 |
uint32_t __parity3_2, uint32_t __parity4_2, |
| 165 |
typename _CharT, typename _Traits> |
| 166 |
friend std::basic_ostream<_CharT, _Traits>& |
| 167 |
operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| 168 |
const __gnu_cxx::simd_fast_mersenne_twister_engine |
| 169 |
<_UIntType_2, |
| 170 |
__m_2, __pos1_2, __sl1_2, __sl2_2, __sr1_2, __sr2_2, |
| 171 |
__msk1_2, __msk2_2, __msk3_2, __msk4_2, |
| 172 |
__parity1_2, __parity2_2, __parity3_2, __parity4_2>& __x); |
| 173 |
|
| 174 |
template<typename _UIntType_2, size_t __m_2, |
| 175 |
size_t __pos1_2, size_t __sl1_2, size_t __sl2_2, |
| 176 |
size_t __sr1_2, size_t __sr2_2, |
| 177 |
uint32_t __msk1_2, uint32_t __msk2_2, |
| 178 |
uint32_t __msk3_2, uint32_t __msk4_2, |
| 179 |
uint32_t __parity1_2, uint32_t __parity2_2, |
| 180 |
uint32_t __parity3_2, uint32_t __parity4_2, |
| 181 |
typename _CharT, typename _Traits> |
| 182 |
friend std::basic_istream<_CharT, _Traits>& |
| 183 |
operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| 184 |
__gnu_cxx::simd_fast_mersenne_twister_engine<_UIntType_2, |
| 185 |
__m_2, __pos1_2, __sl1_2, __sl2_2, __sr1_2, __sr2_2, |
| 186 |
__msk1_2, __msk2_2, __msk3_2, __msk4_2, |
| 187 |
__parity1_2, __parity2_2, __parity3_2, __parity4_2>& __x); |
| 188 |
|
| 189 |
private: |
| 190 |
union |
| 191 |
{ |
| 192 |
#ifdef __SSE2__ |
| 193 |
__m128i _M_state[_M_nstate]; |
| 194 |
#endif |
| 195 |
#ifdef __ARM_NEON |
| 196 |
#ifdef __aarch64__ |
| 197 |
__Uint32x4_t _M_state[_M_nstate]; |
| 198 |
#endif |
| 199 |
#endif |
| 200 |
uint32_t _M_state32[_M_nstate32]; |
| 201 |
result_type _M_stateT[state_size]; |
| 202 |
} __attribute__ ((__aligned__ (16))); |
| 203 |
size_t _M_pos; |
| 204 |
|
| 205 |
void _M_gen_rand(void); |
| 206 |
void _M_period_certification(); |
| 207 |
}; |
| 208 |
|
| 209 |
|
| 210 |
template<typename _UIntType, size_t __m, |
| 211 |
size_t __pos1, size_t __sl1, size_t __sl2, |
| 212 |
size_t __sr1, size_t __sr2, |
| 213 |
uint32_t __msk1, uint32_t __msk2, |
| 214 |
uint32_t __msk3, uint32_t __msk4, |
| 215 |
uint32_t __parity1, uint32_t __parity2, |
| 216 |
uint32_t __parity3, uint32_t __parity4> |
| 217 |
inline bool |
| 218 |
operator!=(const __gnu_cxx::simd_fast_mersenne_twister_engine<_UIntType, |
| 219 |
__m, __pos1, __sl1, __sl2, __sr1, __sr2, __msk1, __msk2, __msk3, |
| 220 |
__msk4, __parity1, __parity2, __parity3, __parity4>& __lhs, |
| 221 |
const __gnu_cxx::simd_fast_mersenne_twister_engine<_UIntType, |
| 222 |
__m, __pos1, __sl1, __sl2, __sr1, __sr2, __msk1, __msk2, __msk3, |
| 223 |
__msk4, __parity1, __parity2, __parity3, __parity4>& __rhs) |
| 224 |
{ return !(__lhs == __rhs); } |
| 225 |
|
| 226 |
|
| 227 |
/* Definitions for the SIMD-oriented Fast Mersenne Twister as defined |
| 228 |
* in the C implementation by Daito and Matsumoto, as both a 32-bit |
| 229 |
* and 64-bit version. |
| 230 |
*/ |
| 231 |
typedef simd_fast_mersenne_twister_engine<uint32_t, 607, 2, |
| 232 |
15, 3, 13, 3, |
| 233 |
0xfdff37ffU, 0xef7f3f7dU, |
| 234 |
0xff777b7dU, 0x7ff7fb2fU, |
| 235 |
0x00000001U, 0x00000000U, |
| 236 |
0x00000000U, 0x5986f054U> |
| 237 |
sfmt607; |
| 238 |
|
| 239 |
typedef simd_fast_mersenne_twister_engine<uint64_t, 607, 2, |
| 240 |
15, 3, 13, 3, |
| 241 |
0xfdff37ffU, 0xef7f3f7dU, |
| 242 |
0xff777b7dU, 0x7ff7fb2fU, |
| 243 |
0x00000001U, 0x00000000U, |
| 244 |
0x00000000U, 0x5986f054U> |
| 245 |
sfmt607_64; |
| 246 |
|
| 247 |
|
| 248 |
typedef simd_fast_mersenne_twister_engine<uint32_t, 1279, 7, |
| 249 |
14, 3, 5, 1, |
| 250 |
0xf7fefffdU, 0x7fefcfffU, |
| 251 |
0xaff3ef3fU, 0xb5ffff7fU, |
| 252 |
0x00000001U, 0x00000000U, |
| 253 |
0x00000000U, 0x20000000U> |
| 254 |
sfmt1279; |
| 255 |
|
| 256 |
typedef simd_fast_mersenne_twister_engine<uint64_t, 1279, 7, |
| 257 |
14, 3, 5, 1, |
| 258 |
0xf7fefffdU, 0x7fefcfffU, |
| 259 |
0xaff3ef3fU, 0xb5ffff7fU, |
| 260 |
0x00000001U, 0x00000000U, |
| 261 |
0x00000000U, 0x20000000U> |
| 262 |
sfmt1279_64; |
| 263 |
|
| 264 |
|
| 265 |
typedef simd_fast_mersenne_twister_engine<uint32_t, 2281, 12, |
| 266 |
19, 1, 5, 1, |
| 267 |
0xbff7ffbfU, 0xfdfffffeU, |
| 268 |
0xf7ffef7fU, 0xf2f7cbbfU, |
| 269 |
0x00000001U, 0x00000000U, |
| 270 |
0x00000000U, 0x41dfa600U> |
| 271 |
sfmt2281; |
| 272 |
|
| 273 |
typedef simd_fast_mersenne_twister_engine<uint64_t, 2281, 12, |
| 274 |
19, 1, 5, 1, |
| 275 |
0xbff7ffbfU, 0xfdfffffeU, |
| 276 |
0xf7ffef7fU, 0xf2f7cbbfU, |
| 277 |
0x00000001U, 0x00000000U, |
| 278 |
0x00000000U, 0x41dfa600U> |
| 279 |
sfmt2281_64; |
| 280 |
|
| 281 |
|
| 282 |
typedef simd_fast_mersenne_twister_engine<uint32_t, 4253, 17, |
| 283 |
20, 1, 7, 1, |
| 284 |
0x9f7bffffU, 0x9fffff5fU, |
| 285 |
0x3efffffbU, 0xfffff7bbU, |
| 286 |
0xa8000001U, 0xaf5390a3U, |
| 287 |
0xb740b3f8U, 0x6c11486dU> |
| 288 |
sfmt4253; |
| 289 |
|
| 290 |
typedef simd_fast_mersenne_twister_engine<uint64_t, 4253, 17, |
| 291 |
20, 1, 7, 1, |
| 292 |
0x9f7bffffU, 0x9fffff5fU, |
| 293 |
0x3efffffbU, 0xfffff7bbU, |
| 294 |
0xa8000001U, 0xaf5390a3U, |
| 295 |
0xb740b3f8U, 0x6c11486dU> |
| 296 |
sfmt4253_64; |
| 297 |
|
| 298 |
|
| 299 |
typedef simd_fast_mersenne_twister_engine<uint32_t, 11213, 68, |
| 300 |
14, 3, 7, 3, |
| 301 |
0xeffff7fbU, 0xffffffefU, |
| 302 |
0xdfdfbfffU, 0x7fffdbfdU, |
| 303 |
0x00000001U, 0x00000000U, |
| 304 |
0xe8148000U, 0xd0c7afa3U> |
| 305 |
sfmt11213; |
| 306 |
|
| 307 |
typedef simd_fast_mersenne_twister_engine<uint64_t, 11213, 68, |
| 308 |
14, 3, 7, 3, |
| 309 |
0xeffff7fbU, 0xffffffefU, |
| 310 |
0xdfdfbfffU, 0x7fffdbfdU, |
| 311 |
0x00000001U, 0x00000000U, |
| 312 |
0xe8148000U, 0xd0c7afa3U> |
| 313 |
sfmt11213_64; |
| 314 |
|
| 315 |
|
| 316 |
typedef simd_fast_mersenne_twister_engine<uint32_t, 19937, 122, |
| 317 |
18, 1, 11, 1, |
| 318 |
0xdfffffefU, 0xddfecb7fU, |
| 319 |
0xbffaffffU, 0xbffffff6U, |
| 320 |
0x00000001U, 0x00000000U, |
| 321 |
0x00000000U, 0x13c9e684U> |
| 322 |
sfmt19937; |
| 323 |
|
| 324 |
typedef simd_fast_mersenne_twister_engine<uint64_t, 19937, 122, |
| 325 |
18, 1, 11, 1, |
| 326 |
0xdfffffefU, 0xddfecb7fU, |
| 327 |
0xbffaffffU, 0xbffffff6U, |
| 328 |
0x00000001U, 0x00000000U, |
| 329 |
0x00000000U, 0x13c9e684U> |
| 330 |
sfmt19937_64; |
| 331 |
|
| 332 |
|
| 333 |
typedef simd_fast_mersenne_twister_engine<uint32_t, 44497, 330, |
| 334 |
5, 3, 9, 3, |
| 335 |
0xeffffffbU, 0xdfbebfffU, |
| 336 |
0xbfbf7befU, 0x9ffd7bffU, |
| 337 |
0x00000001U, 0x00000000U, |
| 338 |
0xa3ac4000U, 0xecc1327aU> |
| 339 |
sfmt44497; |
| 340 |
|
| 341 |
typedef simd_fast_mersenne_twister_engine<uint64_t, 44497, 330, |
| 342 |
5, 3, 9, 3, |
| 343 |
0xeffffffbU, 0xdfbebfffU, |
| 344 |
0xbfbf7befU, 0x9ffd7bffU, |
| 345 |
0x00000001U, 0x00000000U, |
| 346 |
0xa3ac4000U, 0xecc1327aU> |
| 347 |
sfmt44497_64; |
| 348 |
|
| 349 |
|
| 350 |
typedef simd_fast_mersenne_twister_engine<uint32_t, 86243, 366, |
| 351 |
6, 7, 19, 1, |
| 352 |
0xfdbffbffU, 0xbff7ff3fU, |
| 353 |
0xfd77efffU, 0xbf9ff3ffU, |
| 354 |
0x00000001U, 0x00000000U, |
| 355 |
0x00000000U, 0xe9528d85U> |
| 356 |
sfmt86243; |
| 357 |
|
| 358 |
typedef simd_fast_mersenne_twister_engine<uint64_t, 86243, 366, |
| 359 |
6, 7, 19, 1, |
| 360 |
0xfdbffbffU, 0xbff7ff3fU, |
| 361 |
0xfd77efffU, 0xbf9ff3ffU, |
| 362 |
0x00000001U, 0x00000000U, |
| 363 |
0x00000000U, 0xe9528d85U> |
| 364 |
sfmt86243_64; |
| 365 |
|
| 366 |
|
| 367 |
typedef simd_fast_mersenne_twister_engine<uint32_t, 132049, 110, |
| 368 |
19, 1, 21, 1, |
| 369 |
0xffffbb5fU, 0xfb6ebf95U, |
| 370 |
0xfffefffaU, 0xcff77fffU, |
| 371 |
0x00000001U, 0x00000000U, |
| 372 |
0xcb520000U, 0xc7e91c7dU> |
| 373 |
sfmt132049; |
| 374 |
|
| 375 |
typedef simd_fast_mersenne_twister_engine<uint64_t, 132049, 110, |
| 376 |
19, 1, 21, 1, |
| 377 |
0xffffbb5fU, 0xfb6ebf95U, |
| 378 |
0xfffefffaU, 0xcff77fffU, |
| 379 |
0x00000001U, 0x00000000U, |
| 380 |
0xcb520000U, 0xc7e91c7dU> |
| 381 |
sfmt132049_64; |
| 382 |
|
| 383 |
|
| 384 |
typedef simd_fast_mersenne_twister_engine<uint32_t, 216091, 627, |
| 385 |
11, 3, 10, 1, |
| 386 |
0xbff7bff7U, 0xbfffffffU, |
| 387 |
0xbffffa7fU, 0xffddfbfbU, |
| 388 |
0xf8000001U, 0x89e80709U, |
| 389 |
0x3bd2b64bU, 0x0c64b1e4U> |
| 390 |
sfmt216091; |
| 391 |
|
| 392 |
typedef simd_fast_mersenne_twister_engine<uint64_t, 216091, 627, |
| 393 |
11, 3, 10, 1, |
| 394 |
0xbff7bff7U, 0xbfffffffU, |
| 395 |
0xbffffa7fU, 0xffddfbfbU, |
| 396 |
0xf8000001U, 0x89e80709U, |
| 397 |
0x3bd2b64bU, 0x0c64b1e4U> |
| 398 |
sfmt216091_64; |
| 399 |
|
| 400 |
#endif // __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ |
| 401 |
|
| 402 |
/** |
| 403 |
* @brief A beta continuous distribution for random numbers. |
| 404 |
* |
| 405 |
* The formula for the beta probability density function is: |
| 406 |
* @f[ |
| 407 |
* p(x|\alpha,\beta) = \frac{1}{B(\alpha,\beta)} |
| 408 |
* x^{\alpha - 1} (1 - x)^{\beta - 1} |
| 409 |
* @f] |
| 410 |
*/ |
| 411 |
template<typename _RealType = double> |
| 412 |
class beta_distribution |
| 413 |
{ |
| 414 |
static_assert(std::is_floating_point<_RealType>::value, |
| 415 |
"template argument not a floating point type"); |
| 416 |
|
| 417 |
public: |
| 418 |
/** The type of the range of the distribution. */ |
| 419 |
typedef _RealType result_type; |
| 420 |
|
| 421 |
/** Parameter type. */ |
| 422 |
struct param_type |
| 423 |
{ |
| 424 |
typedef beta_distribution<_RealType> distribution_type; |
| 425 |
friend class beta_distribution<_RealType>; |
| 426 |
|
| 427 |
param_type() : param_type(1) { } |
| 428 |
|
| 429 |
explicit |
| 430 |
param_type(_RealType __alpha_val, _RealType __beta_val = _RealType(1)) |
| 431 |
: _M_alpha(__alpha_val), _M_beta(__beta_val) |
| 432 |
{ |
| 433 |
__glibcxx_assert(_M_alpha > _RealType(0)); |
| 434 |
__glibcxx_assert(_M_beta > _RealType(0)); |
| 435 |
} |
| 436 |
|
| 437 |
_RealType |
| 438 |
alpha() const |
| 439 |
{ return _M_alpha; } |
| 440 |
|
| 441 |
_RealType |
| 442 |
beta() const |
| 443 |
{ return _M_beta; } |
| 444 |
|
| 445 |
friend bool |
| 446 |
operator==(const param_type& __p1, const param_type& __p2) |
| 447 |
{ return (__p1._M_alpha == __p2._M_alpha |
| 448 |
&& __p1._M_beta == __p2._M_beta); } |
| 449 |
|
| 450 |
friend bool |
| 451 |
operator!=(const param_type& __p1, const param_type& __p2) |
| 452 |
{ return !(__p1 == __p2); } |
| 453 |
|
| 454 |
private: |
| 455 |
void |
| 456 |
_M_initialize(); |
| 457 |
|
| 458 |
_RealType _M_alpha; |
| 459 |
_RealType _M_beta; |
| 460 |
}; |
| 461 |
|
| 462 |
public: |
| 463 |
beta_distribution() : beta_distribution(1.0) { } |
| 464 |
|
| 465 |
/** |
| 466 |
* @brief Constructs a beta distribution with parameters |
| 467 |
* @f$\alpha@f$ and @f$\beta@f$. |
| 468 |
*/ |
| 469 |
explicit |
| 470 |
beta_distribution(_RealType __alpha_val, |
| 471 |
_RealType __beta_val = _RealType(1)) |
| 472 |
: _M_param(__alpha_val, __beta_val) |
| 473 |
{ } |
| 474 |
|
| 475 |
explicit |
| 476 |
beta_distribution(const param_type& __p) |
| 477 |
: _M_param(__p) |
| 478 |
{ } |
| 479 |
|
| 480 |
/** |
| 481 |
* @brief Resets the distribution state. |
| 482 |
*/ |
| 483 |
void |
| 484 |
reset() |
| 485 |
{ } |
| 486 |
|
| 487 |
/** |
| 488 |
* @brief Returns the @f$\alpha@f$ of the distribution. |
| 489 |
*/ |
| 490 |
_RealType |
| 491 |
alpha() const |
| 492 |
{ return _M_param.alpha(); } |
| 493 |
|
| 494 |
/** |
| 495 |
* @brief Returns the @f$\beta@f$ of the distribution. |
| 496 |
*/ |
| 497 |
_RealType |
| 498 |
beta() const |
| 499 |
{ return _M_param.beta(); } |
| 500 |
|
| 501 |
/** |
| 502 |
* @brief Returns the parameter set of the distribution. |
| 503 |
*/ |
| 504 |
param_type |
| 505 |
param() const |
| 506 |
{ return _M_param; } |
| 507 |
|
| 508 |
/** |
| 509 |
* @brief Sets the parameter set of the distribution. |
| 510 |
* @param __param The new parameter set of the distribution. |
| 511 |
*/ |
| 512 |
void |
| 513 |
param(const param_type& __param) |
| 514 |
{ _M_param = __param; } |
| 515 |
|
| 516 |
/** |
| 517 |
* @brief Returns the greatest lower bound value of the distribution. |
| 518 |
*/ |
| 519 |
result_type |
| 520 |
min() const |
| 521 |
{ return result_type(0); } |
| 522 |
|
| 523 |
/** |
| 524 |
* @brief Returns the least upper bound value of the distribution. |
| 525 |
*/ |
| 526 |
result_type |
| 527 |
max() const |
| 528 |
{ return result_type(1); } |
| 529 |
|
| 530 |
/** |
| 531 |
* @brief Generating functions. |
| 532 |
*/ |
| 533 |
template<typename _UniformRandomNumberGenerator> |
| 534 |
result_type |
| 535 |
operator()(_UniformRandomNumberGenerator& __urng) |
| 536 |
{ return this->operator()(__urng, _M_param); } |
| 537 |
|
| 538 |
template<typename _UniformRandomNumberGenerator> |
| 539 |
result_type |
| 540 |
operator()(_UniformRandomNumberGenerator& __urng, |
| 541 |
const param_type& __p); |
| 542 |
|
| 543 |
template<typename _ForwardIterator, |
| 544 |
typename _UniformRandomNumberGenerator> |
| 545 |
void |
| 546 |
__generate(_ForwardIterator __f, _ForwardIterator __t, |
| 547 |
_UniformRandomNumberGenerator& __urng) |
| 548 |
{ this->__generate(__f, __t, __urng, _M_param); } |
| 549 |
|
| 550 |
template<typename _ForwardIterator, |
| 551 |
typename _UniformRandomNumberGenerator> |
| 552 |
void |
| 553 |
__generate(_ForwardIterator __f, _ForwardIterator __t, |
| 554 |
_UniformRandomNumberGenerator& __urng, |
| 555 |
const param_type& __p) |
| 556 |
{ this->__generate_impl(__f, __t, __urng, __p); } |
| 557 |
|
| 558 |
template<typename _UniformRandomNumberGenerator> |
| 559 |
void |
| 560 |
__generate(result_type* __f, result_type* __t, |
| 561 |
_UniformRandomNumberGenerator& __urng, |
| 562 |
const param_type& __p) |
| 563 |
{ this->__generate_impl(__f, __t, __urng, __p); } |
| 564 |
|
| 565 |
/** |
| 566 |
* @brief Return true if two beta distributions have the same |
| 567 |
* parameters and the sequences that would be generated |
| 568 |
* are equal. |
| 569 |
*/ |
| 570 |
friend bool |
| 571 |
operator==(const beta_distribution& __d1, |
| 572 |
const beta_distribution& __d2) |
| 573 |
{ return __d1._M_param == __d2._M_param; } |
| 574 |
|
| 575 |
/** |
| 576 |
* @brief Inserts a %beta_distribution random number distribution |
| 577 |
* @p __x into the output stream @p __os. |
| 578 |
* |
| 579 |
* @param __os An output stream. |
| 580 |
* @param __x A %beta_distribution random number distribution. |
| 581 |
* |
| 582 |
* @returns The output stream with the state of @p __x inserted or in |
| 583 |
* an error state. |
| 584 |
*/ |
| 585 |
template<typename _RealType1, typename _CharT, typename _Traits> |
| 586 |
friend std::basic_ostream<_CharT, _Traits>& |
| 587 |
operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| 588 |
const __gnu_cxx::beta_distribution<_RealType1>& __x); |
| 589 |
|
| 590 |
/** |
| 591 |
* @brief Extracts a %beta_distribution random number distribution |
| 592 |
* @p __x from the input stream @p __is. |
| 593 |
* |
| 594 |
* @param __is An input stream. |
| 595 |
* @param __x A %beta_distribution random number generator engine. |
| 596 |
* |
| 597 |
* @returns The input stream with @p __x extracted or in an error state. |
| 598 |
*/ |
| 599 |
template<typename _RealType1, typename _CharT, typename _Traits> |
| 600 |
friend std::basic_istream<_CharT, _Traits>& |
| 601 |
operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| 602 |
__gnu_cxx::beta_distribution<_RealType1>& __x); |
| 603 |
|
| 604 |
private: |
| 605 |
template<typename _ForwardIterator, |
| 606 |
typename _UniformRandomNumberGenerator> |
| 607 |
void |
| 608 |
__generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| 609 |
_UniformRandomNumberGenerator& __urng, |
| 610 |
const param_type& __p); |
| 611 |
|
| 612 |
param_type _M_param; |
| 613 |
}; |
| 614 |
|
| 615 |
/** |
| 616 |
* @brief Return true if two beta distributions are different. |
| 617 |
*/ |
| 618 |
template<typename _RealType> |
| 619 |
inline bool |
| 620 |
operator!=(const __gnu_cxx::beta_distribution<_RealType>& __d1, |
| 621 |
const __gnu_cxx::beta_distribution<_RealType>& __d2) |
| 622 |
{ return !(__d1 == __d2); } |
| 623 |
|
| 624 |
|
| 625 |
/** |
| 626 |
* @brief A multi-variate normal continuous distribution for random numbers. |
| 627 |
* |
| 628 |
* The formula for the normal probability density function is |
| 629 |
* @f[ |
| 630 |
* p(\overrightarrow{x}|\overrightarrow{\mu },\Sigma) = |
| 631 |
* \frac{1}{\sqrt{(2\pi )^k\det(\Sigma))}} |
| 632 |
* e^{-\frac{1}{2}(\overrightarrow{x}-\overrightarrow{\mu})^\text{T} |
| 633 |
* \Sigma ^{-1}(\overrightarrow{x}-\overrightarrow{\mu})} |
| 634 |
* @f] |
| 635 |
* |
| 636 |
* where @f$\overrightarrow{x}@f$ and @f$\overrightarrow{\mu}@f$ are |
| 637 |
* vectors of dimension @f$k@f$ and @f$\Sigma@f$ is the covariance |
| 638 |
* matrix (which must be positive-definite). |
| 639 |
*/ |
| 640 |
template<std::size_t _Dimen, typename _RealType = double> |
| 641 |
class normal_mv_distribution |
| 642 |
{ |
| 643 |
static_assert(std::is_floating_point<_RealType>::value, |
| 644 |
"template argument not a floating point type"); |
| 645 |
static_assert(_Dimen != 0, "dimension is zero"); |
| 646 |
|
| 647 |
public: |
| 648 |
/** The type of the range of the distribution. */ |
| 649 |
typedef std::array<_RealType, _Dimen> result_type; |
| 650 |
/** Parameter type. */ |
| 651 |
class param_type |
| 652 |
{ |
| 653 |
static constexpr size_t _M_t_size = _Dimen * (_Dimen + 1) / 2; |
| 654 |
|
| 655 |
public: |
| 656 |
typedef normal_mv_distribution<_Dimen, _RealType> distribution_type; |
| 657 |
friend class normal_mv_distribution<_Dimen, _RealType>; |
| 658 |
|
| 659 |
param_type() |
| 660 |
{ |
| 661 |
std::fill(_M_mean.begin(), _M_mean.end(), _RealType(0)); |
| 662 |
auto __it = _M_t.begin(); |
| 663 |
for (size_t __i = 0; __i < _Dimen; ++__i) |
| 664 |
{ |
| 665 |
std::fill_n(__it, __i, _RealType(0)); |
| 666 |
__it += __i; |
| 667 |
*__it++ = _RealType(1); |
| 668 |
} |
| 669 |
} |
| 670 |
|
| 671 |
template<typename _ForwardIterator1, typename _ForwardIterator2> |
| 672 |
param_type(_ForwardIterator1 __meanbegin, |
| 673 |
_ForwardIterator1 __meanend, |
| 674 |
_ForwardIterator2 __varcovbegin, |
| 675 |
_ForwardIterator2 __varcovend) |
| 676 |
{ |
| 677 |
__glibcxx_function_requires(_ForwardIteratorConcept< |
| 678 |
_ForwardIterator1>) |
| 679 |
__glibcxx_function_requires(_ForwardIteratorConcept< |
| 680 |
_ForwardIterator2>) |
| 681 |
_GLIBCXX_DEBUG_ASSERT(std::distance(__meanbegin, __meanend) |
| 682 |
<= _Dimen); |
| 683 |
const auto __dist = std::distance(__varcovbegin, __varcovend); |
| 684 |
_GLIBCXX_DEBUG_ASSERT(__dist == _Dimen * _Dimen |
| 685 |
|| __dist == _Dimen * (_Dimen + 1) / 2 |
| 686 |
|| __dist == _Dimen); |
| 687 |
|
| 688 |
if (__dist == _Dimen * _Dimen) |
| 689 |
_M_init_full(__meanbegin, __meanend, __varcovbegin, __varcovend); |
| 690 |
else if (__dist == _Dimen * (_Dimen + 1) / 2) |
| 691 |
_M_init_lower(__meanbegin, __meanend, __varcovbegin, __varcovend); |
| 692 |
else |
| 693 |
{ |
| 694 |
__glibcxx_assert(__dist == _Dimen); |
| 695 |
_M_init_diagonal(__meanbegin, __meanend, |
| 696 |
__varcovbegin, __varcovend); |
| 697 |
} |
| 698 |
} |
| 699 |
|
| 700 |
param_type(std::initializer_list<_RealType> __mean, |
| 701 |
std::initializer_list<_RealType> __varcov) |
| 702 |
{ |
| 703 |
_GLIBCXX_DEBUG_ASSERT(__mean.size() <= _Dimen); |
| 704 |
_GLIBCXX_DEBUG_ASSERT(__varcov.size() == _Dimen * _Dimen |
| 705 |
|| __varcov.size() == _Dimen * (_Dimen + 1) / 2 |
| 706 |
|| __varcov.size() == _Dimen); |
| 707 |
|
| 708 |
if (__varcov.size() == _Dimen * _Dimen) |
| 709 |
_M_init_full(__mean.begin(), __mean.end(), |
| 710 |
__varcov.begin(), __varcov.end()); |
| 711 |
else if (__varcov.size() == _Dimen * (_Dimen + 1) / 2) |
| 712 |
_M_init_lower(__mean.begin(), __mean.end(), |
| 713 |
__varcov.begin(), __varcov.end()); |
| 714 |
else |
| 715 |
{ |
| 716 |
__glibcxx_assert(__varcov.size() == _Dimen); |
| 717 |
_M_init_diagonal(__mean.begin(), __mean.end(), |
| 718 |
__varcov.begin(), __varcov.end()); |
| 719 |
} |
| 720 |
} |
| 721 |
|
| 722 |
std::array<_RealType, _Dimen> |
| 723 |
mean() const |
| 724 |
{ return _M_mean; } |
| 725 |
|
| 726 |
std::array<_RealType, _M_t_size> |
| 727 |
varcov() const |
| 728 |
{ return _M_t; } |
| 729 |
|
| 730 |
friend bool |
| 731 |
operator==(const param_type& __p1, const param_type& __p2) |
| 732 |
{ return __p1._M_mean == __p2._M_mean && __p1._M_t == __p2._M_t; } |
| 733 |
|
| 734 |
friend bool |
| 735 |
operator!=(const param_type& __p1, const param_type& __p2) |
| 736 |
{ return !(__p1 == __p2); } |
| 737 |
|
| 738 |
private: |
| 739 |
template <typename _InputIterator1, typename _InputIterator2> |
| 740 |
void _M_init_full(_InputIterator1 __meanbegin, |
| 741 |
_InputIterator1 __meanend, |
| 742 |
_InputIterator2 __varcovbegin, |
| 743 |
_InputIterator2 __varcovend); |
| 744 |
template <typename _InputIterator1, typename _InputIterator2> |
| 745 |
void _M_init_lower(_InputIterator1 __meanbegin, |
| 746 |
_InputIterator1 __meanend, |
| 747 |
_InputIterator2 __varcovbegin, |
| 748 |
_InputIterator2 __varcovend); |
| 749 |
template <typename _InputIterator1, typename _InputIterator2> |
| 750 |
void _M_init_diagonal(_InputIterator1 __meanbegin, |
| 751 |
_InputIterator1 __meanend, |
| 752 |
_InputIterator2 __varbegin, |
| 753 |
_InputIterator2 __varend); |
| 754 |
|
| 755 |
// param_type constructors apply Cholesky decomposition to the |
| 756 |
// varcov matrix in _M_init_full and _M_init_lower, but the |
| 757 |
// varcov matrix output ot a stream is already decomposed, so |
| 758 |
// we need means to restore it as-is when reading it back in. |
| 759 |
template<size_t _Dimen1, typename _RealType1, |
| 760 |
typename _CharT, typename _Traits> |
| 761 |
friend std::basic_istream<_CharT, _Traits>& |
| 762 |
operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| 763 |
__gnu_cxx::normal_mv_distribution<_Dimen1, _RealType1>& |
| 764 |
__x); |
| 765 |
param_type(std::array<_RealType, _Dimen> const &__mean, |
| 766 |
std::array<_RealType, _M_t_size> const &__varcov) |
| 767 |
: _M_mean (__mean), _M_t (__varcov) |
| 768 |
{} |
| 769 |
|
| 770 |
std::array<_RealType, _Dimen> _M_mean; |
| 771 |
std::array<_RealType, _M_t_size> _M_t; |
| 772 |
}; |
| 773 |
|
| 774 |
public: |
| 775 |
normal_mv_distribution() |
| 776 |
: _M_param(), _M_nd() |
| 777 |
{ } |
| 778 |
|
| 779 |
template<typename _ForwardIterator1, typename _ForwardIterator2> |
| 780 |
normal_mv_distribution(_ForwardIterator1 __meanbegin, |
| 781 |
_ForwardIterator1 __meanend, |
| 782 |
_ForwardIterator2 __varcovbegin, |
| 783 |
_ForwardIterator2 __varcovend) |
| 784 |
: _M_param(__meanbegin, __meanend, __varcovbegin, __varcovend), |
| 785 |
_M_nd() |
| 786 |
{ } |
| 787 |
|
| 788 |
normal_mv_distribution(std::initializer_list<_RealType> __mean, |
| 789 |
std::initializer_list<_RealType> __varcov) |
| 790 |
: _M_param(__mean, __varcov), _M_nd() |
| 791 |
{ } |
| 792 |
|
| 793 |
explicit |
| 794 |
normal_mv_distribution(const param_type& __p) |
| 795 |
: _M_param(__p), _M_nd() |
| 796 |
{ } |
| 797 |
|
| 798 |
/** |
| 799 |
* @brief Resets the distribution state. |
| 800 |
*/ |
| 801 |
void |
| 802 |
reset() |
| 803 |
{ _M_nd.reset(); } |
| 804 |
|
| 805 |
/** |
| 806 |
* @brief Returns the mean of the distribution. |
| 807 |
*/ |
| 808 |
result_type |
| 809 |
mean() const |
| 810 |
{ return _M_param.mean(); } |
| 811 |
|
| 812 |
/** |
| 813 |
* @brief Returns the compact form of the variance/covariance |
| 814 |
* matrix of the distribution. |
| 815 |
*/ |
| 816 |
std::array<_RealType, _Dimen * (_Dimen + 1) / 2> |
| 817 |
varcov() const |
| 818 |
{ return _M_param.varcov(); } |
| 819 |
|
| 820 |
/** |
| 821 |
* @brief Returns the parameter set of the distribution. |
| 822 |
*/ |
| 823 |
param_type |
| 824 |
param() const |
| 825 |
{ return _M_param; } |
| 826 |
|
| 827 |
/** |
| 828 |
* @brief Sets the parameter set of the distribution. |
| 829 |
* @param __param The new parameter set of the distribution. |
| 830 |
*/ |
| 831 |
void |
| 832 |
param(const param_type& __param) |
| 833 |
{ _M_param = __param; } |
| 834 |
|
| 835 |
/** |
| 836 |
* @brief Returns the greatest lower bound value of the distribution. |
| 837 |
*/ |
| 838 |
result_type |
| 839 |
min() const |
| 840 |
{ result_type __res; |
| 841 |
__res.fill(std::numeric_limits<_RealType>::lowest()); |
| 842 |
return __res; } |
| 843 |
|
| 844 |
/** |
| 845 |
* @brief Returns the least upper bound value of the distribution. |
| 846 |
*/ |
| 847 |
result_type |
| 848 |
max() const |
| 849 |
{ result_type __res; |
| 850 |
__res.fill(std::numeric_limits<_RealType>::max()); |
| 851 |
return __res; } |
| 852 |
|
| 853 |
/** |
| 854 |
* @brief Generating functions. |
| 855 |
*/ |
| 856 |
template<typename _UniformRandomNumberGenerator> |
| 857 |
result_type |
| 858 |
operator()(_UniformRandomNumberGenerator& __urng) |
| 859 |
{ return this->operator()(__urng, _M_param); } |
| 860 |
|
| 861 |
template<typename _UniformRandomNumberGenerator> |
| 862 |
result_type |
| 863 |
operator()(_UniformRandomNumberGenerator& __urng, |
| 864 |
const param_type& __p); |
| 865 |
|
| 866 |
template<typename _ForwardIterator, |
| 867 |
typename _UniformRandomNumberGenerator> |
| 868 |
void |
| 869 |
__generate(_ForwardIterator __f, _ForwardIterator __t, |
| 870 |
_UniformRandomNumberGenerator& __urng) |
| 871 |
{ return this->__generate_impl(__f, __t, __urng, _M_param); } |
| 872 |
|
| 873 |
template<typename _ForwardIterator, |
| 874 |
typename _UniformRandomNumberGenerator> |
| 875 |
void |
| 876 |
__generate(_ForwardIterator __f, _ForwardIterator __t, |
| 877 |
_UniformRandomNumberGenerator& __urng, |
| 878 |
const param_type& __p) |
| 879 |
{ return this->__generate_impl(__f, __t, __urng, __p); } |
| 880 |
|
| 881 |
/** |
| 882 |
* @brief Return true if two multi-variant normal distributions have |
| 883 |
* the same parameters and the sequences that would |
| 884 |
* be generated are equal. |
| 885 |
*/ |
| 886 |
template<size_t _Dimen1, typename _RealType1> |
| 887 |
friend bool |
| 888 |
operator==(const |
| 889 |
__gnu_cxx::normal_mv_distribution<_Dimen1, _RealType1>& |
| 890 |
__d1, |
| 891 |
const |
| 892 |
__gnu_cxx::normal_mv_distribution<_Dimen1, _RealType1>& |
| 893 |
__d2); |
| 894 |
|
| 895 |
/** |
| 896 |
* @brief Inserts a %normal_mv_distribution random number distribution |
| 897 |
* @p __x into the output stream @p __os. |
| 898 |
* |
| 899 |
* @param __os An output stream. |
| 900 |
* @param __x A %normal_mv_distribution random number distribution. |
| 901 |
* |
| 902 |
* @returns The output stream with the state of @p __x inserted or in |
| 903 |
* an error state. |
| 904 |
*/ |
| 905 |
template<size_t _Dimen1, typename _RealType1, |
| 906 |
typename _CharT, typename _Traits> |
| 907 |
friend std::basic_ostream<_CharT, _Traits>& |
| 908 |
operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| 909 |
const |
| 910 |
__gnu_cxx::normal_mv_distribution<_Dimen1, _RealType1>& |
| 911 |
__x); |
| 912 |
|
| 913 |
/** |
| 914 |
* @brief Extracts a %normal_mv_distribution random number distribution |
| 915 |
* @p __x from the input stream @p __is. |
| 916 |
* |
| 917 |
* @param __is An input stream. |
| 918 |
* @param __x A %normal_mv_distribution random number generator engine. |
| 919 |
* |
| 920 |
* @returns The input stream with @p __x extracted or in an error |
| 921 |
* state. |
| 922 |
*/ |
| 923 |
template<size_t _Dimen1, typename _RealType1, |
| 924 |
typename _CharT, typename _Traits> |
| 925 |
friend std::basic_istream<_CharT, _Traits>& |
| 926 |
operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| 927 |
__gnu_cxx::normal_mv_distribution<_Dimen1, _RealType1>& |
| 928 |
__x); |
| 929 |
|
| 930 |
private: |
| 931 |
template<typename _ForwardIterator, |
| 932 |
typename _UniformRandomNumberGenerator> |
| 933 |
void |
| 934 |
__generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| 935 |
_UniformRandomNumberGenerator& __urng, |
| 936 |
const param_type& __p); |
| 937 |
|
| 938 |
param_type _M_param; |
| 939 |
std::normal_distribution<_RealType> _M_nd; |
| 940 |
}; |
| 941 |
|
| 942 |
/** |
| 943 |
* @brief Return true if two multi-variate normal distributions are |
| 944 |
* different. |
| 945 |
*/ |
| 946 |
template<size_t _Dimen, typename _RealType> |
| 947 |
inline bool |
| 948 |
operator!=(const __gnu_cxx::normal_mv_distribution<_Dimen, _RealType>& |
| 949 |
__d1, |
| 950 |
const __gnu_cxx::normal_mv_distribution<_Dimen, _RealType>& |
| 951 |
__d2) |
| 952 |
{ return !(__d1 == __d2); } |
| 953 |
|
| 954 |
|
| 955 |
/** |
| 956 |
* @brief A Rice continuous distribution for random numbers. |
| 957 |
* |
| 958 |
* The formula for the Rice probability density function is |
| 959 |
* @f[ |
| 960 |
* p(x|\nu,\sigma) = \frac{x}{\sigma^2} |
| 961 |
* \exp\left(-\frac{x^2+\nu^2}{2\sigma^2}\right) |
| 962 |
* I_0\left(\frac{x \nu}{\sigma^2}\right) |
| 963 |
* @f] |
| 964 |
* where @f$I_0(z)@f$ is the modified Bessel function of the first kind |
| 965 |
* of order 0 and @f$\nu >= 0@f$ and @f$\sigma > 0@f$. |
| 966 |
* |
| 967 |
* <table border=1 cellpadding=10 cellspacing=0> |
| 968 |
* <caption align=top>Distribution Statistics</caption> |
| 969 |
* <tr><td>Mean</td><td>@f$\sqrt{\pi/2}L_{1/2}(-\nu^2/2\sigma^2)@f$</td></tr> |
| 970 |
* <tr><td>Variance</td><td>@f$2\sigma^2 + \nu^2 |
| 971 |
* + (\pi\sigma^2/2)L^2_{1/2}(-\nu^2/2\sigma^2)@f$</td></tr> |
| 972 |
* <tr><td>Range</td><td>@f$[0, \infty)@f$</td></tr> |
| 973 |
* </table> |
| 974 |
* where @f$L_{1/2}(x)@f$ is the Laguerre polynomial of order 1/2. |
| 975 |
*/ |
| 976 |
template<typename _RealType = double> |
| 977 |
class |
| 978 |
rice_distribution |
| 979 |
{ |
| 980 |
static_assert(std::is_floating_point<_RealType>::value, |
| 981 |
"template argument not a floating point type"); |
| 982 |
public: |
| 983 |
/** The type of the range of the distribution. */ |
| 984 |
typedef _RealType result_type; |
| 985 |
|
| 986 |
/** Parameter type. */ |
| 987 |
struct param_type |
| 988 |
{ |
| 989 |
typedef rice_distribution<result_type> distribution_type; |
| 990 |
|
| 991 |
param_type() : param_type(0) { } |
| 992 |
|
| 993 |
param_type(result_type __nu_val, |
| 994 |
result_type __sigma_val = result_type(1)) |
| 995 |
: _M_nu(__nu_val), _M_sigma(__sigma_val) |
| 996 |
{ |
| 997 |
__glibcxx_assert(_M_nu >= result_type(0)); |
| 998 |
__glibcxx_assert(_M_sigma > result_type(0)); |
| 999 |
} |
| 1000 |
|
| 1001 |
result_type |
| 1002 |
nu() const |
| 1003 |
{ return _M_nu; } |
| 1004 |
|
| 1005 |
result_type |
| 1006 |
sigma() const |
| 1007 |
{ return _M_sigma; } |
| 1008 |
|
| 1009 |
friend bool |
| 1010 |
operator==(const param_type& __p1, const param_type& __p2) |
| 1011 |
{ return __p1._M_nu == __p2._M_nu && __p1._M_sigma == __p2._M_sigma; } |
| 1012 |
|
| 1013 |
friend bool |
| 1014 |
operator!=(const param_type& __p1, const param_type& __p2) |
| 1015 |
{ return !(__p1 == __p2); } |
| 1016 |
|
| 1017 |
private: |
| 1018 |
void _M_initialize(); |
| 1019 |
|
| 1020 |
result_type _M_nu; |
| 1021 |
result_type _M_sigma; |
| 1022 |
}; |
| 1023 |
|
| 1024 |
/** |
| 1025 |
* @brief Constructors. |
| 1026 |
* @{ |
| 1027 |
*/ |
| 1028 |
|
| 1029 |
rice_distribution() : rice_distribution(0) { } |
| 1030 |
|
| 1031 |
explicit |
| 1032 |
rice_distribution(result_type __nu_val, |
| 1033 |
result_type __sigma_val = result_type(1)) |
| 1034 |
: _M_param(__nu_val, __sigma_val), |
| 1035 |
_M_ndx(__nu_val, __sigma_val), |
| 1036 |
_M_ndy(result_type(0), __sigma_val) |
| 1037 |
{ } |
| 1038 |
|
| 1039 |
explicit |
| 1040 |
rice_distribution(const param_type& __p) |
| 1041 |
: _M_param(__p), |
| 1042 |
_M_ndx(__p.nu(), __p.sigma()), |
| 1043 |
_M_ndy(result_type(0), __p.sigma()) |
| 1044 |
{ } |
| 1045 |
|
| 1046 |
/// @} |
| 1047 |
|
| 1048 |
/** |
| 1049 |
* @brief Resets the distribution state. |
| 1050 |
*/ |
| 1051 |
void |
| 1052 |
reset() |
| 1053 |
{ |
| 1054 |
_M_ndx.reset(); |
| 1055 |
_M_ndy.reset(); |
| 1056 |
} |
| 1057 |
|
| 1058 |
/** |
| 1059 |
* @brief Return the parameters of the distribution. |
| 1060 |
*/ |
| 1061 |
result_type |
| 1062 |
nu() const |
| 1063 |
{ return _M_param.nu(); } |
| 1064 |
|
| 1065 |
result_type |
| 1066 |
sigma() const |
| 1067 |
{ return _M_param.sigma(); } |
| 1068 |
|
| 1069 |
/** |
| 1070 |
* @brief Returns the parameter set of the distribution. |
| 1071 |
*/ |
| 1072 |
param_type |
| 1073 |
param() const |
| 1074 |
{ return _M_param; } |
| 1075 |
|
| 1076 |
/** |
| 1077 |
* @brief Sets the parameter set of the distribution. |
| 1078 |
* @param __param The new parameter set of the distribution. |
| 1079 |
*/ |
| 1080 |
void |
| 1081 |
param(const param_type& __param) |
| 1082 |
{ _M_param = __param; } |
| 1083 |
|
| 1084 |
/** |
| 1085 |
* @brief Returns the greatest lower bound value of the distribution. |
| 1086 |
*/ |
| 1087 |
result_type |
| 1088 |
min() const |
| 1089 |
{ return result_type(0); } |
| 1090 |
|
| 1091 |
/** |
| 1092 |
* @brief Returns the least upper bound value of the distribution. |
| 1093 |
*/ |
| 1094 |
result_type |
| 1095 |
max() const |
| 1096 |
{ return std::numeric_limits<result_type>::max(); } |
| 1097 |
|
| 1098 |
/** |
| 1099 |
* @brief Generating functions. |
| 1100 |
*/ |
| 1101 |
template<typename _UniformRandomNumberGenerator> |
| 1102 |
result_type |
| 1103 |
operator()(_UniformRandomNumberGenerator& __urng) |
| 1104 |
{ |
| 1105 |
result_type __x = this->_M_ndx(__urng); |
| 1106 |
result_type __y = this->_M_ndy(__urng); |
| 1107 |
#if _GLIBCXX_USE_C99_MATH_TR1 |
| 1108 |
return std::hypot(__x, __y); |
| 1109 |
#else |
| 1110 |
return std::sqrt(__x * __x + __y * __y); |
| 1111 |
#endif |
| 1112 |
} |
| 1113 |
|
| 1114 |
template<typename _UniformRandomNumberGenerator> |
| 1115 |
result_type |
| 1116 |
operator()(_UniformRandomNumberGenerator& __urng, |
| 1117 |
const param_type& __p) |
| 1118 |
{ |
| 1119 |
typename std::normal_distribution<result_type>::param_type |
| 1120 |
__px(__p.nu(), __p.sigma()), __py(result_type(0), __p.sigma()); |
| 1121 |
result_type __x = this->_M_ndx(__px, __urng); |
| 1122 |
result_type __y = this->_M_ndy(__py, __urng); |
| 1123 |
#if _GLIBCXX_USE_C99_MATH_TR1 |
| 1124 |
return std::hypot(__x, __y); |
| 1125 |
#else |
| 1126 |
return std::sqrt(__x * __x + __y * __y); |
| 1127 |
#endif |
| 1128 |
} |
| 1129 |
|
| 1130 |
template<typename _ForwardIterator, |
| 1131 |
typename _UniformRandomNumberGenerator> |
| 1132 |
void |
| 1133 |
__generate(_ForwardIterator __f, _ForwardIterator __t, |
| 1134 |
_UniformRandomNumberGenerator& __urng) |
| 1135 |
{ this->__generate(__f, __t, __urng, _M_param); } |
| 1136 |
|
| 1137 |
template<typename _ForwardIterator, |
| 1138 |
typename _UniformRandomNumberGenerator> |
| 1139 |
void |
| 1140 |
__generate(_ForwardIterator __f, _ForwardIterator __t, |
| 1141 |
_UniformRandomNumberGenerator& __urng, |
| 1142 |
const param_type& __p) |
| 1143 |
{ this->__generate_impl(__f, __t, __urng, __p); } |
| 1144 |
|
| 1145 |
template<typename _UniformRandomNumberGenerator> |
| 1146 |
void |
| 1147 |
__generate(result_type* __f, result_type* __t, |
| 1148 |
_UniformRandomNumberGenerator& __urng, |
| 1149 |
const param_type& __p) |
| 1150 |
{ this->__generate_impl(__f, __t, __urng, __p); } |
| 1151 |
|
| 1152 |
/** |
| 1153 |
* @brief Return true if two Rice distributions have |
| 1154 |
* the same parameters and the sequences that would |
| 1155 |
* be generated are equal. |
| 1156 |
*/ |
| 1157 |
friend bool |
| 1158 |
operator==(const rice_distribution& __d1, |
| 1159 |
const rice_distribution& __d2) |
| 1160 |
{ return (__d1._M_param == __d2._M_param |
| 1161 |
&& __d1._M_ndx == __d2._M_ndx |
| 1162 |
&& __d1._M_ndy == __d2._M_ndy); } |
| 1163 |
|
| 1164 |
/** |
| 1165 |
* @brief Inserts a %rice_distribution random number distribution |
| 1166 |
* @p __x into the output stream @p __os. |
| 1167 |
* |
| 1168 |
* @param __os An output stream. |
| 1169 |
* @param __x A %rice_distribution random number distribution. |
| 1170 |
* |
| 1171 |
* @returns The output stream with the state of @p __x inserted or in |
| 1172 |
* an error state. |
| 1173 |
*/ |
| 1174 |
template<typename _RealType1, typename _CharT, typename _Traits> |
| 1175 |
friend std::basic_ostream<_CharT, _Traits>& |
| 1176 |
operator<<(std::basic_ostream<_CharT, _Traits>&, |
| 1177 |
const rice_distribution<_RealType1>&); |
| 1178 |
|
| 1179 |
/** |
| 1180 |
* @brief Extracts a %rice_distribution random number distribution |
| 1181 |
* @p __x from the input stream @p __is. |
| 1182 |
* |
| 1183 |
* @param __is An input stream. |
| 1184 |
* @param __x A %rice_distribution random number |
| 1185 |
* generator engine. |
| 1186 |
* |
| 1187 |
* @returns The input stream with @p __x extracted or in an error state. |
| 1188 |
*/ |
| 1189 |
template<typename _RealType1, typename _CharT, typename _Traits> |
| 1190 |
friend std::basic_istream<_CharT, _Traits>& |
| 1191 |
operator>>(std::basic_istream<_CharT, _Traits>&, |
| 1192 |
rice_distribution<_RealType1>&); |
| 1193 |
|
| 1194 |
private: |
| 1195 |
template<typename _ForwardIterator, |
| 1196 |
typename _UniformRandomNumberGenerator> |
| 1197 |
void |
| 1198 |
__generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| 1199 |
_UniformRandomNumberGenerator& __urng, |
| 1200 |
const param_type& __p); |
| 1201 |
|
| 1202 |
param_type _M_param; |
| 1203 |
|
| 1204 |
std::normal_distribution<result_type> _M_ndx; |
| 1205 |
std::normal_distribution<result_type> _M_ndy; |
| 1206 |
}; |
| 1207 |
|
| 1208 |
/** |
| 1209 |
* @brief Return true if two Rice distributions are not equal. |
| 1210 |
*/ |
| 1211 |
template<typename _RealType1> |
| 1212 |
inline bool |
| 1213 |
operator!=(const rice_distribution<_RealType1>& __d1, |
| 1214 |
const rice_distribution<_RealType1>& __d2) |
| 1215 |
{ return !(__d1 == __d2); } |
| 1216 |
|
| 1217 |
|
| 1218 |
/** |
| 1219 |
* @brief A Nakagami continuous distribution for random numbers. |
| 1220 |
* |
| 1221 |
* The formula for the Nakagami probability density function is |
| 1222 |
* @f[ |
| 1223 |
* p(x|\mu,\omega) = \frac{2\mu^\mu}{\Gamma(\mu)\omega^\mu} |
| 1224 |
* x^{2\mu-1}e^{-\mu x / \omega} |
| 1225 |
* @f] |
| 1226 |
* where @f$\Gamma(z)@f$ is the gamma function and @f$\mu >= 0.5@f$ |
| 1227 |
* and @f$\omega > 0@f$. |
| 1228 |
*/ |
| 1229 |
template<typename _RealType = double> |
| 1230 |
class |
| 1231 |
nakagami_distribution |
| 1232 |
{ |
| 1233 |
static_assert(std::is_floating_point<_RealType>::value, |
| 1234 |
"template argument not a floating point type"); |
| 1235 |
|
| 1236 |
public: |
| 1237 |
/** The type of the range of the distribution. */ |
| 1238 |
typedef _RealType result_type; |
| 1239 |
|
| 1240 |
/** Parameter type. */ |
| 1241 |
struct param_type |
| 1242 |
{ |
| 1243 |
typedef nakagami_distribution<result_type> distribution_type; |
| 1244 |
|
| 1245 |
param_type() : param_type(1) { } |
| 1246 |
|
| 1247 |
param_type(result_type __mu_val, |
| 1248 |
result_type __omega_val = result_type(1)) |
| 1249 |
: _M_mu(__mu_val), _M_omega(__omega_val) |
| 1250 |
{ |
| 1251 |
__glibcxx_assert(_M_mu >= result_type(0.5L)); |
| 1252 |
__glibcxx_assert(_M_omega > result_type(0)); |
| 1253 |
} |
| 1254 |
|
| 1255 |
result_type |
| 1256 |
mu() const |
| 1257 |
{ return _M_mu; } |
| 1258 |
|
| 1259 |
result_type |
| 1260 |
omega() const |
| 1261 |
{ return _M_omega; } |
| 1262 |
|
| 1263 |
friend bool |
| 1264 |
operator==(const param_type& __p1, const param_type& __p2) |
| 1265 |
{ return __p1._M_mu == __p2._M_mu && __p1._M_omega == __p2._M_omega; } |
| 1266 |
|
| 1267 |
friend bool |
| 1268 |
operator!=(const param_type& __p1, const param_type& __p2) |
| 1269 |
{ return !(__p1 == __p2); } |
| 1270 |
|
| 1271 |
private: |
| 1272 |
void _M_initialize(); |
| 1273 |
|
| 1274 |
result_type _M_mu; |
| 1275 |
result_type _M_omega; |
| 1276 |
}; |
| 1277 |
|
| 1278 |
/** |
| 1279 |
* @brief Constructors. |
| 1280 |
* @{ |
| 1281 |
*/ |
| 1282 |
|
| 1283 |
nakagami_distribution() : nakagami_distribution(1) { } |
| 1284 |
|
| 1285 |
explicit |
| 1286 |
nakagami_distribution(result_type __mu_val, |
| 1287 |
result_type __omega_val = result_type(1)) |
| 1288 |
: _M_param(__mu_val, __omega_val), |
| 1289 |
_M_gd(__mu_val, __omega_val / __mu_val) |
| 1290 |
{ } |
| 1291 |
|
| 1292 |
explicit |
| 1293 |
nakagami_distribution(const param_type& __p) |
| 1294 |
: _M_param(__p), |
| 1295 |
_M_gd(__p.mu(), __p.omega() / __p.mu()) |
| 1296 |
{ } |
| 1297 |
|
| 1298 |
/// @} |
| 1299 |
|
| 1300 |
/** |
| 1301 |
* @brief Resets the distribution state. |
| 1302 |
*/ |
| 1303 |
void |
| 1304 |
reset() |
| 1305 |
{ _M_gd.reset(); } |
| 1306 |
|
| 1307 |
/** |
| 1308 |
* @brief Return the parameters of the distribution. |
| 1309 |
*/ |
| 1310 |
result_type |
| 1311 |
mu() const |
| 1312 |
{ return _M_param.mu(); } |
| 1313 |
|
| 1314 |
result_type |
| 1315 |
omega() const |
| 1316 |
{ return _M_param.omega(); } |
| 1317 |
|
| 1318 |
/** |
| 1319 |
* @brief Returns the parameter set of the distribution. |
| 1320 |
*/ |
| 1321 |
param_type |
| 1322 |
param() const |
| 1323 |
{ return _M_param; } |
| 1324 |
|
| 1325 |
/** |
| 1326 |
* @brief Sets the parameter set of the distribution. |
| 1327 |
* @param __param The new parameter set of the distribution. |
| 1328 |
*/ |
| 1329 |
void |
| 1330 |
param(const param_type& __param) |
| 1331 |
{ _M_param = __param; } |
| 1332 |
|
| 1333 |
/** |
| 1334 |
* @brief Returns the greatest lower bound value of the distribution. |
| 1335 |
*/ |
| 1336 |
result_type |
| 1337 |
min() const |
| 1338 |
{ return result_type(0); } |
| 1339 |
|
| 1340 |
/** |
| 1341 |
* @brief Returns the least upper bound value of the distribution. |
| 1342 |
*/ |
| 1343 |
result_type |
| 1344 |
max() const |
| 1345 |
{ return std::numeric_limits<result_type>::max(); } |
| 1346 |
|
| 1347 |
/** |
| 1348 |
* @brief Generating functions. |
| 1349 |
*/ |
| 1350 |
template<typename _UniformRandomNumberGenerator> |
| 1351 |
result_type |
| 1352 |
operator()(_UniformRandomNumberGenerator& __urng) |
| 1353 |
{ return std::sqrt(this->_M_gd(__urng)); } |
| 1354 |
|
| 1355 |
template<typename _UniformRandomNumberGenerator> |
| 1356 |
result_type |
| 1357 |
operator()(_UniformRandomNumberGenerator& __urng, |
| 1358 |
const param_type& __p) |
| 1359 |
{ |
| 1360 |
typename std::gamma_distribution<result_type>::param_type |
| 1361 |
__pg(__p.mu(), __p.omega() / __p.mu()); |
| 1362 |
return std::sqrt(this->_M_gd(__pg, __urng)); |
| 1363 |
} |
| 1364 |
|
| 1365 |
template<typename _ForwardIterator, |
| 1366 |
typename _UniformRandomNumberGenerator> |
| 1367 |
void |
| 1368 |
__generate(_ForwardIterator __f, _ForwardIterator __t, |
| 1369 |
_UniformRandomNumberGenerator& __urng) |
| 1370 |
{ this->__generate(__f, __t, __urng, _M_param); } |
| 1371 |
|
| 1372 |
template<typename _ForwardIterator, |
| 1373 |
typename _UniformRandomNumberGenerator> |
| 1374 |
void |
| 1375 |
__generate(_ForwardIterator __f, _ForwardIterator __t, |
| 1376 |
_UniformRandomNumberGenerator& __urng, |
| 1377 |
const param_type& __p) |
| 1378 |
{ this->__generate_impl(__f, __t, __urng, __p); } |
| 1379 |
|
| 1380 |
template<typename _UniformRandomNumberGenerator> |
| 1381 |
void |
| 1382 |
__generate(result_type* __f, result_type* __t, |
| 1383 |
_UniformRandomNumberGenerator& __urng, |
| 1384 |
const param_type& __p) |
| 1385 |
{ this->__generate_impl(__f, __t, __urng, __p); } |
| 1386 |
|
| 1387 |
/** |
| 1388 |
* @brief Return true if two Nakagami distributions have |
| 1389 |
* the same parameters and the sequences that would |
| 1390 |
* be generated are equal. |
| 1391 |
*/ |
| 1392 |
friend bool |
| 1393 |
operator==(const nakagami_distribution& __d1, |
| 1394 |
const nakagami_distribution& __d2) |
| 1395 |
{ return (__d1._M_param == __d2._M_param |
| 1396 |
&& __d1._M_gd == __d2._M_gd); } |
| 1397 |
|
| 1398 |
/** |
| 1399 |
* @brief Inserts a %nakagami_distribution random number distribution |
| 1400 |
* @p __x into the output stream @p __os. |
| 1401 |
* |
| 1402 |
* @param __os An output stream. |
| 1403 |
* @param __x A %nakagami_distribution random number distribution. |
| 1404 |
* |
| 1405 |
* @returns The output stream with the state of @p __x inserted or in |
| 1406 |
* an error state. |
| 1407 |
*/ |
| 1408 |
template<typename _RealType1, typename _CharT, typename _Traits> |
| 1409 |
friend std::basic_ostream<_CharT, _Traits>& |
| 1410 |
operator<<(std::basic_ostream<_CharT, _Traits>&, |
| 1411 |
const nakagami_distribution<_RealType1>&); |
| 1412 |
|
| 1413 |
/** |
| 1414 |
* @brief Extracts a %nakagami_distribution random number distribution |
| 1415 |
* @p __x from the input stream @p __is. |
| 1416 |
* |
| 1417 |
* @param __is An input stream. |
| 1418 |
* @param __x A %nakagami_distribution random number |
| 1419 |
* generator engine. |
| 1420 |
* |
| 1421 |
* @returns The input stream with @p __x extracted or in an error state. |
| 1422 |
*/ |
| 1423 |
template<typename _RealType1, typename _CharT, typename _Traits> |
| 1424 |
friend std::basic_istream<_CharT, _Traits>& |
| 1425 |
operator>>(std::basic_istream<_CharT, _Traits>&, |
| 1426 |
nakagami_distribution<_RealType1>&); |
| 1427 |
|
| 1428 |
private: |
| 1429 |
template<typename _ForwardIterator, |
| 1430 |
typename _UniformRandomNumberGenerator> |
| 1431 |
void |
| 1432 |
__generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| 1433 |
_UniformRandomNumberGenerator& __urng, |
| 1434 |
const param_type& __p); |
| 1435 |
|
| 1436 |
param_type _M_param; |
| 1437 |
|
| 1438 |
std::gamma_distribution<result_type> _M_gd; |
| 1439 |
}; |
| 1440 |
|
| 1441 |
/** |
| 1442 |
* @brief Return true if two Nakagami distributions are not equal. |
| 1443 |
*/ |
| 1444 |
template<typename _RealType> |
| 1445 |
inline bool |
| 1446 |
operator!=(const nakagami_distribution<_RealType>& __d1, |
| 1447 |
const nakagami_distribution<_RealType>& __d2) |
| 1448 |
{ return !(__d1 == __d2); } |
| 1449 |
|
| 1450 |
|
| 1451 |
/** |
| 1452 |
* @brief A Pareto continuous distribution for random numbers. |
| 1453 |
* |
| 1454 |
* The formula for the Pareto cumulative probability function is |
| 1455 |
* @f[ |
| 1456 |
* P(x|\alpha,\mu) = 1 - \left(\frac{\mu}{x}\right)^\alpha |
| 1457 |
* @f] |
| 1458 |
* The formula for the Pareto probability density function is |
| 1459 |
* @f[ |
| 1460 |
* p(x|\alpha,\mu) = \frac{\alpha + 1}{\mu} |
| 1461 |
* \left(\frac{\mu}{x}\right)^{\alpha + 1} |
| 1462 |
* @f] |
| 1463 |
* where @f$x >= \mu@f$ and @f$\mu > 0@f$, @f$\alpha > 0@f$. |
| 1464 |
* |
| 1465 |
* <table border=1 cellpadding=10 cellspacing=0> |
| 1466 |
* <caption align=top>Distribution Statistics</caption> |
| 1467 |
* <tr><td>Mean</td><td>@f$\alpha \mu / (\alpha - 1)@f$ |
| 1468 |
* for @f$\alpha > 1@f$</td></tr> |
| 1469 |
* <tr><td>Variance</td><td>@f$\alpha \mu^2 / [(\alpha - 1)^2(\alpha - 2)]@f$ |
| 1470 |
* for @f$\alpha > 2@f$</td></tr> |
| 1471 |
* <tr><td>Range</td><td>@f$[\mu, \infty)@f$</td></tr> |
| 1472 |
* </table> |
| 1473 |
*/ |
| 1474 |
template<typename _RealType = double> |
| 1475 |
class |
| 1476 |
pareto_distribution |
| 1477 |
{ |
| 1478 |
static_assert(std::is_floating_point<_RealType>::value, |
| 1479 |
"template argument not a floating point type"); |
| 1480 |
|
| 1481 |
public: |
| 1482 |
/** The type of the range of the distribution. */ |
| 1483 |
typedef _RealType result_type; |
| 1484 |
|
| 1485 |
/** Parameter type. */ |
| 1486 |
struct param_type |
| 1487 |
{ |
| 1488 |
typedef pareto_distribution<result_type> distribution_type; |
| 1489 |
|
| 1490 |
param_type() : param_type(1) { } |
| 1491 |
|
| 1492 |
param_type(result_type __alpha_val, |
| 1493 |
result_type __mu_val = result_type(1)) |
| 1494 |
: _M_alpha(__alpha_val), _M_mu(__mu_val) |
| 1495 |
{ |
| 1496 |
__glibcxx_assert(_M_alpha > result_type(0)); |
| 1497 |
__glibcxx_assert(_M_mu > result_type(0)); |
| 1498 |
} |
| 1499 |
|
| 1500 |
result_type |
| 1501 |
alpha() const |
| 1502 |
{ return _M_alpha; } |
| 1503 |
|
| 1504 |
result_type |
| 1505 |
mu() const |
| 1506 |
{ return _M_mu; } |
| 1507 |
|
| 1508 |
friend bool |
| 1509 |
operator==(const param_type& __p1, const param_type& __p2) |
| 1510 |
{ return __p1._M_alpha == __p2._M_alpha && __p1._M_mu == __p2._M_mu; } |
| 1511 |
|
| 1512 |
friend bool |
| 1513 |
operator!=(const param_type& __p1, const param_type& __p2) |
| 1514 |
{ return !(__p1 == __p2); } |
| 1515 |
|
| 1516 |
private: |
| 1517 |
void _M_initialize(); |
| 1518 |
|
| 1519 |
result_type _M_alpha; |
| 1520 |
result_type _M_mu; |
| 1521 |
}; |
| 1522 |
|
| 1523 |
/** |
| 1524 |
* @brief Constructors. |
| 1525 |
* @{ |
| 1526 |
*/ |
| 1527 |
|
| 1528 |
pareto_distribution() : pareto_distribution(1) { } |
| 1529 |
|
| 1530 |
explicit |
| 1531 |
pareto_distribution(result_type __alpha_val, |
| 1532 |
result_type __mu_val = result_type(1)) |
| 1533 |
: _M_param(__alpha_val, __mu_val), |
| 1534 |
_M_ud() |
| 1535 |
{ } |
| 1536 |
|
| 1537 |
explicit |
| 1538 |
pareto_distribution(const param_type& __p) |
| 1539 |
: _M_param(__p), |
| 1540 |
_M_ud() |
| 1541 |
{ } |
| 1542 |
|
| 1543 |
/// @} |
| 1544 |
|
| 1545 |
/** |
| 1546 |
* @brief Resets the distribution state. |
| 1547 |
*/ |
| 1548 |
void |
| 1549 |
reset() |
| 1550 |
{ |
| 1551 |
_M_ud.reset(); |
| 1552 |
} |
| 1553 |
|
| 1554 |
/** |
| 1555 |
* @brief Return the parameters of the distribution. |
| 1556 |
*/ |
| 1557 |
result_type |
| 1558 |
alpha() const |
| 1559 |
{ return _M_param.alpha(); } |
| 1560 |
|
| 1561 |
result_type |
| 1562 |
mu() const |
| 1563 |
{ return _M_param.mu(); } |
| 1564 |
|
| 1565 |
/** |
| 1566 |
* @brief Returns the parameter set of the distribution. |
| 1567 |
*/ |
| 1568 |
param_type |
| 1569 |
param() const |
| 1570 |
{ return _M_param; } |
| 1571 |
|
| 1572 |
/** |
| 1573 |
* @brief Sets the parameter set of the distribution. |
| 1574 |
* @param __param The new parameter set of the distribution. |
| 1575 |
*/ |
| 1576 |
void |
| 1577 |
param(const param_type& __param) |
| 1578 |
{ _M_param = __param; } |
| 1579 |
|
| 1580 |
/** |
| 1581 |
* @brief Returns the greatest lower bound value of the distribution. |
| 1582 |
*/ |
| 1583 |
result_type |
| 1584 |
min() const |
| 1585 |
{ return this->mu(); } |
| 1586 |
|
| 1587 |
/** |
| 1588 |
* @brief Returns the least upper bound value of the distribution. |
| 1589 |
*/ |
| 1590 |
result_type |
| 1591 |
max() const |
| 1592 |
{ return std::numeric_limits<result_type>::max(); } |
| 1593 |
|
| 1594 |
/** |
| 1595 |
* @brief Generating functions. |
| 1596 |
*/ |
| 1597 |
template<typename _UniformRandomNumberGenerator> |
| 1598 |
result_type |
| 1599 |
operator()(_UniformRandomNumberGenerator& __urng) |
| 1600 |
{ |
| 1601 |
return this->mu() * std::pow(this->_M_ud(__urng), |
| 1602 |
-result_type(1) / this->alpha()); |
| 1603 |
} |
| 1604 |
|
| 1605 |
template<typename _UniformRandomNumberGenerator> |
| 1606 |
result_type |
| 1607 |
operator()(_UniformRandomNumberGenerator& __urng, |
| 1608 |
const param_type& __p) |
| 1609 |
{ |
| 1610 |
return __p.mu() * std::pow(this->_M_ud(__urng), |
| 1611 |
-result_type(1) / __p.alpha()); |
| 1612 |
} |
| 1613 |
|
| 1614 |
template<typename _ForwardIterator, |
| 1615 |
typename _UniformRandomNumberGenerator> |
| 1616 |
void |
| 1617 |
__generate(_ForwardIterator __f, _ForwardIterator __t, |
| 1618 |
_UniformRandomNumberGenerator& __urng) |
| 1619 |
{ this->__generate(__f, __t, __urng, _M_param); } |
| 1620 |
|
| 1621 |
template<typename _ForwardIterator, |
| 1622 |
typename _UniformRandomNumberGenerator> |
| 1623 |
void |
| 1624 |
__generate(_ForwardIterator __f, _ForwardIterator __t, |
| 1625 |
_UniformRandomNumberGenerator& __urng, |
| 1626 |
const param_type& __p) |
| 1627 |
{ this->__generate_impl(__f, __t, __urng, __p); } |
| 1628 |
|
| 1629 |
template<typename _UniformRandomNumberGenerator> |
| 1630 |
void |
| 1631 |
__generate(result_type* __f, result_type* __t, |
| 1632 |
_UniformRandomNumberGenerator& __urng, |
| 1633 |
const param_type& __p) |
| 1634 |
{ this->__generate_impl(__f, __t, __urng, __p); } |
| 1635 |
|
| 1636 |
/** |
| 1637 |
* @brief Return true if two Pareto distributions have |
| 1638 |
* the same parameters and the sequences that would |
| 1639 |
* be generated are equal. |
| 1640 |
*/ |
| 1641 |
friend bool |
| 1642 |
operator==(const pareto_distribution& __d1, |
| 1643 |
const pareto_distribution& __d2) |
| 1644 |
{ return (__d1._M_param == __d2._M_param |
| 1645 |
&& __d1._M_ud == __d2._M_ud); } |
| 1646 |
|
| 1647 |
/** |
| 1648 |
* @brief Inserts a %pareto_distribution random number distribution |
| 1649 |
* @p __x into the output stream @p __os. |
| 1650 |
* |
| 1651 |
* @param __os An output stream. |
| 1652 |
* @param __x A %pareto_distribution random number distribution. |
| 1653 |
* |
| 1654 |
* @returns The output stream with the state of @p __x inserted or in |
| 1655 |
* an error state. |
| 1656 |
*/ |
| 1657 |
template<typename _RealType1, typename _CharT, typename _Traits> |
| 1658 |
friend std::basic_ostream<_CharT, _Traits>& |
| 1659 |
operator<<(std::basic_ostream<_CharT, _Traits>&, |
| 1660 |
const pareto_distribution<_RealType1>&); |
| 1661 |
|
| 1662 |
/** |
| 1663 |
* @brief Extracts a %pareto_distribution random number distribution |
| 1664 |
* @p __x from the input stream @p __is. |
| 1665 |
* |
| 1666 |
* @param __is An input stream. |
| 1667 |
* @param __x A %pareto_distribution random number |
| 1668 |
* generator engine. |
| 1669 |
* |
| 1670 |
* @returns The input stream with @p __x extracted or in an error state. |
| 1671 |
*/ |
| 1672 |
template<typename _RealType1, typename _CharT, typename _Traits> |
| 1673 |
friend std::basic_istream<_CharT, _Traits>& |
| 1674 |
operator>>(std::basic_istream<_CharT, _Traits>&, |
| 1675 |
pareto_distribution<_RealType1>&); |
| 1676 |
|
| 1677 |
private: |
| 1678 |
template<typename _ForwardIterator, |
| 1679 |
typename _UniformRandomNumberGenerator> |
| 1680 |
void |
| 1681 |
__generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| 1682 |
_UniformRandomNumberGenerator& __urng, |
| 1683 |
const param_type& __p); |
| 1684 |
|
| 1685 |
param_type _M_param; |
| 1686 |
|
| 1687 |
std::uniform_real_distribution<result_type> _M_ud; |
| 1688 |
}; |
| 1689 |
|
| 1690 |
/** |
| 1691 |
* @brief Return true if two Pareto distributions are not equal. |
| 1692 |
*/ |
| 1693 |
template<typename _RealType> |
| 1694 |
inline bool |
| 1695 |
operator!=(const pareto_distribution<_RealType>& __d1, |
| 1696 |
const pareto_distribution<_RealType>& __d2) |
| 1697 |
{ return !(__d1 == __d2); } |
| 1698 |
|
| 1699 |
|
| 1700 |
/** |
| 1701 |
* @brief A K continuous distribution for random numbers. |
| 1702 |
* |
| 1703 |
* The formula for the K probability density function is |
| 1704 |
* @f[ |
| 1705 |
* p(x|\lambda, \mu, \nu) = \frac{2}{x} |
| 1706 |
* \left(\frac{\lambda\nu x}{\mu}\right)^{\frac{\lambda + \nu}{2}} |
| 1707 |
* \frac{1}{\Gamma(\lambda)\Gamma(\nu)} |
| 1708 |
* K_{\nu - \lambda}\left(2\sqrt{\frac{\lambda\nu x}{\mu}}\right) |
| 1709 |
* @f] |
| 1710 |
* where @f$I_0(z)@f$ is the modified Bessel function of the second kind |
| 1711 |
* of order @f$\nu - \lambda@f$ and @f$\lambda > 0@f$, @f$\mu > 0@f$ |
| 1712 |
* and @f$\nu > 0@f$. |
| 1713 |
* |
| 1714 |
* <table border=1 cellpadding=10 cellspacing=0> |
| 1715 |
* <caption align=top>Distribution Statistics</caption> |
| 1716 |
* <tr><td>Mean</td><td>@f$\mu@f$</td></tr> |
| 1717 |
* <tr><td>Variance</td><td>@f$\mu^2\frac{\lambda + \nu + 1}{\lambda\nu}@f$</td></tr> |
| 1718 |
* <tr><td>Range</td><td>@f$[0, \infty)@f$</td></tr> |
| 1719 |
* </table> |
| 1720 |
*/ |
| 1721 |
template<typename _RealType = double> |
| 1722 |
class |
| 1723 |
k_distribution |
| 1724 |
{ |
| 1725 |
static_assert(std::is_floating_point<_RealType>::value, |
| 1726 |
"template argument not a floating point type"); |
| 1727 |
|
| 1728 |
public: |
| 1729 |
/** The type of the range of the distribution. */ |
| 1730 |
typedef _RealType result_type; |
| 1731 |
|
| 1732 |
/** Parameter type. */ |
| 1733 |
struct param_type |
| 1734 |
{ |
| 1735 |
typedef k_distribution<result_type> distribution_type; |
| 1736 |
|
| 1737 |
param_type() : param_type(1) { } |
| 1738 |
|
| 1739 |
param_type(result_type __lambda_val, |
| 1740 |
result_type __mu_val = result_type(1), |
| 1741 |
result_type __nu_val = result_type(1)) |
| 1742 |
: _M_lambda(__lambda_val), _M_mu(__mu_val), _M_nu(__nu_val) |
| 1743 |
{ |
| 1744 |
__glibcxx_assert(_M_lambda > result_type(0)); |
| 1745 |
__glibcxx_assert(_M_mu > result_type(0)); |
| 1746 |
__glibcxx_assert(_M_nu > result_type(0)); |
| 1747 |
} |
| 1748 |
|
| 1749 |
result_type |
| 1750 |
lambda() const |
| 1751 |
{ return _M_lambda; } |
| 1752 |
|
| 1753 |
result_type |
| 1754 |
mu() const |
| 1755 |
{ return _M_mu; } |
| 1756 |
|
| 1757 |
result_type |
| 1758 |
nu() const |
| 1759 |
{ return _M_nu; } |
| 1760 |
|
| 1761 |
friend bool |
| 1762 |
operator==(const param_type& __p1, const param_type& __p2) |
| 1763 |
{ |
| 1764 |
return __p1._M_lambda == __p2._M_lambda |
| 1765 |
&& __p1._M_mu == __p2._M_mu |
| 1766 |
&& __p1._M_nu == __p2._M_nu; |
| 1767 |
} |
| 1768 |
|
| 1769 |
friend bool |
| 1770 |
operator!=(const param_type& __p1, const param_type& __p2) |
| 1771 |
{ return !(__p1 == __p2); } |
| 1772 |
|
| 1773 |
private: |
| 1774 |
void _M_initialize(); |
| 1775 |
|
| 1776 |
result_type _M_lambda; |
| 1777 |
result_type _M_mu; |
| 1778 |
result_type _M_nu; |
| 1779 |
}; |
| 1780 |
|
| 1781 |
/** |
| 1782 |
* @brief Constructors. |
| 1783 |
* @{ |
| 1784 |
*/ |
| 1785 |
|
| 1786 |
k_distribution() : k_distribution(1) { } |
| 1787 |
|
| 1788 |
explicit |
| 1789 |
k_distribution(result_type __lambda_val, |
| 1790 |
result_type __mu_val = result_type(1), |
| 1791 |
result_type __nu_val = result_type(1)) |
| 1792 |
: _M_param(__lambda_val, __mu_val, __nu_val), |
| 1793 |
_M_gd1(__lambda_val, result_type(1) / __lambda_val), |
| 1794 |
_M_gd2(__nu_val, __mu_val / __nu_val) |
| 1795 |
{ } |
| 1796 |
|
| 1797 |
explicit |
| 1798 |
k_distribution(const param_type& __p) |
| 1799 |
: _M_param(__p), |
| 1800 |
_M_gd1(__p.lambda(), result_type(1) / __p.lambda()), |
| 1801 |
_M_gd2(__p.nu(), __p.mu() / __p.nu()) |
| 1802 |
{ } |
| 1803 |
|
| 1804 |
/// @} |
| 1805 |
|
| 1806 |
/** |
| 1807 |
* @brief Resets the distribution state. |
| 1808 |
*/ |
| 1809 |
void |
| 1810 |
reset() |
| 1811 |
{ |
| 1812 |
_M_gd1.reset(); |
| 1813 |
_M_gd2.reset(); |
| 1814 |
} |
| 1815 |
|
| 1816 |
/** |
| 1817 |
* @brief Return the parameters of the distribution. |
| 1818 |
*/ |
| 1819 |
result_type |
| 1820 |
lambda() const |
| 1821 |
{ return _M_param.lambda(); } |
| 1822 |
|
| 1823 |
result_type |
| 1824 |
mu() const |
| 1825 |
{ return _M_param.mu(); } |
| 1826 |
|
| 1827 |
result_type |
| 1828 |
nu() const |
| 1829 |
{ return _M_param.nu(); } |
| 1830 |
|
| 1831 |
/** |
| 1832 |
* @brief Returns the parameter set of the distribution. |
| 1833 |
*/ |
| 1834 |
param_type |
| 1835 |
param() const |
| 1836 |
{ return _M_param; } |
| 1837 |
|
| 1838 |
/** |
| 1839 |
* @brief Sets the parameter set of the distribution. |
| 1840 |
* @param __param The new parameter set of the distribution. |
| 1841 |
*/ |
| 1842 |
void |
| 1843 |
param(const param_type& __param) |
| 1844 |
{ _M_param = __param; } |
| 1845 |
|
| 1846 |
/** |
| 1847 |
* @brief Returns the greatest lower bound value of the distribution. |
| 1848 |
*/ |
| 1849 |
result_type |
| 1850 |
min() const |
| 1851 |
{ return result_type(0); } |
| 1852 |
|
| 1853 |
/** |
| 1854 |
* @brief Returns the least upper bound value of the distribution. |
| 1855 |
*/ |
| 1856 |
result_type |
| 1857 |
max() const |
| 1858 |
{ return std::numeric_limits<result_type>::max(); } |
| 1859 |
|
| 1860 |
/** |
| 1861 |
* @brief Generating functions. |
| 1862 |
*/ |
| 1863 |
template<typename _UniformRandomNumberGenerator> |
| 1864 |
result_type |
| 1865 |
operator()(_UniformRandomNumberGenerator&); |
| 1866 |
|
| 1867 |
template<typename _UniformRandomNumberGenerator> |
| 1868 |
result_type |
| 1869 |
operator()(_UniformRandomNumberGenerator&, const param_type&); |
| 1870 |
|
| 1871 |
template<typename _ForwardIterator, |
| 1872 |
typename _UniformRandomNumberGenerator> |
| 1873 |
void |
| 1874 |
__generate(_ForwardIterator __f, _ForwardIterator __t, |
| 1875 |
_UniformRandomNumberGenerator& __urng) |
| 1876 |
{ this->__generate(__f, __t, __urng, _M_param); } |
| 1877 |
|
| 1878 |
template<typename _ForwardIterator, |
| 1879 |
typename _UniformRandomNumberGenerator> |
| 1880 |
void |
| 1881 |
__generate(_ForwardIterator __f, _ForwardIterator __t, |
| 1882 |
_UniformRandomNumberGenerator& __urng, |
| 1883 |
const param_type& __p) |
| 1884 |
{ this->__generate_impl(__f, __t, __urng, __p); } |
| 1885 |
|
| 1886 |
template<typename _UniformRandomNumberGenerator> |
| 1887 |
void |
| 1888 |
__generate(result_type* __f, result_type* __t, |
| 1889 |
_UniformRandomNumberGenerator& __urng, |
| 1890 |
const param_type& __p) |
| 1891 |
{ this->__generate_impl(__f, __t, __urng, __p); } |
| 1892 |
|
| 1893 |
/** |
| 1894 |
* @brief Return true if two K distributions have |
| 1895 |
* the same parameters and the sequences that would |
| 1896 |
* be generated are equal. |
| 1897 |
*/ |
| 1898 |
friend bool |
| 1899 |
operator==(const k_distribution& __d1, |
| 1900 |
const k_distribution& __d2) |
| 1901 |
{ return (__d1._M_param == __d2._M_param |
| 1902 |
&& __d1._M_gd1 == __d2._M_gd1 |
| 1903 |
&& __d1._M_gd2 == __d2._M_gd2); } |
| 1904 |
|
| 1905 |
/** |
| 1906 |
* @brief Inserts a %k_distribution random number distribution |
| 1907 |
* @p __x into the output stream @p __os. |
| 1908 |
* |
| 1909 |
* @param __os An output stream. |
| 1910 |
* @param __x A %k_distribution random number distribution. |
| 1911 |
* |
| 1912 |
* @returns The output stream with the state of @p __x inserted or in |
| 1913 |
* an error state. |
| 1914 |
*/ |
| 1915 |
template<typename _RealType1, typename _CharT, typename _Traits> |
| 1916 |
friend std::basic_ostream<_CharT, _Traits>& |
| 1917 |
operator<<(std::basic_ostream<_CharT, _Traits>&, |
| 1918 |
const k_distribution<_RealType1>&); |
| 1919 |
|
| 1920 |
/** |
| 1921 |
* @brief Extracts a %k_distribution random number distribution |
| 1922 |
* @p __x from the input stream @p __is. |
| 1923 |
* |
| 1924 |
* @param __is An input stream. |
| 1925 |
* @param __x A %k_distribution random number |
| 1926 |
* generator engine. |
| 1927 |
* |
| 1928 |
* @returns The input stream with @p __x extracted or in an error state. |
| 1929 |
*/ |
| 1930 |
template<typename _RealType1, typename _CharT, typename _Traits> |
| 1931 |
friend std::basic_istream<_CharT, _Traits>& |
| 1932 |
operator>>(std::basic_istream<_CharT, _Traits>&, |
| 1933 |
k_distribution<_RealType1>&); |
| 1934 |
|
| 1935 |
private: |
| 1936 |
template<typename _ForwardIterator, |
| 1937 |
typename _UniformRandomNumberGenerator> |
| 1938 |
void |
| 1939 |
__generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| 1940 |
_UniformRandomNumberGenerator& __urng, |
| 1941 |
const param_type& __p); |
| 1942 |
|
| 1943 |
param_type _M_param; |
| 1944 |
|
| 1945 |
std::gamma_distribution<result_type> _M_gd1; |
| 1946 |
std::gamma_distribution<result_type> _M_gd2; |
| 1947 |
}; |
| 1948 |
|
| 1949 |
/** |
| 1950 |
* @brief Return true if two K distributions are not equal. |
| 1951 |
*/ |
| 1952 |
template<typename _RealType> |
| 1953 |
inline bool |
| 1954 |
operator!=(const k_distribution<_RealType>& __d1, |
| 1955 |
const k_distribution<_RealType>& __d2) |
| 1956 |
{ return !(__d1 == __d2); } |
| 1957 |
|
| 1958 |
|
| 1959 |
/** |
| 1960 |
* @brief An arcsine continuous distribution for random numbers. |
| 1961 |
* |
| 1962 |
* The formula for the arcsine probability density function is |
| 1963 |
* @f[ |
| 1964 |
* p(x|a,b) = \frac{1}{\pi \sqrt{(x - a)(b - x)}} |
| 1965 |
* @f] |
| 1966 |
* where @f$x >= a@f$ and @f$x <= b@f$. |
| 1967 |
* |
| 1968 |
* <table border=1 cellpadding=10 cellspacing=0> |
| 1969 |
* <caption align=top>Distribution Statistics</caption> |
| 1970 |
* <tr><td>Mean</td><td>@f$ (a + b) / 2 @f$</td></tr> |
| 1971 |
* <tr><td>Variance</td><td>@f$ (b - a)^2 / 8 @f$</td></tr> |
| 1972 |
* <tr><td>Range</td><td>@f$[a, b]@f$</td></tr> |
| 1973 |
* </table> |
| 1974 |
*/ |
| 1975 |
template<typename _RealType = double> |
| 1976 |
class |
| 1977 |
arcsine_distribution |
| 1978 |
{ |
| 1979 |
static_assert(std::is_floating_point<_RealType>::value, |
| 1980 |
"template argument not a floating point type"); |
| 1981 |
|
| 1982 |
public: |
| 1983 |
/** The type of the range of the distribution. */ |
| 1984 |
typedef _RealType result_type; |
| 1985 |
|
| 1986 |
/** Parameter type. */ |
| 1987 |
struct param_type |
| 1988 |
{ |
| 1989 |
typedef arcsine_distribution<result_type> distribution_type; |
| 1990 |
|
| 1991 |
param_type() : param_type(0) { } |
| 1992 |
|
| 1993 |
param_type(result_type __a, result_type __b = result_type(1)) |
| 1994 |
: _M_a(__a), _M_b(__b) |
| 1995 |
{ |
| 1996 |
__glibcxx_assert(_M_a <= _M_b); |
| 1997 |
} |
| 1998 |
|
| 1999 |
result_type |
| 2000 |
a() const |
| 2001 |
{ return _M_a; } |
| 2002 |
|
| 2003 |
result_type |
| 2004 |
b() const |
| 2005 |
{ return _M_b; } |
| 2006 |
|
| 2007 |
friend bool |
| 2008 |
operator==(const param_type& __p1, const param_type& __p2) |
| 2009 |
{ return __p1._M_a == __p2._M_a && __p1._M_b == __p2._M_b; } |
| 2010 |
|
| 2011 |
friend bool |
| 2012 |
operator!=(const param_type& __p1, const param_type& __p2) |
| 2013 |
{ return !(__p1 == __p2); } |
| 2014 |
|
| 2015 |
private: |
| 2016 |
void _M_initialize(); |
| 2017 |
|
| 2018 |
result_type _M_a; |
| 2019 |
result_type _M_b; |
| 2020 |
}; |
| 2021 |
|
| 2022 |
/** |
| 2023 |
* @brief Constructors. |
| 2024 |
* :{ |
| 2025 |
*/ |
| 2026 |
|
| 2027 |
arcsine_distribution() : arcsine_distribution(0) { } |
| 2028 |
|
| 2029 |
explicit |
| 2030 |
arcsine_distribution(result_type __a, result_type __b = result_type(1)) |
| 2031 |
: _M_param(__a, __b), |
| 2032 |
_M_ud(-1.5707963267948966192313216916397514L, |
| 2033 |
+1.5707963267948966192313216916397514L) |
| 2034 |
{ } |
| 2035 |
|
| 2036 |
explicit |
| 2037 |
arcsine_distribution(const param_type& __p) |
| 2038 |
: _M_param(__p), |
| 2039 |
_M_ud(-1.5707963267948966192313216916397514L, |
| 2040 |
+1.5707963267948966192313216916397514L) |
| 2041 |
{ } |
| 2042 |
|
| 2043 |
/// @} |
| 2044 |
|
| 2045 |
/** |
| 2046 |
* @brief Resets the distribution state. |
| 2047 |
*/ |
| 2048 |
void |
| 2049 |
reset() |
| 2050 |
{ _M_ud.reset(); } |
| 2051 |
|
| 2052 |
/** |
| 2053 |
* @brief Return the parameters of the distribution. |
| 2054 |
*/ |
| 2055 |
result_type |
| 2056 |
a() const |
| 2057 |
{ return _M_param.a(); } |
| 2058 |
|
| 2059 |
result_type |
| 2060 |
b() const |
| 2061 |
{ return _M_param.b(); } |
| 2062 |
|
| 2063 |
/** |
| 2064 |
* @brief Returns the parameter set of the distribution. |
| 2065 |
*/ |
| 2066 |
param_type |
| 2067 |
param() const |
| 2068 |
{ return _M_param; } |
| 2069 |
|
| 2070 |
/** |
| 2071 |
* @brief Sets the parameter set of the distribution. |
| 2072 |
* @param __param The new parameter set of the distribution. |
| 2073 |
*/ |
| 2074 |
void |
| 2075 |
param(const param_type& __param) |
| 2076 |
{ _M_param = __param; } |
| 2077 |
|
| 2078 |
/** |
| 2079 |
* @brief Returns the greatest lower bound value of the distribution. |
| 2080 |
*/ |
| 2081 |
result_type |
| 2082 |
min() const |
| 2083 |
{ return this->a(); } |
| 2084 |
|
| 2085 |
/** |
| 2086 |
* @brief Returns the least upper bound value of the distribution. |
| 2087 |
*/ |
| 2088 |
result_type |
| 2089 |
max() const |
| 2090 |
{ return this->b(); } |
| 2091 |
|
| 2092 |
/** |
| 2093 |
* @brief Generating functions. |
| 2094 |
*/ |
| 2095 |
template<typename _UniformRandomNumberGenerator> |
| 2096 |
result_type |
| 2097 |
operator()(_UniformRandomNumberGenerator& __urng) |
| 2098 |
{ |
| 2099 |
result_type __x = std::sin(this->_M_ud(__urng)); |
| 2100 |
return (__x * (this->b() - this->a()) |
| 2101 |
+ this->a() + this->b()) / result_type(2); |
| 2102 |
} |
| 2103 |
|
| 2104 |
template<typename _UniformRandomNumberGenerator> |
| 2105 |
result_type |
| 2106 |
operator()(_UniformRandomNumberGenerator& __urng, |
| 2107 |
const param_type& __p) |
| 2108 |
{ |
| 2109 |
result_type __x = std::sin(this->_M_ud(__urng)); |
| 2110 |
return (__x * (__p.b() - __p.a()) |
| 2111 |
+ __p.a() + __p.b()) / result_type(2); |
| 2112 |
} |
| 2113 |
|
| 2114 |
template<typename _ForwardIterator, |
| 2115 |
typename _UniformRandomNumberGenerator> |
| 2116 |
void |
| 2117 |
__generate(_ForwardIterator __f, _ForwardIterator __t, |
| 2118 |
_UniformRandomNumberGenerator& __urng) |
| 2119 |
{ this->__generate(__f, __t, __urng, _M_param); } |
| 2120 |
|
| 2121 |
template<typename _ForwardIterator, |
| 2122 |
typename _UniformRandomNumberGenerator> |
| 2123 |
void |
| 2124 |
__generate(_ForwardIterator __f, _ForwardIterator __t, |
| 2125 |
_UniformRandomNumberGenerator& __urng, |
| 2126 |
const param_type& __p) |
| 2127 |
{ this->__generate_impl(__f, __t, __urng, __p); } |
| 2128 |
|
| 2129 |
template<typename _UniformRandomNumberGenerator> |
| 2130 |
void |
| 2131 |
__generate(result_type* __f, result_type* __t, |
| 2132 |
_UniformRandomNumberGenerator& __urng, |
| 2133 |
const param_type& __p) |
| 2134 |
{ this->__generate_impl(__f, __t, __urng, __p); } |
| 2135 |
|
| 2136 |
/** |
| 2137 |
* @brief Return true if two arcsine distributions have |
| 2138 |
* the same parameters and the sequences that would |
| 2139 |
* be generated are equal. |
| 2140 |
*/ |
| 2141 |
friend bool |
| 2142 |
operator==(const arcsine_distribution& __d1, |
| 2143 |
const arcsine_distribution& __d2) |
| 2144 |
{ return (__d1._M_param == __d2._M_param |
| 2145 |
&& __d1._M_ud == __d2._M_ud); } |
| 2146 |
|
| 2147 |
/** |
| 2148 |
* @brief Inserts a %arcsine_distribution random number distribution |
| 2149 |
* @p __x into the output stream @p __os. |
| 2150 |
* |
| 2151 |
* @param __os An output stream. |
| 2152 |
* @param __x A %arcsine_distribution random number distribution. |
| 2153 |
* |
| 2154 |
* @returns The output stream with the state of @p __x inserted or in |
| 2155 |
* an error state. |
| 2156 |
*/ |
| 2157 |
template<typename _RealType1, typename _CharT, typename _Traits> |
| 2158 |
friend std::basic_ostream<_CharT, _Traits>& |
| 2159 |
operator<<(std::basic_ostream<_CharT, _Traits>&, |
| 2160 |
const arcsine_distribution<_RealType1>&); |
| 2161 |
|
| 2162 |
/** |
| 2163 |
* @brief Extracts a %arcsine_distribution random number distribution |
| 2164 |
* @p __x from the input stream @p __is. |
| 2165 |
* |
| 2166 |
* @param __is An input stream. |
| 2167 |
* @param __x A %arcsine_distribution random number |
| 2168 |
* generator engine. |
| 2169 |
* |
| 2170 |
* @returns The input stream with @p __x extracted or in an error state. |
| 2171 |
*/ |
| 2172 |
template<typename _RealType1, typename _CharT, typename _Traits> |
| 2173 |
friend std::basic_istream<_CharT, _Traits>& |
| 2174 |
operator>>(std::basic_istream<_CharT, _Traits>&, |
| 2175 |
arcsine_distribution<_RealType1>&); |
| 2176 |
|
| 2177 |
private: |
| 2178 |
template<typename _ForwardIterator, |
| 2179 |
typename _UniformRandomNumberGenerator> |
| 2180 |
void |
| 2181 |
__generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| 2182 |
_UniformRandomNumberGenerator& __urng, |
| 2183 |
const param_type& __p); |
| 2184 |
|
| 2185 |
param_type _M_param; |
| 2186 |
|
| 2187 |
std::uniform_real_distribution<result_type> _M_ud; |
| 2188 |
}; |
| 2189 |
|
| 2190 |
/** |
| 2191 |
* @brief Return true if two arcsine distributions are not equal. |
| 2192 |
*/ |
| 2193 |
template<typename _RealType> |
| 2194 |
inline bool |
| 2195 |
operator!=(const arcsine_distribution<_RealType>& __d1, |
| 2196 |
const arcsine_distribution<_RealType>& __d2) |
| 2197 |
{ return !(__d1 == __d2); } |
| 2198 |
|
| 2199 |
|
| 2200 |
/** |
| 2201 |
* @brief A Hoyt continuous distribution for random numbers. |
| 2202 |
* |
| 2203 |
* The formula for the Hoyt probability density function is |
| 2204 |
* @f[ |
| 2205 |
* p(x|q,\omega) = \frac{(1 + q^2)x}{q\omega} |
| 2206 |
* \exp\left(-\frac{(1 + q^2)^2 x^2}{4 q^2 \omega}\right) |
| 2207 |
* I_0\left(\frac{(1 - q^4) x^2}{4 q^2 \omega}\right) |
| 2208 |
* @f] |
| 2209 |
* where @f$I_0(z)@f$ is the modified Bessel function of the first kind |
| 2210 |
* of order 0 and @f$0 < q < 1@f$. |
| 2211 |
* |
| 2212 |
* <table border=1 cellpadding=10 cellspacing=0> |
| 2213 |
* <caption align=top>Distribution Statistics</caption> |
| 2214 |
* <tr><td>Mean</td><td>@f$ \sqrt{\frac{2}{\pi}} \sqrt{\frac{\omega}{1 + q^2}} |
| 2215 |
* E(1 - q^2) @f$</td></tr> |
| 2216 |
* <tr><td>Variance</td><td>@f$ \omega \left(1 - \frac{2E^2(1 - q^2)} |
| 2217 |
* {\pi (1 + q^2)}\right) @f$</td></tr> |
| 2218 |
* <tr><td>Range</td><td>@f$[0, \infty)@f$</td></tr> |
| 2219 |
* </table> |
| 2220 |
* where @f$E(x)@f$ is the elliptic function of the second kind. |
| 2221 |
*/ |
| 2222 |
template<typename _RealType = double> |
| 2223 |
class |
| 2224 |
hoyt_distribution |
| 2225 |
{ |
| 2226 |
static_assert(std::is_floating_point<_RealType>::value, |
| 2227 |
"template argument not a floating point type"); |
| 2228 |
|
| 2229 |
public: |
| 2230 |
/** The type of the range of the distribution. */ |
| 2231 |
typedef _RealType result_type; |
| 2232 |
|
| 2233 |
/** Parameter type. */ |
| 2234 |
struct param_type |
| 2235 |
{ |
| 2236 |
typedef hoyt_distribution<result_type> distribution_type; |
| 2237 |
|
| 2238 |
param_type() : param_type(0.5) { } |
| 2239 |
|
| 2240 |
param_type(result_type __q, result_type __omega = result_type(1)) |
| 2241 |
: _M_q(__q), _M_omega(__omega) |
| 2242 |
{ |
| 2243 |
__glibcxx_assert(_M_q > result_type(0)); |
| 2244 |
__glibcxx_assert(_M_q < result_type(1)); |
| 2245 |
} |
| 2246 |
|
| 2247 |
result_type |
| 2248 |
q() const |
| 2249 |
{ return _M_q; } |
| 2250 |
|
| 2251 |
result_type |
| 2252 |
omega() const |
| 2253 |
{ return _M_omega; } |
| 2254 |
|
| 2255 |
friend bool |
| 2256 |
operator==(const param_type& __p1, const param_type& __p2) |
| 2257 |
{ return __p1._M_q == __p2._M_q && __p1._M_omega == __p2._M_omega; } |
| 2258 |
|
| 2259 |
friend bool |
| 2260 |
operator!=(const param_type& __p1, const param_type& __p2) |
| 2261 |
{ return !(__p1 == __p2); } |
| 2262 |
|
| 2263 |
private: |
| 2264 |
void _M_initialize(); |
| 2265 |
|
| 2266 |
result_type _M_q; |
| 2267 |
result_type _M_omega; |
| 2268 |
}; |
| 2269 |
|
| 2270 |
/** |
| 2271 |
* @brief Constructors. |
| 2272 |
* @{ |
| 2273 |
*/ |
| 2274 |
|
| 2275 |
hoyt_distribution() : hoyt_distribution(0.5) { } |
| 2276 |
|
| 2277 |
explicit |
| 2278 |
hoyt_distribution(result_type __q, result_type __omega = result_type(1)) |
| 2279 |
: _M_param(__q, __omega), |
| 2280 |
_M_ad(result_type(0.5L) * (result_type(1) + __q * __q), |
| 2281 |
result_type(0.5L) * (result_type(1) + __q * __q) |
| 2282 |
/ (__q * __q)), |
| 2283 |
_M_ed(result_type(1)) |
| 2284 |
{ } |
| 2285 |
|
| 2286 |
explicit |
| 2287 |
hoyt_distribution(const param_type& __p) |
| 2288 |
: _M_param(__p), |
| 2289 |
_M_ad(result_type(0.5L) * (result_type(1) + __p.q() * __p.q()), |
| 2290 |
result_type(0.5L) * (result_type(1) + __p.q() * __p.q()) |
| 2291 |
/ (__p.q() * __p.q())), |
| 2292 |
_M_ed(result_type(1)) |
| 2293 |
{ } |
| 2294 |
|
| 2295 |
/** |
| 2296 |
* @brief Resets the distribution state. |
| 2297 |
*/ |
| 2298 |
void |
| 2299 |
reset() |
| 2300 |
{ |
| 2301 |
_M_ad.reset(); |
| 2302 |
_M_ed.reset(); |
| 2303 |
} |
| 2304 |
|
| 2305 |
/** |
| 2306 |
* @brief Return the parameters of the distribution. |
| 2307 |
*/ |
| 2308 |
result_type |
| 2309 |
q() const |
| 2310 |
{ return _M_param.q(); } |
| 2311 |
|
| 2312 |
result_type |
| 2313 |
omega() const |
| 2314 |
{ return _M_param.omega(); } |
| 2315 |
|
| 2316 |
/** |
| 2317 |
* @brief Returns the parameter set of the distribution. |
| 2318 |
*/ |
| 2319 |
param_type |
| 2320 |
param() const |
| 2321 |
{ return _M_param; } |
| 2322 |
|
| 2323 |
/** |
| 2324 |
* @brief Sets the parameter set of the distribution. |
| 2325 |
* @param __param The new parameter set of the distribution. |
| 2326 |
*/ |
| 2327 |
void |
| 2328 |
param(const param_type& __param) |
| 2329 |
{ _M_param = __param; } |
| 2330 |
|
| 2331 |
/** |
| 2332 |
* @brief Returns the greatest lower bound value of the distribution. |
| 2333 |
*/ |
| 2334 |
result_type |
| 2335 |
min() const |
| 2336 |
{ return result_type(0); } |
| 2337 |
|
| 2338 |
/** |
| 2339 |
* @brief Returns the least upper bound value of the distribution. |
| 2340 |
*/ |
| 2341 |
result_type |
| 2342 |
max() const |
| 2343 |
{ return std::numeric_limits<result_type>::max(); } |
| 2344 |
|
| 2345 |
/** |
| 2346 |
* @brief Generating functions. |
| 2347 |
*/ |
| 2348 |
template<typename _UniformRandomNumberGenerator> |
| 2349 |
result_type |
| 2350 |
operator()(_UniformRandomNumberGenerator& __urng); |
| 2351 |
|
| 2352 |
template<typename _UniformRandomNumberGenerator> |
| 2353 |
result_type |
| 2354 |
operator()(_UniformRandomNumberGenerator& __urng, |
| 2355 |
const param_type& __p); |
| 2356 |
|
| 2357 |
template<typename _ForwardIterator, |
| 2358 |
typename _UniformRandomNumberGenerator> |
| 2359 |
void |
| 2360 |
__generate(_ForwardIterator __f, _ForwardIterator __t, |
| 2361 |
_UniformRandomNumberGenerator& __urng) |
| 2362 |
{ this->__generate(__f, __t, __urng, _M_param); } |
| 2363 |
|
| 2364 |
template<typename _ForwardIterator, |
| 2365 |
typename _UniformRandomNumberGenerator> |
| 2366 |
void |
| 2367 |
__generate(_ForwardIterator __f, _ForwardIterator __t, |
| 2368 |
_UniformRandomNumberGenerator& __urng, |
| 2369 |
const param_type& __p) |
| 2370 |
{ this->__generate_impl(__f, __t, __urng, __p); } |
| 2371 |
|
| 2372 |
template<typename _UniformRandomNumberGenerator> |
| 2373 |
void |
| 2374 |
__generate(result_type* __f, result_type* __t, |
| 2375 |
_UniformRandomNumberGenerator& __urng, |
| 2376 |
const param_type& __p) |
| 2377 |
{ this->__generate_impl(__f, __t, __urng, __p); } |
| 2378 |
|
| 2379 |
/** |
| 2380 |
* @brief Return true if two Hoyt distributions have |
| 2381 |
* the same parameters and the sequences that would |
| 2382 |
* be generated are equal. |
| 2383 |
*/ |
| 2384 |
friend bool |
| 2385 |
operator==(const hoyt_distribution& __d1, |
| 2386 |
const hoyt_distribution& __d2) |
| 2387 |
{ return (__d1._M_param == __d2._M_param |
| 2388 |
&& __d1._M_ad == __d2._M_ad |
| 2389 |
&& __d1._M_ed == __d2._M_ed); } |
| 2390 |
|
| 2391 |
/** |
| 2392 |
* @brief Inserts a %hoyt_distribution random number distribution |
| 2393 |
* @p __x into the output stream @p __os. |
| 2394 |
* |
| 2395 |
* @param __os An output stream. |
| 2396 |
* @param __x A %hoyt_distribution random number distribution. |
| 2397 |
* |
| 2398 |
* @returns The output stream with the state of @p __x inserted or in |
| 2399 |
* an error state. |
| 2400 |
*/ |
| 2401 |
template<typename _RealType1, typename _CharT, typename _Traits> |
| 2402 |
friend std::basic_ostream<_CharT, _Traits>& |
| 2403 |
operator<<(std::basic_ostream<_CharT, _Traits>&, |
| 2404 |
const hoyt_distribution<_RealType1>&); |
| 2405 |
|
| 2406 |
/** |
| 2407 |
* @brief Extracts a %hoyt_distribution random number distribution |
| 2408 |
* @p __x from the input stream @p __is. |
| 2409 |
* |
| 2410 |
* @param __is An input stream. |
| 2411 |
* @param __x A %hoyt_distribution random number |
| 2412 |
* generator engine. |
| 2413 |
* |
| 2414 |
* @returns The input stream with @p __x extracted or in an error state. |
| 2415 |
*/ |
| 2416 |
template<typename _RealType1, typename _CharT, typename _Traits> |
| 2417 |
friend std::basic_istream<_CharT, _Traits>& |
| 2418 |
operator>>(std::basic_istream<_CharT, _Traits>&, |
| 2419 |
hoyt_distribution<_RealType1>&); |
| 2420 |
|
| 2421 |
private: |
| 2422 |
template<typename _ForwardIterator, |
| 2423 |
typename _UniformRandomNumberGenerator> |
| 2424 |
void |
| 2425 |
__generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| 2426 |
_UniformRandomNumberGenerator& __urng, |
| 2427 |
const param_type& __p); |
| 2428 |
|
| 2429 |
param_type _M_param; |
| 2430 |
|
| 2431 |
__gnu_cxx::arcsine_distribution<result_type> _M_ad; |
| 2432 |
std::exponential_distribution<result_type> _M_ed; |
| 2433 |
}; |
| 2434 |
|
| 2435 |
/** |
| 2436 |
* @brief Return true if two Hoyt distributions are not equal. |
| 2437 |
*/ |
| 2438 |
template<typename _RealType> |
| 2439 |
inline bool |
| 2440 |
operator!=(const hoyt_distribution<_RealType>& __d1, |
| 2441 |
const hoyt_distribution<_RealType>& __d2) |
| 2442 |
{ return !(__d1 == __d2); } |
| 2443 |
|
| 2444 |
|
| 2445 |
/** |
| 2446 |
* @brief A triangular distribution for random numbers. |
| 2447 |
* |
| 2448 |
* The formula for the triangular probability density function is |
| 2449 |
* @f[ |
| 2450 |
* / 0 for x < a |
| 2451 |
* p(x|a,b,c) = | \frac{2(x-a)}{(c-a)(b-a)} for a <= x <= b |
| 2452 |
* | \frac{2(c-x)}{(c-a)(c-b)} for b < x <= c |
| 2453 |
* \ 0 for c < x |
| 2454 |
* @f] |
| 2455 |
* |
| 2456 |
* <table border=1 cellpadding=10 cellspacing=0> |
| 2457 |
* <caption align=top>Distribution Statistics</caption> |
| 2458 |
* <tr><td>Mean</td><td>@f$ \frac{a+b+c}{2} @f$</td></tr> |
| 2459 |
* <tr><td>Variance</td><td>@f$ \frac{a^2+b^2+c^2-ab-ac-bc} |
| 2460 |
* {18}@f$</td></tr> |
| 2461 |
* <tr><td>Range</td><td>@f$[a, c]@f$</td></tr> |
| 2462 |
* </table> |
| 2463 |
*/ |
| 2464 |
template<typename _RealType = double> |
| 2465 |
class triangular_distribution |
| 2466 |
{ |
| 2467 |
static_assert(std::is_floating_point<_RealType>::value, |
| 2468 |
"template argument not a floating point type"); |
| 2469 |
|
| 2470 |
public: |
| 2471 |
/** The type of the range of the distribution. */ |
| 2472 |
typedef _RealType result_type; |
| 2473 |
|
| 2474 |
/** Parameter type. */ |
| 2475 |
struct param_type |
| 2476 |
{ |
| 2477 |
friend class triangular_distribution<_RealType>; |
| 2478 |
|
| 2479 |
param_type() : param_type(0) { } |
| 2480 |
|
| 2481 |
explicit |
| 2482 |
param_type(_RealType __a, |
| 2483 |
_RealType __b = _RealType(0.5), |
| 2484 |
_RealType __c = _RealType(1)) |
| 2485 |
: _M_a(__a), _M_b(__b), _M_c(__c) |
| 2486 |
{ |
| 2487 |
__glibcxx_assert(_M_a <= _M_b); |
| 2488 |
__glibcxx_assert(_M_b <= _M_c); |
| 2489 |
__glibcxx_assert(_M_a < _M_c); |
| 2490 |
|
| 2491 |
_M_r_ab = (_M_b - _M_a) / (_M_c - _M_a); |
| 2492 |
_M_f_ab_ac = (_M_b - _M_a) * (_M_c - _M_a); |
| 2493 |
_M_f_bc_ac = (_M_c - _M_b) * (_M_c - _M_a); |
| 2494 |
} |
| 2495 |
|
| 2496 |
_RealType |
| 2497 |
a() const |
| 2498 |
{ return _M_a; } |
| 2499 |
|
| 2500 |
_RealType |
| 2501 |
b() const |
| 2502 |
{ return _M_b; } |
| 2503 |
|
| 2504 |
_RealType |
| 2505 |
c() const |
| 2506 |
{ return _M_c; } |
| 2507 |
|
| 2508 |
friend bool |
| 2509 |
operator==(const param_type& __p1, const param_type& __p2) |
| 2510 |
{ |
| 2511 |
return (__p1._M_a == __p2._M_a && __p1._M_b == __p2._M_b |
| 2512 |
&& __p1._M_c == __p2._M_c); |
| 2513 |
} |
| 2514 |
|
| 2515 |
friend bool |
| 2516 |
operator!=(const param_type& __p1, const param_type& __p2) |
| 2517 |
{ return !(__p1 == __p2); } |
| 2518 |
|
| 2519 |
private: |
| 2520 |
|
| 2521 |
_RealType _M_a; |
| 2522 |
_RealType _M_b; |
| 2523 |
_RealType _M_c; |
| 2524 |
_RealType _M_r_ab; |
| 2525 |
_RealType _M_f_ab_ac; |
| 2526 |
_RealType _M_f_bc_ac; |
| 2527 |
}; |
| 2528 |
|
| 2529 |
triangular_distribution() : triangular_distribution(0.0) { } |
| 2530 |
|
| 2531 |
/** |
| 2532 |
* @brief Constructs a triangle distribution with parameters |
| 2533 |
* @f$ a @f$, @f$ b @f$ and @f$ c @f$. |
| 2534 |
*/ |
| 2535 |
explicit |
| 2536 |
triangular_distribution(result_type __a, |
| 2537 |
result_type __b = result_type(0.5), |
| 2538 |
result_type __c = result_type(1)) |
| 2539 |
: _M_param(__a, __b, __c) |
| 2540 |
{ } |
| 2541 |
|
| 2542 |
explicit |
| 2543 |
triangular_distribution(const param_type& __p) |
| 2544 |
: _M_param(__p) |
| 2545 |
{ } |
| 2546 |
|
| 2547 |
/** |
| 2548 |
* @brief Resets the distribution state. |
| 2549 |
*/ |
| 2550 |
void |
| 2551 |
reset() |
| 2552 |
{ } |
| 2553 |
|
| 2554 |
/** |
| 2555 |
* @brief Returns the @f$ a @f$ of the distribution. |
| 2556 |
*/ |
| 2557 |
result_type |
| 2558 |
a() const |
| 2559 |
{ return _M_param.a(); } |
| 2560 |
|
| 2561 |
/** |
| 2562 |
* @brief Returns the @f$ b @f$ of the distribution. |
| 2563 |
*/ |
| 2564 |
result_type |
| 2565 |
b() const |
| 2566 |
{ return _M_param.b(); } |
| 2567 |
|
| 2568 |
/** |
| 2569 |
* @brief Returns the @f$ c @f$ of the distribution. |
| 2570 |
*/ |
| 2571 |
result_type |
| 2572 |
c() const |
| 2573 |
{ return _M_param.c(); } |
| 2574 |
|
| 2575 |
/** |
| 2576 |
* @brief Returns the parameter set of the distribution. |
| 2577 |
*/ |
| 2578 |
param_type |
| 2579 |
param() const |
| 2580 |
{ return _M_param; } |
| 2581 |
|
| 2582 |
/** |
| 2583 |
* @brief Sets the parameter set of the distribution. |
| 2584 |
* @param __param The new parameter set of the distribution. |
| 2585 |
*/ |
| 2586 |
void |
| 2587 |
param(const param_type& __param) |
| 2588 |
{ _M_param = __param; } |
| 2589 |
|
| 2590 |
/** |
| 2591 |
* @brief Returns the greatest lower bound value of the distribution. |
| 2592 |
*/ |
| 2593 |
result_type |
| 2594 |
min() const |
| 2595 |
{ return _M_param._M_a; } |
| 2596 |
|
| 2597 |
/** |
| 2598 |
* @brief Returns the least upper bound value of the distribution. |
| 2599 |
*/ |
| 2600 |
result_type |
| 2601 |
max() const |
| 2602 |
{ return _M_param._M_c; } |
| 2603 |
|
| 2604 |
/** |
| 2605 |
* @brief Generating functions. |
| 2606 |
*/ |
| 2607 |
template<typename _UniformRandomNumberGenerator> |
| 2608 |
result_type |
| 2609 |
operator()(_UniformRandomNumberGenerator& __urng) |
| 2610 |
{ return this->operator()(__urng, _M_param); } |
| 2611 |
|
| 2612 |
template<typename _UniformRandomNumberGenerator> |
| 2613 |
result_type |
| 2614 |
operator()(_UniformRandomNumberGenerator& __urng, |
| 2615 |
const param_type& __p) |
| 2616 |
{ |
| 2617 |
std::__detail::_Adaptor<_UniformRandomNumberGenerator, result_type> |
| 2618 |
__aurng(__urng); |
| 2619 |
result_type __rnd = __aurng(); |
| 2620 |
if (__rnd <= __p._M_r_ab) |
| 2621 |
return __p.a() + std::sqrt(__rnd * __p._M_f_ab_ac); |
| 2622 |
else |
| 2623 |
return __p.c() - std::sqrt((result_type(1) - __rnd) |
| 2624 |
* __p._M_f_bc_ac); |
| 2625 |
} |
| 2626 |
|
| 2627 |
template<typename _ForwardIterator, |
| 2628 |
typename _UniformRandomNumberGenerator> |
| 2629 |
void |
| 2630 |
__generate(_ForwardIterator __f, _ForwardIterator __t, |
| 2631 |
_UniformRandomNumberGenerator& __urng) |
| 2632 |
{ this->__generate(__f, __t, __urng, _M_param); } |
| 2633 |
|
| 2634 |
template<typename _ForwardIterator, |
| 2635 |
typename _UniformRandomNumberGenerator> |
| 2636 |
void |
| 2637 |
__generate(_ForwardIterator __f, _ForwardIterator __t, |
| 2638 |
_UniformRandomNumberGenerator& __urng, |
| 2639 |
const param_type& __p) |
| 2640 |
{ this->__generate_impl(__f, __t, __urng, __p); } |
| 2641 |
|
| 2642 |
template<typename _UniformRandomNumberGenerator> |
| 2643 |
void |
| 2644 |
__generate(result_type* __f, result_type* __t, |
| 2645 |
_UniformRandomNumberGenerator& __urng, |
| 2646 |
const param_type& __p) |
| 2647 |
{ this->__generate_impl(__f, __t, __urng, __p); } |
| 2648 |
|
| 2649 |
/** |
| 2650 |
* @brief Return true if two triangle distributions have the same |
| 2651 |
* parameters and the sequences that would be generated |
| 2652 |
* are equal. |
| 2653 |
*/ |
| 2654 |
friend bool |
| 2655 |
operator==(const triangular_distribution& __d1, |
| 2656 |
const triangular_distribution& __d2) |
| 2657 |
{ return __d1._M_param == __d2._M_param; } |
| 2658 |
|
| 2659 |
/** |
| 2660 |
* @brief Inserts a %triangular_distribution random number distribution |
| 2661 |
* @p __x into the output stream @p __os. |
| 2662 |
* |
| 2663 |
* @param __os An output stream. |
| 2664 |
* @param __x A %triangular_distribution random number distribution. |
| 2665 |
* |
| 2666 |
* @returns The output stream with the state of @p __x inserted or in |
| 2667 |
* an error state. |
| 2668 |
*/ |
| 2669 |
template<typename _RealType1, typename _CharT, typename _Traits> |
| 2670 |
friend std::basic_ostream<_CharT, _Traits>& |
| 2671 |
operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| 2672 |
const __gnu_cxx::triangular_distribution<_RealType1>& __x); |
| 2673 |
|
| 2674 |
/** |
| 2675 |
* @brief Extracts a %triangular_distribution random number distribution |
| 2676 |
* @p __x from the input stream @p __is. |
| 2677 |
* |
| 2678 |
* @param __is An input stream. |
| 2679 |
* @param __x A %triangular_distribution random number generator engine. |
| 2680 |
* |
| 2681 |
* @returns The input stream with @p __x extracted or in an error state. |
| 2682 |
*/ |
| 2683 |
template<typename _RealType1, typename _CharT, typename _Traits> |
| 2684 |
friend std::basic_istream<_CharT, _Traits>& |
| 2685 |
operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| 2686 |
__gnu_cxx::triangular_distribution<_RealType1>& __x); |
| 2687 |
|
| 2688 |
private: |
| 2689 |
template<typename _ForwardIterator, |
| 2690 |
typename _UniformRandomNumberGenerator> |
| 2691 |
void |
| 2692 |
__generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| 2693 |
_UniformRandomNumberGenerator& __urng, |
| 2694 |
const param_type& __p); |
| 2695 |
|
| 2696 |
param_type _M_param; |
| 2697 |
}; |
| 2698 |
|
| 2699 |
/** |
| 2700 |
* @brief Return true if two triangle distributions are different. |
| 2701 |
*/ |
| 2702 |
template<typename _RealType> |
| 2703 |
inline bool |
| 2704 |
operator!=(const __gnu_cxx::triangular_distribution<_RealType>& __d1, |
| 2705 |
const __gnu_cxx::triangular_distribution<_RealType>& __d2) |
| 2706 |
{ return !(__d1 == __d2); } |
| 2707 |
|
| 2708 |
|
| 2709 |
/** |
| 2710 |
* @brief A von Mises distribution for random numbers. |
| 2711 |
* |
| 2712 |
* The formula for the von Mises probability density function is |
| 2713 |
* @f[ |
| 2714 |
* p(x|\mu,\kappa) = \frac{e^{\kappa \cos(x-\mu)}} |
| 2715 |
* {2\pi I_0(\kappa)} |
| 2716 |
* @f] |
| 2717 |
* |
| 2718 |
* The generating functions use the method according to: |
| 2719 |
* |
| 2720 |
* D. J. Best and N. I. Fisher, 1979. "Efficient Simulation of the |
| 2721 |
* von Mises Distribution", Journal of the Royal Statistical Society. |
| 2722 |
* Series C (Applied Statistics), Vol. 28, No. 2, pp. 152-157. |
| 2723 |
* |
| 2724 |
* <table border=1 cellpadding=10 cellspacing=0> |
| 2725 |
* <caption align=top>Distribution Statistics</caption> |
| 2726 |
* <tr><td>Mean</td><td>@f$ \mu @f$</td></tr> |
| 2727 |
* <tr><td>Variance</td><td>@f$ 1-I_1(\kappa)/I_0(\kappa) @f$</td></tr> |
| 2728 |
* <tr><td>Range</td><td>@f$[-\pi, \pi]@f$</td></tr> |
| 2729 |
* </table> |
| 2730 |
*/ |
| 2731 |
template<typename _RealType = double> |
| 2732 |
class von_mises_distribution |
| 2733 |
{ |
| 2734 |
static_assert(std::is_floating_point<_RealType>::value, |
| 2735 |
"template argument not a floating point type"); |
| 2736 |
|
| 2737 |
public: |
| 2738 |
/** The type of the range of the distribution. */ |
| 2739 |
typedef _RealType result_type; |
| 2740 |
|
| 2741 |
/** Parameter type. */ |
| 2742 |
struct param_type |
| 2743 |
{ |
| 2744 |
friend class von_mises_distribution<_RealType>; |
| 2745 |
|
| 2746 |
param_type() : param_type(0) { } |
| 2747 |
|
| 2748 |
explicit |
| 2749 |
param_type(_RealType __mu, _RealType __kappa = _RealType(1)) |
| 2750 |
: _M_mu(__mu), _M_kappa(__kappa) |
| 2751 |
{ |
| 2752 |
const _RealType __pi = __gnu_cxx::__math_constants<_RealType>::__pi; |
| 2753 |
__glibcxx_assert(_M_mu >= -__pi && _M_mu <= __pi); |
| 2754 |
__glibcxx_assert(_M_kappa >= _RealType(0)); |
| 2755 |
|
| 2756 |
auto __tau = std::sqrt(_RealType(4) * _M_kappa * _M_kappa |
| 2757 |
+ _RealType(1)) + _RealType(1); |
| 2758 |
auto __rho = ((__tau - std::sqrt(_RealType(2) * __tau)) |
| 2759 |
/ (_RealType(2) * _M_kappa)); |
| 2760 |
_M_r = (_RealType(1) + __rho * __rho) / (_RealType(2) * __rho); |
| 2761 |
} |
| 2762 |
|
| 2763 |
_RealType |
| 2764 |
mu() const |
| 2765 |
{ return _M_mu; } |
| 2766 |
|
| 2767 |
_RealType |
| 2768 |
kappa() const |
| 2769 |
{ return _M_kappa; } |
| 2770 |
|
| 2771 |
friend bool |
| 2772 |
operator==(const param_type& __p1, const param_type& __p2) |
| 2773 |
{ return __p1._M_mu == __p2._M_mu && __p1._M_kappa == __p2._M_kappa; } |
| 2774 |
|
| 2775 |
friend bool |
| 2776 |
operator!=(const param_type& __p1, const param_type& __p2) |
| 2777 |
{ return !(__p1 == __p2); } |
| 2778 |
|
| 2779 |
private: |
| 2780 |
_RealType _M_mu; |
| 2781 |
_RealType _M_kappa; |
| 2782 |
_RealType _M_r; |
| 2783 |
}; |
| 2784 |
|
| 2785 |
von_mises_distribution() : von_mises_distribution(0.0) { } |
| 2786 |
|
| 2787 |
/** |
| 2788 |
* @brief Constructs a von Mises distribution with parameters |
| 2789 |
* @f$\mu@f$ and @f$\kappa@f$. |
| 2790 |
*/ |
| 2791 |
explicit |
| 2792 |
von_mises_distribution(result_type __mu, |
| 2793 |
result_type __kappa = result_type(1)) |
| 2794 |
: _M_param(__mu, __kappa) |
| 2795 |
{ } |
| 2796 |
|
| 2797 |
explicit |
| 2798 |
von_mises_distribution(const param_type& __p) |
| 2799 |
: _M_param(__p) |
| 2800 |
{ } |
| 2801 |
|
| 2802 |
/** |
| 2803 |
* @brief Resets the distribution state. |
| 2804 |
*/ |
| 2805 |
void |
| 2806 |
reset() |
| 2807 |
{ } |
| 2808 |
|
| 2809 |
/** |
| 2810 |
* @brief Returns the @f$ \mu @f$ of the distribution. |
| 2811 |
*/ |
| 2812 |
result_type |
| 2813 |
mu() const |
| 2814 |
{ return _M_param.mu(); } |
| 2815 |
|
| 2816 |
/** |
| 2817 |
* @brief Returns the @f$ \kappa @f$ of the distribution. |
| 2818 |
*/ |
| 2819 |
result_type |
| 2820 |
kappa() const |
| 2821 |
{ return _M_param.kappa(); } |
| 2822 |
|
| 2823 |
/** |
| 2824 |
* @brief Returns the parameter set of the distribution. |
| 2825 |
*/ |
| 2826 |
param_type |
| 2827 |
param() const |
| 2828 |
{ return _M_param; } |
| 2829 |
|
| 2830 |
/** |
| 2831 |
* @brief Sets the parameter set of the distribution. |
| 2832 |
* @param __param The new parameter set of the distribution. |
| 2833 |
*/ |
| 2834 |
void |
| 2835 |
param(const param_type& __param) |
| 2836 |
{ _M_param = __param; } |
| 2837 |
|
| 2838 |
/** |
| 2839 |
* @brief Returns the greatest lower bound value of the distribution. |
| 2840 |
*/ |
| 2841 |
result_type |
| 2842 |
min() const |
| 2843 |
{ |
| 2844 |
return -__gnu_cxx::__math_constants<result_type>::__pi; |
| 2845 |
} |
| 2846 |
|
| 2847 |
/** |
| 2848 |
* @brief Returns the least upper bound value of the distribution. |
| 2849 |
*/ |
| 2850 |
result_type |
| 2851 |
max() const |
| 2852 |
{ |
| 2853 |
return __gnu_cxx::__math_constants<result_type>::__pi; |
| 2854 |
} |
| 2855 |
|
| 2856 |
/** |
| 2857 |
* @brief Generating functions. |
| 2858 |
*/ |
| 2859 |
template<typename _UniformRandomNumberGenerator> |
| 2860 |
result_type |
| 2861 |
operator()(_UniformRandomNumberGenerator& __urng) |
| 2862 |
{ return this->operator()(__urng, _M_param); } |
| 2863 |
|
| 2864 |
template<typename _UniformRandomNumberGenerator> |
| 2865 |
result_type |
| 2866 |
operator()(_UniformRandomNumberGenerator& __urng, |
| 2867 |
const param_type& __p); |
| 2868 |
|
| 2869 |
template<typename _ForwardIterator, |
| 2870 |
typename _UniformRandomNumberGenerator> |
| 2871 |
void |
| 2872 |
__generate(_ForwardIterator __f, _ForwardIterator __t, |
| 2873 |
_UniformRandomNumberGenerator& __urng) |
| 2874 |
{ this->__generate(__f, __t, __urng, _M_param); } |
| 2875 |
|
| 2876 |
template<typename _ForwardIterator, |
| 2877 |
typename _UniformRandomNumberGenerator> |
| 2878 |
void |
| 2879 |
__generate(_ForwardIterator __f, _ForwardIterator __t, |
| 2880 |
_UniformRandomNumberGenerator& __urng, |
| 2881 |
const param_type& __p) |
| 2882 |
{ this->__generate_impl(__f, __t, __urng, __p); } |
| 2883 |
|
| 2884 |
template<typename _UniformRandomNumberGenerator> |
| 2885 |
void |
| 2886 |
__generate(result_type* __f, result_type* __t, |
| 2887 |
_UniformRandomNumberGenerator& __urng, |
| 2888 |
const param_type& __p) |
| 2889 |
{ this->__generate_impl(__f, __t, __urng, __p); } |
| 2890 |
|
| 2891 |
/** |
| 2892 |
* @brief Return true if two von Mises distributions have the same |
| 2893 |
* parameters and the sequences that would be generated |
| 2894 |
* are equal. |
| 2895 |
*/ |
| 2896 |
friend bool |
| 2897 |
operator==(const von_mises_distribution& __d1, |
| 2898 |
const von_mises_distribution& __d2) |
| 2899 |
{ return __d1._M_param == __d2._M_param; } |
| 2900 |
|
| 2901 |
/** |
| 2902 |
* @brief Inserts a %von_mises_distribution random number distribution |
| 2903 |
* @p __x into the output stream @p __os. |
| 2904 |
* |
| 2905 |
* @param __os An output stream. |
| 2906 |
* @param __x A %von_mises_distribution random number distribution. |
| 2907 |
* |
| 2908 |
* @returns The output stream with the state of @p __x inserted or in |
| 2909 |
* an error state. |
| 2910 |
*/ |
| 2911 |
template<typename _RealType1, typename _CharT, typename _Traits> |
| 2912 |
friend std::basic_ostream<_CharT, _Traits>& |
| 2913 |
operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| 2914 |
const __gnu_cxx::von_mises_distribution<_RealType1>& __x); |
| 2915 |
|
| 2916 |
/** |
| 2917 |
* @brief Extracts a %von_mises_distribution random number distribution |
| 2918 |
* @p __x from the input stream @p __is. |
| 2919 |
* |
| 2920 |
* @param __is An input stream. |
| 2921 |
* @param __x A %von_mises_distribution random number generator engine. |
| 2922 |
* |
| 2923 |
* @returns The input stream with @p __x extracted or in an error state. |
| 2924 |
*/ |
| 2925 |
template<typename _RealType1, typename _CharT, typename _Traits> |
| 2926 |
friend std::basic_istream<_CharT, _Traits>& |
| 2927 |
operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| 2928 |
__gnu_cxx::von_mises_distribution<_RealType1>& __x); |
| 2929 |
|
| 2930 |
private: |
| 2931 |
template<typename _ForwardIterator, |
| 2932 |
typename _UniformRandomNumberGenerator> |
| 2933 |
void |
| 2934 |
__generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| 2935 |
_UniformRandomNumberGenerator& __urng, |
| 2936 |
const param_type& __p); |
| 2937 |
|
| 2938 |
param_type _M_param; |
| 2939 |
}; |
| 2940 |
|
| 2941 |
/** |
| 2942 |
* @brief Return true if two von Mises distributions are different. |
| 2943 |
*/ |
| 2944 |
template<typename _RealType> |
| 2945 |
inline bool |
| 2946 |
operator!=(const __gnu_cxx::von_mises_distribution<_RealType>& __d1, |
| 2947 |
const __gnu_cxx::von_mises_distribution<_RealType>& __d2) |
| 2948 |
{ return !(__d1 == __d2); } |
| 2949 |
|
| 2950 |
|
| 2951 |
/** |
| 2952 |
* @brief A discrete hypergeometric random number distribution. |
| 2953 |
* |
| 2954 |
* The hypergeometric distribution is a discrete probability distribution |
| 2955 |
* that describes the probability of @p k successes in @p n draws @a without |
| 2956 |
* replacement from a finite population of size @p N containing exactly @p K |
| 2957 |
* successes. |
| 2958 |
* |
| 2959 |
* The formula for the hypergeometric probability density function is |
| 2960 |
* @f[ |
| 2961 |
* p(k|N,K,n) = \frac{\binom{K}{k} \binom{N-K}{n-k}}{\binom{N}{n}} |
| 2962 |
* @f] |
| 2963 |
* where @f$N@f$ is the total population of the distribution, |
| 2964 |
* @f$K@f$ is the total population of the distribution. |
| 2965 |
* |
| 2966 |
* <table border=1 cellpadding=10 cellspacing=0> |
| 2967 |
* <caption align=top>Distribution Statistics</caption> |
| 2968 |
* <tr><td>Mean</td><td>@f$ n\frac{K}{N} @f$</td></tr> |
| 2969 |
* <tr><td>Variance</td><td>@f$ n\frac{K}{N}\frac{N-K}{N}\frac{N-n}{N-1} |
| 2970 |
* @f$</td></tr> |
| 2971 |
* <tr><td>Range</td><td>@f$[max(0, n+K-N), min(K, n)]@f$</td></tr> |
| 2972 |
* </table> |
| 2973 |
*/ |
| 2974 |
template<typename _UIntType = unsigned int> |
| 2975 |
class hypergeometric_distribution |
| 2976 |
{ |
| 2977 |
static_assert(std::is_unsigned<_UIntType>::value, "template argument " |
| 2978 |
"substituting _UIntType not an unsigned integral type"); |
| 2979 |
|
| 2980 |
public: |
| 2981 |
/** The type of the range of the distribution. */ |
| 2982 |
typedef _UIntType result_type; |
| 2983 |
|
| 2984 |
/** Parameter type. */ |
| 2985 |
struct param_type |
| 2986 |
{ |
| 2987 |
typedef hypergeometric_distribution<_UIntType> distribution_type; |
| 2988 |
friend class hypergeometric_distribution<_UIntType>; |
| 2989 |
|
| 2990 |
param_type() : param_type(10) { } |
| 2991 |
|
| 2992 |
explicit |
| 2993 |
param_type(result_type __N, result_type __K = 5, |
| 2994 |
result_type __n = 1) |
| 2995 |
: _M_N{__N}, _M_K{__K}, _M_n{__n} |
| 2996 |
{ |
| 2997 |
__glibcxx_assert(_M_N >= _M_K); |
| 2998 |
__glibcxx_assert(_M_N >= _M_n); |
| 2999 |
} |
| 3000 |
|
| 3001 |
result_type |
| 3002 |
total_size() const |
| 3003 |
{ return _M_N; } |
| 3004 |
|
| 3005 |
result_type |
| 3006 |
successful_size() const |
| 3007 |
{ return _M_K; } |
| 3008 |
|
| 3009 |
result_type |
| 3010 |
unsuccessful_size() const |
| 3011 |
{ return _M_N - _M_K; } |
| 3012 |
|
| 3013 |
result_type |
| 3014 |
total_draws() const |
| 3015 |
{ return _M_n; } |
| 3016 |
|
| 3017 |
friend bool |
| 3018 |
operator==(const param_type& __p1, const param_type& __p2) |
| 3019 |
{ return (__p1._M_N == __p2._M_N) |
| 3020 |
&& (__p1._M_K == __p2._M_K) |
| 3021 |
&& (__p1._M_n == __p2._M_n); } |
| 3022 |
|
| 3023 |
friend bool |
| 3024 |
operator!=(const param_type& __p1, const param_type& __p2) |
| 3025 |
{ return !(__p1 == __p2); } |
| 3026 |
|
| 3027 |
private: |
| 3028 |
|
| 3029 |
result_type _M_N; |
| 3030 |
result_type _M_K; |
| 3031 |
result_type _M_n; |
| 3032 |
}; |
| 3033 |
|
| 3034 |
// constructors and member functions |
| 3035 |
|
| 3036 |
hypergeometric_distribution() : hypergeometric_distribution(10) { } |
| 3037 |
|
| 3038 |
explicit |
| 3039 |
hypergeometric_distribution(result_type __N, result_type __K = 5, |
| 3040 |
result_type __n = 1) |
| 3041 |
: _M_param{__N, __K, __n} |
| 3042 |
{ } |
| 3043 |
|
| 3044 |
explicit |
| 3045 |
hypergeometric_distribution(const param_type& __p) |
| 3046 |
: _M_param{__p} |
| 3047 |
{ } |
| 3048 |
|
| 3049 |
/** |
| 3050 |
* @brief Resets the distribution state. |
| 3051 |
*/ |
| 3052 |
void |
| 3053 |
reset() |
| 3054 |
{ } |
| 3055 |
|
| 3056 |
/** |
| 3057 |
* @brief Returns the distribution parameter @p N, |
| 3058 |
* the total number of items. |
| 3059 |
*/ |
| 3060 |
result_type |
| 3061 |
total_size() const |
| 3062 |
{ return this->_M_param.total_size(); } |
| 3063 |
|
| 3064 |
/** |
| 3065 |
* @brief Returns the distribution parameter @p K, |
| 3066 |
* the total number of successful items. |
| 3067 |
*/ |
| 3068 |
result_type |
| 3069 |
successful_size() const |
| 3070 |
{ return this->_M_param.successful_size(); } |
| 3071 |
|
| 3072 |
/** |
| 3073 |
* @brief Returns the total number of unsuccessful items @f$ N - K @f$. |
| 3074 |
*/ |
| 3075 |
result_type |
| 3076 |
unsuccessful_size() const |
| 3077 |
{ return this->_M_param.unsuccessful_size(); } |
| 3078 |
|
| 3079 |
/** |
| 3080 |
* @brief Returns the distribution parameter @p n, |
| 3081 |
* the total number of draws. |
| 3082 |
*/ |
| 3083 |
result_type |
| 3084 |
total_draws() const |
| 3085 |
{ return this->_M_param.total_draws(); } |
| 3086 |
|
| 3087 |
/** |
| 3088 |
* @brief Returns the parameter set of the distribution. |
| 3089 |
*/ |
| 3090 |
param_type |
| 3091 |
param() const |
| 3092 |
{ return this->_M_param; } |
| 3093 |
|
| 3094 |
/** |
| 3095 |
* @brief Sets the parameter set of the distribution. |
| 3096 |
* @param __param The new parameter set of the distribution. |
| 3097 |
*/ |
| 3098 |
void |
| 3099 |
param(const param_type& __param) |
| 3100 |
{ this->_M_param = __param; } |
| 3101 |
|
| 3102 |
/** |
| 3103 |
* @brief Returns the greatest lower bound value of the distribution. |
| 3104 |
*/ |
| 3105 |
result_type |
| 3106 |
min() const |
| 3107 |
{ |
| 3108 |
using _IntType = typename std::make_signed<result_type>::type; |
| 3109 |
return static_cast<result_type>(std::max(static_cast<_IntType>(0), |
| 3110 |
static_cast<_IntType>(this->total_draws() |
| 3111 |
- this->unsuccessful_size()))); |
| 3112 |
} |
| 3113 |
|
| 3114 |
/** |
| 3115 |
* @brief Returns the least upper bound value of the distribution. |
| 3116 |
*/ |
| 3117 |
result_type |
| 3118 |
max() const |
| 3119 |
{ return std::min(this->successful_size(), this->total_draws()); } |
| 3120 |
|
| 3121 |
/** |
| 3122 |
* @brief Generating functions. |
| 3123 |
*/ |
| 3124 |
template<typename _UniformRandomNumberGenerator> |
| 3125 |
result_type |
| 3126 |
operator()(_UniformRandomNumberGenerator& __urng) |
| 3127 |
{ return this->operator()(__urng, this->_M_param); } |
| 3128 |
|
| 3129 |
template<typename _UniformRandomNumberGenerator> |
| 3130 |
result_type |
| 3131 |
operator()(_UniformRandomNumberGenerator& __urng, |
| 3132 |
const param_type& __p); |
| 3133 |
|
| 3134 |
template<typename _ForwardIterator, |
| 3135 |
typename _UniformRandomNumberGenerator> |
| 3136 |
void |
| 3137 |
__generate(_ForwardIterator __f, _ForwardIterator __t, |
| 3138 |
_UniformRandomNumberGenerator& __urng) |
| 3139 |
{ this->__generate(__f, __t, __urng, this->_M_param); } |
| 3140 |
|
| 3141 |
template<typename _ForwardIterator, |
| 3142 |
typename _UniformRandomNumberGenerator> |
| 3143 |
void |
| 3144 |
__generate(_ForwardIterator __f, _ForwardIterator __t, |
| 3145 |
_UniformRandomNumberGenerator& __urng, |
| 3146 |
const param_type& __p) |
| 3147 |
{ this->__generate_impl(__f, __t, __urng, __p); } |
| 3148 |
|
| 3149 |
template<typename _UniformRandomNumberGenerator> |
| 3150 |
void |
| 3151 |
__generate(result_type* __f, result_type* __t, |
| 3152 |
_UniformRandomNumberGenerator& __urng, |
| 3153 |
const param_type& __p) |
| 3154 |
{ this->__generate_impl(__f, __t, __urng, __p); } |
| 3155 |
|
| 3156 |
/** |
| 3157 |
* @brief Return true if two hypergeometric distributions have the same |
| 3158 |
* parameters and the sequences that would be generated |
| 3159 |
* are equal. |
| 3160 |
*/ |
| 3161 |
friend bool |
| 3162 |
operator==(const hypergeometric_distribution& __d1, |
| 3163 |
const hypergeometric_distribution& __d2) |
| 3164 |
{ return __d1._M_param == __d2._M_param; } |
| 3165 |
|
| 3166 |
/** |
| 3167 |
* @brief Inserts a %hypergeometric_distribution random number |
| 3168 |
* distribution @p __x into the output stream @p __os. |
| 3169 |
* |
| 3170 |
* @param __os An output stream. |
| 3171 |
* @param __x A %hypergeometric_distribution random number |
| 3172 |
* distribution. |
| 3173 |
* |
| 3174 |
* @returns The output stream with the state of @p __x inserted or in |
| 3175 |
* an error state. |
| 3176 |
*/ |
| 3177 |
template<typename _UIntType1, typename _CharT, typename _Traits> |
| 3178 |
friend std::basic_ostream<_CharT, _Traits>& |
| 3179 |
operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| 3180 |
const __gnu_cxx::hypergeometric_distribution<_UIntType1>& |
| 3181 |
__x); |
| 3182 |
|
| 3183 |
/** |
| 3184 |
* @brief Extracts a %hypergeometric_distribution random number |
| 3185 |
* distribution @p __x from the input stream @p __is. |
| 3186 |
* |
| 3187 |
* @param __is An input stream. |
| 3188 |
* @param __x A %hypergeometric_distribution random number generator |
| 3189 |
* distribution. |
| 3190 |
* |
| 3191 |
* @returns The input stream with @p __x extracted or in an error |
| 3192 |
* state. |
| 3193 |
*/ |
| 3194 |
template<typename _UIntType1, typename _CharT, typename _Traits> |
| 3195 |
friend std::basic_istream<_CharT, _Traits>& |
| 3196 |
operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| 3197 |
__gnu_cxx::hypergeometric_distribution<_UIntType1>& __x); |
| 3198 |
|
| 3199 |
private: |
| 3200 |
|
| 3201 |
template<typename _ForwardIterator, |
| 3202 |
typename _UniformRandomNumberGenerator> |
| 3203 |
void |
| 3204 |
__generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| 3205 |
_UniformRandomNumberGenerator& __urng, |
| 3206 |
const param_type& __p); |
| 3207 |
|
| 3208 |
param_type _M_param; |
| 3209 |
}; |
| 3210 |
|
| 3211 |
/** |
| 3212 |
* @brief Return true if two hypergeometric distributions are different. |
| 3213 |
*/ |
| 3214 |
template<typename _UIntType> |
| 3215 |
inline bool |
| 3216 |
operator!=(const __gnu_cxx::hypergeometric_distribution<_UIntType>& __d1, |
| 3217 |
const __gnu_cxx::hypergeometric_distribution<_UIntType>& __d2) |
| 3218 |
{ return !(__d1 == __d2); } |
| 3219 |
|
| 3220 |
/** |
| 3221 |
* @brief A logistic continuous distribution for random numbers. |
| 3222 |
* |
| 3223 |
* The formula for the logistic probability density function is |
| 3224 |
* @f[ |
| 3225 |
* p(x|\a,\b) = \frac{e^{(x - a)/b}}{b[1 + e^{(x - a)/b}]^2} |
| 3226 |
* @f] |
| 3227 |
* where @f$b > 0@f$. |
| 3228 |
* |
| 3229 |
* The formula for the logistic probability function is |
| 3230 |
* @f[ |
| 3231 |
* cdf(x|\a,\b) = \frac{e^{(x - a)/b}}{1 + e^{(x - a)/b}} |
| 3232 |
* @f] |
| 3233 |
* where @f$b > 0@f$. |
| 3234 |
* |
| 3235 |
* <table border=1 cellpadding=10 cellspacing=0> |
| 3236 |
* <caption align=top>Distribution Statistics</caption> |
| 3237 |
* <tr><td>Mean</td><td>@f$a@f$</td></tr> |
| 3238 |
* <tr><td>Variance</td><td>@f$b^2\pi^2/3@f$</td></tr> |
| 3239 |
* <tr><td>Range</td><td>@f$[0, \infty)@f$</td></tr> |
| 3240 |
* </table> |
| 3241 |
*/ |
| 3242 |
template<typename _RealType = double> |
| 3243 |
class |
| 3244 |
logistic_distribution |
| 3245 |
{ |
| 3246 |
static_assert(std::is_floating_point<_RealType>::value, |
| 3247 |
"template argument not a floating point type"); |
| 3248 |
|
| 3249 |
public: |
| 3250 |
/** The type of the range of the distribution. */ |
| 3251 |
typedef _RealType result_type; |
| 3252 |
|
| 3253 |
/** Parameter type. */ |
| 3254 |
struct param_type |
| 3255 |
{ |
| 3256 |
typedef logistic_distribution<result_type> distribution_type; |
| 3257 |
|
| 3258 |
param_type() : param_type(0) { } |
| 3259 |
|
| 3260 |
explicit |
| 3261 |
param_type(result_type __a, result_type __b = result_type(1)) |
| 3262 |
: _M_a(__a), _M_b(__b) |
| 3263 |
{ |
| 3264 |
__glibcxx_assert(_M_b > result_type(0)); |
| 3265 |
} |
| 3266 |
|
| 3267 |
result_type |
| 3268 |
a() const |
| 3269 |
{ return _M_a; } |
| 3270 |
|
| 3271 |
result_type |
| 3272 |
b() const |
| 3273 |
{ return _M_b; } |
| 3274 |
|
| 3275 |
friend bool |
| 3276 |
operator==(const param_type& __p1, const param_type& __p2) |
| 3277 |
{ return __p1._M_a == __p2._M_a && __p1._M_b == __p2._M_b; } |
| 3278 |
|
| 3279 |
friend bool |
| 3280 |
operator!=(const param_type& __p1, const param_type& __p2) |
| 3281 |
{ return !(__p1 == __p2); } |
| 3282 |
|
| 3283 |
private: |
| 3284 |
void _M_initialize(); |
| 3285 |
|
| 3286 |
result_type _M_a; |
| 3287 |
result_type _M_b; |
| 3288 |
}; |
| 3289 |
|
| 3290 |
/** |
| 3291 |
* @brief Constructors. |
| 3292 |
* @{ |
| 3293 |
*/ |
| 3294 |
logistic_distribution() : logistic_distribution(0.0) { } |
| 3295 |
|
| 3296 |
explicit |
| 3297 |
logistic_distribution(result_type __a, result_type __b = result_type(1)) |
| 3298 |
: _M_param(__a, __b) |
| 3299 |
{ } |
| 3300 |
|
| 3301 |
explicit |
| 3302 |
logistic_distribution(const param_type& __p) |
| 3303 |
: _M_param(__p) |
| 3304 |
{ } |
| 3305 |
|
| 3306 |
/// @} |
| 3307 |
|
| 3308 |
/** |
| 3309 |
* @brief Resets the distribution state. |
| 3310 |
*/ |
| 3311 |
void |
| 3312 |
reset() |
| 3313 |
{ } |
| 3314 |
|
| 3315 |
/** |
| 3316 |
* @brief Return the parameters of the distribution. |
| 3317 |
*/ |
| 3318 |
result_type |
| 3319 |
a() const |
| 3320 |
{ return _M_param.a(); } |
| 3321 |
|
| 3322 |
result_type |
| 3323 |
b() const |
| 3324 |
{ return _M_param.b(); } |
| 3325 |
|
| 3326 |
/** |
| 3327 |
* @brief Returns the parameter set of the distribution. |
| 3328 |
*/ |
| 3329 |
param_type |
| 3330 |
param() const |
| 3331 |
{ return _M_param; } |
| 3332 |
|
| 3333 |
/** |
| 3334 |
* @brief Sets the parameter set of the distribution. |
| 3335 |
* @param __param The new parameter set of the distribution. |
| 3336 |
*/ |
| 3337 |
void |
| 3338 |
param(const param_type& __param) |
| 3339 |
{ _M_param = __param; } |
| 3340 |
|
| 3341 |
/** |
| 3342 |
* @brief Returns the greatest lower bound value of the distribution. |
| 3343 |
*/ |
| 3344 |
result_type |
| 3345 |
min() const |
| 3346 |
{ return -std::numeric_limits<result_type>::max(); } |
| 3347 |
|
| 3348 |
/** |
| 3349 |
* @brief Returns the least upper bound value of the distribution. |
| 3350 |
*/ |
| 3351 |
result_type |
| 3352 |
max() const |
| 3353 |
{ return std::numeric_limits<result_type>::max(); } |
| 3354 |
|
| 3355 |
/** |
| 3356 |
* @brief Generating functions. |
| 3357 |
*/ |
| 3358 |
template<typename _UniformRandomNumberGenerator> |
| 3359 |
result_type |
| 3360 |
operator()(_UniformRandomNumberGenerator& __urng) |
| 3361 |
{ return this->operator()(__urng, this->_M_param); } |
| 3362 |
|
| 3363 |
template<typename _UniformRandomNumberGenerator> |
| 3364 |
result_type |
| 3365 |
operator()(_UniformRandomNumberGenerator&, |
| 3366 |
const param_type&); |
| 3367 |
|
| 3368 |
template<typename _ForwardIterator, |
| 3369 |
typename _UniformRandomNumberGenerator> |
| 3370 |
void |
| 3371 |
__generate(_ForwardIterator __f, _ForwardIterator __t, |
| 3372 |
_UniformRandomNumberGenerator& __urng) |
| 3373 |
{ this->__generate(__f, __t, __urng, this->param()); } |
| 3374 |
|
| 3375 |
template<typename _ForwardIterator, |
| 3376 |
typename _UniformRandomNumberGenerator> |
| 3377 |
void |
| 3378 |
__generate(_ForwardIterator __f, _ForwardIterator __t, |
| 3379 |
_UniformRandomNumberGenerator& __urng, |
| 3380 |
const param_type& __p) |
| 3381 |
{ this->__generate_impl(__f, __t, __urng, __p); } |
| 3382 |
|
| 3383 |
template<typename _UniformRandomNumberGenerator> |
| 3384 |
void |
| 3385 |
__generate(result_type* __f, result_type* __t, |
| 3386 |
_UniformRandomNumberGenerator& __urng, |
| 3387 |
const param_type& __p) |
| 3388 |
{ this->__generate_impl(__f, __t, __urng, __p); } |
| 3389 |
|
| 3390 |
/** |
| 3391 |
* @brief Return true if two logistic distributions have |
| 3392 |
* the same parameters and the sequences that would |
| 3393 |
* be generated are equal. |
| 3394 |
*/ |
| 3395 |
template<typename _RealType1> |
| 3396 |
friend bool |
| 3397 |
operator==(const logistic_distribution<_RealType1>& __d1, |
| 3398 |
const logistic_distribution<_RealType1>& __d2) |
| 3399 |
{ return __d1.param() == __d2.param(); } |
| 3400 |
|
| 3401 |
/** |
| 3402 |
* @brief Inserts a %logistic_distribution random number distribution |
| 3403 |
* @p __x into the output stream @p __os. |
| 3404 |
* |
| 3405 |
* @param __os An output stream. |
| 3406 |
* @param __x A %logistic_distribution random number distribution. |
| 3407 |
* |
| 3408 |
* @returns The output stream with the state of @p __x inserted or in |
| 3409 |
* an error state. |
| 3410 |
*/ |
| 3411 |
template<typename _RealType1, typename _CharT, typename _Traits> |
| 3412 |
friend std::basic_ostream<_CharT, _Traits>& |
| 3413 |
operator<<(std::basic_ostream<_CharT, _Traits>&, |
| 3414 |
const logistic_distribution<_RealType1>&); |
| 3415 |
|
| 3416 |
/** |
| 3417 |
* @brief Extracts a %logistic_distribution random number distribution |
| 3418 |
* @p __x from the input stream @p __is. |
| 3419 |
* |
| 3420 |
* @param __is An input stream. |
| 3421 |
* @param __x A %logistic_distribution random number |
| 3422 |
* generator engine. |
| 3423 |
* |
| 3424 |
* @returns The input stream with @p __x extracted or in an error state. |
| 3425 |
*/ |
| 3426 |
template<typename _RealType1, typename _CharT, typename _Traits> |
| 3427 |
friend std::basic_istream<_CharT, _Traits>& |
| 3428 |
operator>>(std::basic_istream<_CharT, _Traits>&, |
| 3429 |
logistic_distribution<_RealType1>&); |
| 3430 |
|
| 3431 |
private: |
| 3432 |
template<typename _ForwardIterator, |
| 3433 |
typename _UniformRandomNumberGenerator> |
| 3434 |
void |
| 3435 |
__generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| 3436 |
_UniformRandomNumberGenerator& __urng, |
| 3437 |
const param_type& __p); |
| 3438 |
|
| 3439 |
param_type _M_param; |
| 3440 |
}; |
| 3441 |
|
| 3442 |
/** |
| 3443 |
* @brief Return true if two logistic distributions are not equal. |
| 3444 |
*/ |
| 3445 |
template<typename _RealType1> |
| 3446 |
inline bool |
| 3447 |
operator!=(const logistic_distribution<_RealType1>& __d1, |
| 3448 |
const logistic_distribution<_RealType1>& __d2) |
| 3449 |
{ return !(__d1 == __d2); } |
| 3450 |
|
| 3451 |
|
| 3452 |
/** |
| 3453 |
* @brief A distribution for random coordinates on a unit sphere. |
| 3454 |
* |
| 3455 |
* The method used in the generation function is attributed by Donald Knuth |
| 3456 |
* to G. W. Brown, Modern Mathematics for the Engineer (1956). |
| 3457 |
*/ |
| 3458 |
template<std::size_t _Dimen, typename _RealType = double> |
| 3459 |
class uniform_on_sphere_distribution |
| 3460 |
{ |
| 3461 |
static_assert(std::is_floating_point<_RealType>::value, |
| 3462 |
"template argument not a floating point type"); |
| 3463 |
static_assert(_Dimen != 0, "dimension is zero"); |
| 3464 |
|
| 3465 |
public: |
| 3466 |
/** The type of the range of the distribution. */ |
| 3467 |
typedef std::array<_RealType, _Dimen> result_type; |
| 3468 |
|
| 3469 |
/** Parameter type. */ |
| 3470 |
struct param_type |
| 3471 |
{ |
| 3472 |
param_type() { } |
| 3473 |
|
| 3474 |
friend bool |
| 3475 |
operator==(const param_type&, const param_type&) |
| 3476 |
{ return true; } |
| 3477 |
|
| 3478 |
friend bool |
| 3479 |
operator!=(const param_type&, const param_type&) |
| 3480 |
{ return false; } |
| 3481 |
}; |
| 3482 |
|
| 3483 |
/** |
| 3484 |
* @brief Constructs a uniform on sphere distribution. |
| 3485 |
*/ |
| 3486 |
uniform_on_sphere_distribution() |
| 3487 |
: _M_param(), _M_nd() |
| 3488 |
{ } |
| 3489 |
|
| 3490 |
explicit |
| 3491 |
uniform_on_sphere_distribution(const param_type& __p) |
| 3492 |
: _M_param(__p), _M_nd() |
| 3493 |
{ } |
| 3494 |
|
| 3495 |
/** |
| 3496 |
* @brief Resets the distribution state. |
| 3497 |
*/ |
| 3498 |
void |
| 3499 |
reset() |
| 3500 |
{ _M_nd.reset(); } |
| 3501 |
|
| 3502 |
/** |
| 3503 |
* @brief Returns the parameter set of the distribution. |
| 3504 |
*/ |
| 3505 |
param_type |
| 3506 |
param() const |
| 3507 |
{ return _M_param; } |
| 3508 |
|
| 3509 |
/** |
| 3510 |
* @brief Sets the parameter set of the distribution. |
| 3511 |
* @param __param The new parameter set of the distribution. |
| 3512 |
*/ |
| 3513 |
void |
| 3514 |
param(const param_type& __param) |
| 3515 |
{ _M_param = __param; } |
| 3516 |
|
| 3517 |
/** |
| 3518 |
* @brief Returns the greatest lower bound value of the distribution. |
| 3519 |
* This function makes no sense for this distribution. |
| 3520 |
*/ |
| 3521 |
result_type |
| 3522 |
min() const |
| 3523 |
{ |
| 3524 |
result_type __res; |
| 3525 |
__res.fill(0); |
| 3526 |
return __res; |
| 3527 |
} |
| 3528 |
|
| 3529 |
/** |
| 3530 |
* @brief Returns the least upper bound value of the distribution. |
| 3531 |
* This function makes no sense for this distribution. |
| 3532 |
*/ |
| 3533 |
result_type |
| 3534 |
max() const |
| 3535 |
{ |
| 3536 |
result_type __res; |
| 3537 |
__res.fill(0); |
| 3538 |
return __res; |
| 3539 |
} |
| 3540 |
|
| 3541 |
/** |
| 3542 |
* @brief Generating functions. |
| 3543 |
*/ |
| 3544 |
template<typename _UniformRandomNumberGenerator> |
| 3545 |
result_type |
| 3546 |
operator()(_UniformRandomNumberGenerator& __urng) |
| 3547 |
{ return this->operator()(__urng, _M_param); } |
| 3548 |
|
| 3549 |
template<typename _UniformRandomNumberGenerator> |
| 3550 |
result_type |
| 3551 |
operator()(_UniformRandomNumberGenerator& __urng, |
| 3552 |
const param_type& __p); |
| 3553 |
|
| 3554 |
template<typename _ForwardIterator, |
| 3555 |
typename _UniformRandomNumberGenerator> |
| 3556 |
void |
| 3557 |
__generate(_ForwardIterator __f, _ForwardIterator __t, |
| 3558 |
_UniformRandomNumberGenerator& __urng) |
| 3559 |
{ this->__generate(__f, __t, __urng, this->param()); } |
| 3560 |
|
| 3561 |
template<typename _ForwardIterator, |
| 3562 |
typename _UniformRandomNumberGenerator> |
| 3563 |
void |
| 3564 |
__generate(_ForwardIterator __f, _ForwardIterator __t, |
| 3565 |
_UniformRandomNumberGenerator& __urng, |
| 3566 |
const param_type& __p) |
| 3567 |
{ this->__generate_impl(__f, __t, __urng, __p); } |
| 3568 |
|
| 3569 |
template<typename _UniformRandomNumberGenerator> |
| 3570 |
void |
| 3571 |
__generate(result_type* __f, result_type* __t, |
| 3572 |
_UniformRandomNumberGenerator& __urng, |
| 3573 |
const param_type& __p) |
| 3574 |
{ this->__generate_impl(__f, __t, __urng, __p); } |
| 3575 |
|
| 3576 |
/** |
| 3577 |
* @brief Return true if two uniform on sphere distributions have |
| 3578 |
* the same parameters and the sequences that would be |
| 3579 |
* generated are equal. |
| 3580 |
*/ |
| 3581 |
friend bool |
| 3582 |
operator==(const uniform_on_sphere_distribution& __d1, |
| 3583 |
const uniform_on_sphere_distribution& __d2) |
| 3584 |
{ return __d1._M_nd == __d2._M_nd; } |
| 3585 |
|
| 3586 |
/** |
| 3587 |
* @brief Inserts a %uniform_on_sphere_distribution random number |
| 3588 |
* distribution @p __x into the output stream @p __os. |
| 3589 |
* |
| 3590 |
* @param __os An output stream. |
| 3591 |
* @param __x A %uniform_on_sphere_distribution random number |
| 3592 |
* distribution. |
| 3593 |
* |
| 3594 |
* @returns The output stream with the state of @p __x inserted or in |
| 3595 |
* an error state. |
| 3596 |
*/ |
| 3597 |
template<size_t _Dimen1, typename _RealType1, typename _CharT, |
| 3598 |
typename _Traits> |
| 3599 |
friend std::basic_ostream<_CharT, _Traits>& |
| 3600 |
operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| 3601 |
const __gnu_cxx::uniform_on_sphere_distribution<_Dimen1, |
| 3602 |
_RealType1>& |
| 3603 |
__x); |
| 3604 |
|
| 3605 |
/** |
| 3606 |
* @brief Extracts a %uniform_on_sphere_distribution random number |
| 3607 |
* distribution |
| 3608 |
* @p __x from the input stream @p __is. |
| 3609 |
* |
| 3610 |
* @param __is An input stream. |
| 3611 |
* @param __x A %uniform_on_sphere_distribution random number |
| 3612 |
* generator engine. |
| 3613 |
* |
| 3614 |
* @returns The input stream with @p __x extracted or in an error state. |
| 3615 |
*/ |
| 3616 |
template<std::size_t _Dimen1, typename _RealType1, typename _CharT, |
| 3617 |
typename _Traits> |
| 3618 |
friend std::basic_istream<_CharT, _Traits>& |
| 3619 |
operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| 3620 |
__gnu_cxx::uniform_on_sphere_distribution<_Dimen1, |
| 3621 |
_RealType1>& __x); |
| 3622 |
|
| 3623 |
private: |
| 3624 |
template<typename _ForwardIterator, |
| 3625 |
typename _UniformRandomNumberGenerator> |
| 3626 |
void |
| 3627 |
__generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| 3628 |
_UniformRandomNumberGenerator& __urng, |
| 3629 |
const param_type& __p); |
| 3630 |
|
| 3631 |
param_type _M_param; |
| 3632 |
std::normal_distribution<_RealType> _M_nd; |
| 3633 |
}; |
| 3634 |
|
| 3635 |
/** |
| 3636 |
* @brief Return true if two uniform on sphere distributions are different. |
| 3637 |
*/ |
| 3638 |
template<std::size_t _Dimen, typename _RealType> |
| 3639 |
inline bool |
| 3640 |
operator!=(const __gnu_cxx::uniform_on_sphere_distribution<_Dimen, |
| 3641 |
_RealType>& __d1, |
| 3642 |
const __gnu_cxx::uniform_on_sphere_distribution<_Dimen, |
| 3643 |
_RealType>& __d2) |
| 3644 |
{ return !(__d1 == __d2); } |
| 3645 |
|
| 3646 |
|
| 3647 |
/** |
| 3648 |
* @brief A distribution for random coordinates inside a unit sphere. |
| 3649 |
*/ |
| 3650 |
template<std::size_t _Dimen, typename _RealType = double> |
| 3651 |
class uniform_inside_sphere_distribution |
| 3652 |
{ |
| 3653 |
static_assert(std::is_floating_point<_RealType>::value, |
| 3654 |
"template argument not a floating point type"); |
| 3655 |
static_assert(_Dimen != 0, "dimension is zero"); |
| 3656 |
|
| 3657 |
public: |
| 3658 |
/** The type of the range of the distribution. */ |
| 3659 |
using result_type = std::array<_RealType, _Dimen>; |
| 3660 |
|
| 3661 |
/** Parameter type. */ |
| 3662 |
struct param_type |
| 3663 |
{ |
| 3664 |
using distribution_type |
| 3665 |
= uniform_inside_sphere_distribution<_Dimen, _RealType>; |
| 3666 |
friend class uniform_inside_sphere_distribution<_Dimen, _RealType>; |
| 3667 |
|
| 3668 |
param_type() : param_type(1.0) { } |
| 3669 |
|
| 3670 |
explicit |
| 3671 |
param_type(_RealType __radius) |
| 3672 |
: _M_radius(__radius) |
| 3673 |
{ |
| 3674 |
__glibcxx_assert(_M_radius > _RealType(0)); |
| 3675 |
} |
| 3676 |
|
| 3677 |
_RealType |
| 3678 |
radius() const |
| 3679 |
{ return _M_radius; } |
| 3680 |
|
| 3681 |
friend bool |
| 3682 |
operator==(const param_type& __p1, const param_type& __p2) |
| 3683 |
{ return __p1._M_radius == __p2._M_radius; } |
| 3684 |
|
| 3685 |
friend bool |
| 3686 |
operator!=(const param_type& __p1, const param_type& __p2) |
| 3687 |
{ return !(__p1 == __p2); } |
| 3688 |
|
| 3689 |
private: |
| 3690 |
_RealType _M_radius; |
| 3691 |
}; |
| 3692 |
|
| 3693 |
/** |
| 3694 |
* @brief Constructors. |
| 3695 |
* @{ |
| 3696 |
*/ |
| 3697 |
|
| 3698 |
uniform_inside_sphere_distribution() |
| 3699 |
: uniform_inside_sphere_distribution(1.0) |
| 3700 |
{ } |
| 3701 |
|
| 3702 |
explicit |
| 3703 |
uniform_inside_sphere_distribution(_RealType __radius) |
| 3704 |
: _M_param(__radius), _M_uosd() |
| 3705 |
{ } |
| 3706 |
|
| 3707 |
explicit |
| 3708 |
uniform_inside_sphere_distribution(const param_type& __p) |
| 3709 |
: _M_param(__p), _M_uosd() |
| 3710 |
{ } |
| 3711 |
|
| 3712 |
/// @} |
| 3713 |
|
| 3714 |
/** |
| 3715 |
* @brief Resets the distribution state. |
| 3716 |
*/ |
| 3717 |
void |
| 3718 |
reset() |
| 3719 |
{ _M_uosd.reset(); } |
| 3720 |
|
| 3721 |
/** |
| 3722 |
* @brief Returns the @f$radius@f$ of the distribution. |
| 3723 |
*/ |
| 3724 |
_RealType |
| 3725 |
radius() const |
| 3726 |
{ return _M_param.radius(); } |
| 3727 |
|
| 3728 |
/** |
| 3729 |
* @brief Returns the parameter set of the distribution. |
| 3730 |
*/ |
| 3731 |
param_type |
| 3732 |
param() const |
| 3733 |
{ return _M_param; } |
| 3734 |
|
| 3735 |
/** |
| 3736 |
* @brief Sets the parameter set of the distribution. |
| 3737 |
* @param __param The new parameter set of the distribution. |
| 3738 |
*/ |
| 3739 |
void |
| 3740 |
param(const param_type& __param) |
| 3741 |
{ _M_param = __param; } |
| 3742 |
|
| 3743 |
/** |
| 3744 |
* @brief Returns the greatest lower bound value of the distribution. |
| 3745 |
* This function makes no sense for this distribution. |
| 3746 |
*/ |
| 3747 |
result_type |
| 3748 |
min() const |
| 3749 |
{ |
| 3750 |
result_type __res; |
| 3751 |
__res.fill(0); |
| 3752 |
return __res; |
| 3753 |
} |
| 3754 |
|
| 3755 |
/** |
| 3756 |
* @brief Returns the least upper bound value of the distribution. |
| 3757 |
* This function makes no sense for this distribution. |
| 3758 |
*/ |
| 3759 |
result_type |
| 3760 |
max() const |
| 3761 |
{ |
| 3762 |
result_type __res; |
| 3763 |
__res.fill(0); |
| 3764 |
return __res; |
| 3765 |
} |
| 3766 |
|
| 3767 |
/** |
| 3768 |
* @brief Generating functions. |
| 3769 |
*/ |
| 3770 |
template<typename _UniformRandomNumberGenerator> |
| 3771 |
result_type |
| 3772 |
operator()(_UniformRandomNumberGenerator& __urng) |
| 3773 |
{ return this->operator()(__urng, _M_param); } |
| 3774 |
|
| 3775 |
template<typename _UniformRandomNumberGenerator> |
| 3776 |
result_type |
| 3777 |
operator()(_UniformRandomNumberGenerator& __urng, |
| 3778 |
const param_type& __p); |
| 3779 |
|
| 3780 |
template<typename _ForwardIterator, |
| 3781 |
typename _UniformRandomNumberGenerator> |
| 3782 |
void |
| 3783 |
__generate(_ForwardIterator __f, _ForwardIterator __t, |
| 3784 |
_UniformRandomNumberGenerator& __urng) |
| 3785 |
{ this->__generate(__f, __t, __urng, this->param()); } |
| 3786 |
|
| 3787 |
template<typename _ForwardIterator, |
| 3788 |
typename _UniformRandomNumberGenerator> |
| 3789 |
void |
| 3790 |
__generate(_ForwardIterator __f, _ForwardIterator __t, |
| 3791 |
_UniformRandomNumberGenerator& __urng, |
| 3792 |
const param_type& __p) |
| 3793 |
{ this->__generate_impl(__f, __t, __urng, __p); } |
| 3794 |
|
| 3795 |
template<typename _UniformRandomNumberGenerator> |
| 3796 |
void |
| 3797 |
__generate(result_type* __f, result_type* __t, |
| 3798 |
_UniformRandomNumberGenerator& __urng, |
| 3799 |
const param_type& __p) |
| 3800 |
{ this->__generate_impl(__f, __t, __urng, __p); } |
| 3801 |
|
| 3802 |
/** |
| 3803 |
* @brief Return true if two uniform on sphere distributions have |
| 3804 |
* the same parameters and the sequences that would be |
| 3805 |
* generated are equal. |
| 3806 |
*/ |
| 3807 |
friend bool |
| 3808 |
operator==(const uniform_inside_sphere_distribution& __d1, |
| 3809 |
const uniform_inside_sphere_distribution& __d2) |
| 3810 |
{ return __d1._M_param == __d2._M_param && __d1._M_uosd == __d2._M_uosd; } |
| 3811 |
|
| 3812 |
/** |
| 3813 |
* @brief Inserts a %uniform_inside_sphere_distribution random number |
| 3814 |
* distribution @p __x into the output stream @p __os. |
| 3815 |
* |
| 3816 |
* @param __os An output stream. |
| 3817 |
* @param __x A %uniform_inside_sphere_distribution random number |
| 3818 |
* distribution. |
| 3819 |
* |
| 3820 |
* @returns The output stream with the state of @p __x inserted or in |
| 3821 |
* an error state. |
| 3822 |
*/ |
| 3823 |
template<size_t _Dimen1, typename _RealType1, typename _CharT, |
| 3824 |
typename _Traits> |
| 3825 |
friend std::basic_ostream<_CharT, _Traits>& |
| 3826 |
operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| 3827 |
const __gnu_cxx::uniform_inside_sphere_distribution<_Dimen1, |
| 3828 |
_RealType1>& |
| 3829 |
); |
| 3830 |
|
| 3831 |
/** |
| 3832 |
* @brief Extracts a %uniform_inside_sphere_distribution random number |
| 3833 |
* distribution |
| 3834 |
* @p __x from the input stream @p __is. |
| 3835 |
* |
| 3836 |
* @param __is An input stream. |
| 3837 |
* @param __x A %uniform_inside_sphere_distribution random number |
| 3838 |
* generator engine. |
| 3839 |
* |
| 3840 |
* @returns The input stream with @p __x extracted or in an error state. |
| 3841 |
*/ |
| 3842 |
template<std::size_t _Dimen1, typename _RealType1, typename _CharT, |
| 3843 |
typename _Traits> |
| 3844 |
friend std::basic_istream<_CharT, _Traits>& |
| 3845 |
operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| 3846 |
__gnu_cxx::uniform_inside_sphere_distribution<_Dimen1, |
| 3847 |
_RealType1>&); |
| 3848 |
|
| 3849 |
private: |
| 3850 |
template<typename _ForwardIterator, |
| 3851 |
typename _UniformRandomNumberGenerator> |
| 3852 |
void |
| 3853 |
__generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| 3854 |
_UniformRandomNumberGenerator& __urng, |
| 3855 |
const param_type& __p); |
| 3856 |
|
| 3857 |
param_type _M_param; |
| 3858 |
uniform_on_sphere_distribution<_Dimen, _RealType> _M_uosd; |
| 3859 |
}; |
| 3860 |
|
| 3861 |
/** |
| 3862 |
* @brief Return true if two uniform on sphere distributions are different. |
| 3863 |
*/ |
| 3864 |
template<std::size_t _Dimen, typename _RealType> |
| 3865 |
inline bool |
| 3866 |
operator!=(const __gnu_cxx::uniform_inside_sphere_distribution<_Dimen, |
| 3867 |
_RealType>& __d1, |
| 3868 |
const __gnu_cxx::uniform_inside_sphere_distribution<_Dimen, |
| 3869 |
_RealType>& __d2) |
| 3870 |
{ return !(__d1 == __d2); } |
| 3871 |
|
| 3872 |
_GLIBCXX_END_NAMESPACE_VERSION |
| 3873 |
} // namespace __gnu_cxx |
| 3874 |
|
| 3875 |
#include <ext/opt_random.h> |
| 3876 |
#include <ext/random.tcc> |
| 3877 |
|
| 3878 |
#endif // _GLIBCXX_USE_C99_STDINT_TR1 && UINT32_C |
| 3879 |
|
| 3880 |
#endif // C++11 |
| 3881 |
|
| 3882 |
#endif // _EXT_RANDOM |