| 1 |
// Random number extensions -*- C++ -*- |
| 2 |
|
| 3 |
// Copyright (C) 2012-2021 Free Software Foundation, Inc. |
| 4 |
// |
| 5 |
// This file is part of the GNU ISO C++ Library. This library is free |
| 6 |
// software; you can redistribute it and/or modify it under the |
| 7 |
// terms of the GNU General Public License as published by the |
| 8 |
// Free Software Foundation; either version 3, or (at your option) |
| 9 |
// any later version. |
| 10 |
|
| 11 |
// This library is distributed in the hope that it will be useful, |
| 12 |
// but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 13 |
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 14 |
// GNU General Public License for more details. |
| 15 |
|
| 16 |
// Under Section 7 of GPL version 3, you are granted additional |
| 17 |
// permissions described in the GCC Runtime Library Exception, version |
| 18 |
// 3.1, as published by the Free Software Foundation. |
| 19 |
|
| 20 |
// You should have received a copy of the GNU General Public License and |
| 21 |
// a copy of the GCC Runtime Library Exception along with this program; |
| 22 |
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see |
| 23 |
// <http://www.gnu.org/licenses/>. |
| 24 |
|
| 25 |
/** @file ext/random.tcc |
| 26 |
* This is an internal header file, included by other library headers. |
| 27 |
* Do not attempt to use it directly. @headername{ext/random} |
| 28 |
*/ |
| 29 |
|
| 30 |
#ifndef _EXT_RANDOM_TCC |
| 31 |
#define _EXT_RANDOM_TCC 1 |
| 32 |
|
| 33 |
#pragma GCC system_header |
| 34 |
|
| 35 |
namespace __gnu_cxx _GLIBCXX_VISIBILITY(default) |
| 36 |
{ |
| 37 |
_GLIBCXX_BEGIN_NAMESPACE_VERSION |
| 38 |
|
| 39 |
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ |
| 40 |
|
| 41 |
template<typename _UIntType, size_t __m, |
| 42 |
size_t __pos1, size_t __sl1, size_t __sl2, |
| 43 |
size_t __sr1, size_t __sr2, |
| 44 |
uint32_t __msk1, uint32_t __msk2, |
| 45 |
uint32_t __msk3, uint32_t __msk4, |
| 46 |
uint32_t __parity1, uint32_t __parity2, |
| 47 |
uint32_t __parity3, uint32_t __parity4> |
| 48 |
void simd_fast_mersenne_twister_engine<_UIntType, __m, |
| 49 |
__pos1, __sl1, __sl2, __sr1, __sr2, |
| 50 |
__msk1, __msk2, __msk3, __msk4, |
| 51 |
__parity1, __parity2, __parity3, |
| 52 |
__parity4>:: |
| 53 |
seed(_UIntType __seed) |
| 54 |
{ |
| 55 |
_M_state32[0] = static_cast<uint32_t>(__seed); |
| 56 |
for (size_t __i = 1; __i < _M_nstate32; ++__i) |
| 57 |
_M_state32[__i] = (1812433253UL |
| 58 |
* (_M_state32[__i - 1] ^ (_M_state32[__i - 1] >> 30)) |
| 59 |
+ __i); |
| 60 |
_M_pos = state_size; |
| 61 |
_M_period_certification(); |
| 62 |
} |
| 63 |
|
| 64 |
|
| 65 |
namespace { |
| 66 |
|
| 67 |
inline uint32_t _Func1(uint32_t __x) |
| 68 |
{ |
| 69 |
return (__x ^ (__x >> 27)) * UINT32_C(1664525); |
| 70 |
} |
| 71 |
|
| 72 |
inline uint32_t _Func2(uint32_t __x) |
| 73 |
{ |
| 74 |
return (__x ^ (__x >> 27)) * UINT32_C(1566083941); |
| 75 |
} |
| 76 |
|
| 77 |
} |
| 78 |
|
| 79 |
|
| 80 |
template<typename _UIntType, size_t __m, |
| 81 |
size_t __pos1, size_t __sl1, size_t __sl2, |
| 82 |
size_t __sr1, size_t __sr2, |
| 83 |
uint32_t __msk1, uint32_t __msk2, |
| 84 |
uint32_t __msk3, uint32_t __msk4, |
| 85 |
uint32_t __parity1, uint32_t __parity2, |
| 86 |
uint32_t __parity3, uint32_t __parity4> |
| 87 |
template<typename _Sseq> |
| 88 |
auto |
| 89 |
simd_fast_mersenne_twister_engine<_UIntType, __m, |
| 90 |
__pos1, __sl1, __sl2, __sr1, __sr2, |
| 91 |
__msk1, __msk2, __msk3, __msk4, |
| 92 |
__parity1, __parity2, __parity3, |
| 93 |
__parity4>:: |
| 94 |
seed(_Sseq& __q) |
| 95 |
-> _If_seed_seq<_Sseq> |
| 96 |
{ |
| 97 |
size_t __lag; |
| 98 |
|
| 99 |
if (_M_nstate32 >= 623) |
| 100 |
__lag = 11; |
| 101 |
else if (_M_nstate32 >= 68) |
| 102 |
__lag = 7; |
| 103 |
else if (_M_nstate32 >= 39) |
| 104 |
__lag = 5; |
| 105 |
else |
| 106 |
__lag = 3; |
| 107 |
const size_t __mid = (_M_nstate32 - __lag) / 2; |
| 108 |
|
| 109 |
std::fill(_M_state32, _M_state32 + _M_nstate32, UINT32_C(0x8b8b8b8b)); |
| 110 |
uint32_t __arr[_M_nstate32]; |
| 111 |
__q.generate(__arr + 0, __arr + _M_nstate32); |
| 112 |
|
| 113 |
uint32_t __r = _Func1(_M_state32[0] ^ _M_state32[__mid] |
| 114 |
^ _M_state32[_M_nstate32 - 1]); |
| 115 |
_M_state32[__mid] += __r; |
| 116 |
__r += _M_nstate32; |
| 117 |
_M_state32[__mid + __lag] += __r; |
| 118 |
_M_state32[0] = __r; |
| 119 |
|
| 120 |
for (size_t __i = 1, __j = 0; __j < _M_nstate32; ++__j) |
| 121 |
{ |
| 122 |
__r = _Func1(_M_state32[__i] |
| 123 |
^ _M_state32[(__i + __mid) % _M_nstate32] |
| 124 |
^ _M_state32[(__i + _M_nstate32 - 1) % _M_nstate32]); |
| 125 |
_M_state32[(__i + __mid) % _M_nstate32] += __r; |
| 126 |
__r += __arr[__j] + __i; |
| 127 |
_M_state32[(__i + __mid + __lag) % _M_nstate32] += __r; |
| 128 |
_M_state32[__i] = __r; |
| 129 |
__i = (__i + 1) % _M_nstate32; |
| 130 |
} |
| 131 |
for (size_t __j = 0; __j < _M_nstate32; ++__j) |
| 132 |
{ |
| 133 |
const size_t __i = (__j + 1) % _M_nstate32; |
| 134 |
__r = _Func2(_M_state32[__i] |
| 135 |
+ _M_state32[(__i + __mid) % _M_nstate32] |
| 136 |
+ _M_state32[(__i + _M_nstate32 - 1) % _M_nstate32]); |
| 137 |
_M_state32[(__i + __mid) % _M_nstate32] ^= __r; |
| 138 |
__r -= __i; |
| 139 |
_M_state32[(__i + __mid + __lag) % _M_nstate32] ^= __r; |
| 140 |
_M_state32[__i] = __r; |
| 141 |
} |
| 142 |
|
| 143 |
_M_pos = state_size; |
| 144 |
_M_period_certification(); |
| 145 |
} |
| 146 |
|
| 147 |
|
| 148 |
template<typename _UIntType, size_t __m, |
| 149 |
size_t __pos1, size_t __sl1, size_t __sl2, |
| 150 |
size_t __sr1, size_t __sr2, |
| 151 |
uint32_t __msk1, uint32_t __msk2, |
| 152 |
uint32_t __msk3, uint32_t __msk4, |
| 153 |
uint32_t __parity1, uint32_t __parity2, |
| 154 |
uint32_t __parity3, uint32_t __parity4> |
| 155 |
void simd_fast_mersenne_twister_engine<_UIntType, __m, |
| 156 |
__pos1, __sl1, __sl2, __sr1, __sr2, |
| 157 |
__msk1, __msk2, __msk3, __msk4, |
| 158 |
__parity1, __parity2, __parity3, |
| 159 |
__parity4>:: |
| 160 |
_M_period_certification(void) |
| 161 |
{ |
| 162 |
static const uint32_t __parity[4] = { __parity1, __parity2, |
| 163 |
__parity3, __parity4 }; |
| 164 |
uint32_t __inner = 0; |
| 165 |
for (size_t __i = 0; __i < 4; ++__i) |
| 166 |
if (__parity[__i] != 0) |
| 167 |
__inner ^= _M_state32[__i] & __parity[__i]; |
| 168 |
|
| 169 |
if (__builtin_parity(__inner) & 1) |
| 170 |
return; |
| 171 |
for (size_t __i = 0; __i < 4; ++__i) |
| 172 |
if (__parity[__i] != 0) |
| 173 |
{ |
| 174 |
_M_state32[__i] ^= 1 << (__builtin_ffs(__parity[__i]) - 1); |
| 175 |
return; |
| 176 |
} |
| 177 |
__builtin_unreachable(); |
| 178 |
} |
| 179 |
|
| 180 |
|
| 181 |
template<typename _UIntType, size_t __m, |
| 182 |
size_t __pos1, size_t __sl1, size_t __sl2, |
| 183 |
size_t __sr1, size_t __sr2, |
| 184 |
uint32_t __msk1, uint32_t __msk2, |
| 185 |
uint32_t __msk3, uint32_t __msk4, |
| 186 |
uint32_t __parity1, uint32_t __parity2, |
| 187 |
uint32_t __parity3, uint32_t __parity4> |
| 188 |
void simd_fast_mersenne_twister_engine<_UIntType, __m, |
| 189 |
__pos1, __sl1, __sl2, __sr1, __sr2, |
| 190 |
__msk1, __msk2, __msk3, __msk4, |
| 191 |
__parity1, __parity2, __parity3, |
| 192 |
__parity4>:: |
| 193 |
discard(unsigned long long __z) |
| 194 |
{ |
| 195 |
while (__z > state_size - _M_pos) |
| 196 |
{ |
| 197 |
__z -= state_size - _M_pos; |
| 198 |
|
| 199 |
_M_gen_rand(); |
| 200 |
} |
| 201 |
|
| 202 |
_M_pos += __z; |
| 203 |
} |
| 204 |
|
| 205 |
|
| 206 |
#ifndef _GLIBCXX_OPT_HAVE_RANDOM_SFMT_GEN_READ |
| 207 |
|
| 208 |
namespace { |
| 209 |
|
| 210 |
template<size_t __shift> |
| 211 |
inline void __rshift(uint32_t *__out, const uint32_t *__in) |
| 212 |
{ |
| 213 |
uint64_t __th = ((static_cast<uint64_t>(__in[3]) << 32) |
| 214 |
| static_cast<uint64_t>(__in[2])); |
| 215 |
uint64_t __tl = ((static_cast<uint64_t>(__in[1]) << 32) |
| 216 |
| static_cast<uint64_t>(__in[0])); |
| 217 |
|
| 218 |
uint64_t __oh = __th >> (__shift * 8); |
| 219 |
uint64_t __ol = __tl >> (__shift * 8); |
| 220 |
__ol |= __th << (64 - __shift * 8); |
| 221 |
__out[1] = static_cast<uint32_t>(__ol >> 32); |
| 222 |
__out[0] = static_cast<uint32_t>(__ol); |
| 223 |
__out[3] = static_cast<uint32_t>(__oh >> 32); |
| 224 |
__out[2] = static_cast<uint32_t>(__oh); |
| 225 |
} |
| 226 |
|
| 227 |
|
| 228 |
template<size_t __shift> |
| 229 |
inline void __lshift(uint32_t *__out, const uint32_t *__in) |
| 230 |
{ |
| 231 |
uint64_t __th = ((static_cast<uint64_t>(__in[3]) << 32) |
| 232 |
| static_cast<uint64_t>(__in[2])); |
| 233 |
uint64_t __tl = ((static_cast<uint64_t>(__in[1]) << 32) |
| 234 |
| static_cast<uint64_t>(__in[0])); |
| 235 |
|
| 236 |
uint64_t __oh = __th << (__shift * 8); |
| 237 |
uint64_t __ol = __tl << (__shift * 8); |
| 238 |
__oh |= __tl >> (64 - __shift * 8); |
| 239 |
__out[1] = static_cast<uint32_t>(__ol >> 32); |
| 240 |
__out[0] = static_cast<uint32_t>(__ol); |
| 241 |
__out[3] = static_cast<uint32_t>(__oh >> 32); |
| 242 |
__out[2] = static_cast<uint32_t>(__oh); |
| 243 |
} |
| 244 |
|
| 245 |
|
| 246 |
template<size_t __sl1, size_t __sl2, size_t __sr1, size_t __sr2, |
| 247 |
uint32_t __msk1, uint32_t __msk2, uint32_t __msk3, uint32_t __msk4> |
| 248 |
inline void __recursion(uint32_t *__r, |
| 249 |
const uint32_t *__a, const uint32_t *__b, |
| 250 |
const uint32_t *__c, const uint32_t *__d) |
| 251 |
{ |
| 252 |
uint32_t __x[4]; |
| 253 |
uint32_t __y[4]; |
| 254 |
|
| 255 |
__lshift<__sl2>(__x, __a); |
| 256 |
__rshift<__sr2>(__y, __c); |
| 257 |
__r[0] = (__a[0] ^ __x[0] ^ ((__b[0] >> __sr1) & __msk1) |
| 258 |
^ __y[0] ^ (__d[0] << __sl1)); |
| 259 |
__r[1] = (__a[1] ^ __x[1] ^ ((__b[1] >> __sr1) & __msk2) |
| 260 |
^ __y[1] ^ (__d[1] << __sl1)); |
| 261 |
__r[2] = (__a[2] ^ __x[2] ^ ((__b[2] >> __sr1) & __msk3) |
| 262 |
^ __y[2] ^ (__d[2] << __sl1)); |
| 263 |
__r[3] = (__a[3] ^ __x[3] ^ ((__b[3] >> __sr1) & __msk4) |
| 264 |
^ __y[3] ^ (__d[3] << __sl1)); |
| 265 |
} |
| 266 |
|
| 267 |
} |
| 268 |
|
| 269 |
|
| 270 |
template<typename _UIntType, size_t __m, |
| 271 |
size_t __pos1, size_t __sl1, size_t __sl2, |
| 272 |
size_t __sr1, size_t __sr2, |
| 273 |
uint32_t __msk1, uint32_t __msk2, |
| 274 |
uint32_t __msk3, uint32_t __msk4, |
| 275 |
uint32_t __parity1, uint32_t __parity2, |
| 276 |
uint32_t __parity3, uint32_t __parity4> |
| 277 |
void simd_fast_mersenne_twister_engine<_UIntType, __m, |
| 278 |
__pos1, __sl1, __sl2, __sr1, __sr2, |
| 279 |
__msk1, __msk2, __msk3, __msk4, |
| 280 |
__parity1, __parity2, __parity3, |
| 281 |
__parity4>:: |
| 282 |
_M_gen_rand(void) |
| 283 |
{ |
| 284 |
const uint32_t *__r1 = &_M_state32[_M_nstate32 - 8]; |
| 285 |
const uint32_t *__r2 = &_M_state32[_M_nstate32 - 4]; |
| 286 |
static constexpr size_t __pos1_32 = __pos1 * 4; |
| 287 |
|
| 288 |
size_t __i; |
| 289 |
for (__i = 0; __i < _M_nstate32 - __pos1_32; __i += 4) |
| 290 |
{ |
| 291 |
__recursion<__sl1, __sl2, __sr1, __sr2, |
| 292 |
__msk1, __msk2, __msk3, __msk4> |
| 293 |
(&_M_state32[__i], &_M_state32[__i], |
| 294 |
&_M_state32[__i + __pos1_32], __r1, __r2); |
| 295 |
__r1 = __r2; |
| 296 |
__r2 = &_M_state32[__i]; |
| 297 |
} |
| 298 |
|
| 299 |
for (; __i < _M_nstate32; __i += 4) |
| 300 |
{ |
| 301 |
__recursion<__sl1, __sl2, __sr1, __sr2, |
| 302 |
__msk1, __msk2, __msk3, __msk4> |
| 303 |
(&_M_state32[__i], &_M_state32[__i], |
| 304 |
&_M_state32[__i + __pos1_32 - _M_nstate32], __r1, __r2); |
| 305 |
__r1 = __r2; |
| 306 |
__r2 = &_M_state32[__i]; |
| 307 |
} |
| 308 |
|
| 309 |
_M_pos = 0; |
| 310 |
} |
| 311 |
|
| 312 |
#endif |
| 313 |
|
| 314 |
#ifndef _GLIBCXX_OPT_HAVE_RANDOM_SFMT_OPERATOREQUAL |
| 315 |
template<typename _UIntType, size_t __m, |
| 316 |
size_t __pos1, size_t __sl1, size_t __sl2, |
| 317 |
size_t __sr1, size_t __sr2, |
| 318 |
uint32_t __msk1, uint32_t __msk2, |
| 319 |
uint32_t __msk3, uint32_t __msk4, |
| 320 |
uint32_t __parity1, uint32_t __parity2, |
| 321 |
uint32_t __parity3, uint32_t __parity4> |
| 322 |
bool |
| 323 |
operator==(const __gnu_cxx::simd_fast_mersenne_twister_engine<_UIntType, |
| 324 |
__m, __pos1, __sl1, __sl2, __sr1, __sr2, |
| 325 |
__msk1, __msk2, __msk3, __msk4, |
| 326 |
__parity1, __parity2, __parity3, __parity4>& __lhs, |
| 327 |
const __gnu_cxx::simd_fast_mersenne_twister_engine<_UIntType, |
| 328 |
__m, __pos1, __sl1, __sl2, __sr1, __sr2, |
| 329 |
__msk1, __msk2, __msk3, __msk4, |
| 330 |
__parity1, __parity2, __parity3, __parity4>& __rhs) |
| 331 |
{ |
| 332 |
typedef __gnu_cxx::simd_fast_mersenne_twister_engine<_UIntType, |
| 333 |
__m, __pos1, __sl1, __sl2, __sr1, __sr2, |
| 334 |
__msk1, __msk2, __msk3, __msk4, |
| 335 |
__parity1, __parity2, __parity3, __parity4> __engine; |
| 336 |
return (std::equal(__lhs._M_stateT, |
| 337 |
__lhs._M_stateT + __engine::state_size, |
| 338 |
__rhs._M_stateT) |
| 339 |
&& __lhs._M_pos == __rhs._M_pos); |
| 340 |
} |
| 341 |
#endif |
| 342 |
|
| 343 |
template<typename _UIntType, size_t __m, |
| 344 |
size_t __pos1, size_t __sl1, size_t __sl2, |
| 345 |
size_t __sr1, size_t __sr2, |
| 346 |
uint32_t __msk1, uint32_t __msk2, |
| 347 |
uint32_t __msk3, uint32_t __msk4, |
| 348 |
uint32_t __parity1, uint32_t __parity2, |
| 349 |
uint32_t __parity3, uint32_t __parity4, |
| 350 |
typename _CharT, typename _Traits> |
| 351 |
std::basic_ostream<_CharT, _Traits>& |
| 352 |
operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| 353 |
const __gnu_cxx::simd_fast_mersenne_twister_engine<_UIntType, |
| 354 |
__m, __pos1, __sl1, __sl2, __sr1, __sr2, |
| 355 |
__msk1, __msk2, __msk3, __msk4, |
| 356 |
__parity1, __parity2, __parity3, __parity4>& __x) |
| 357 |
{ |
| 358 |
typedef std::basic_ostream<_CharT, _Traits> __ostream_type; |
| 359 |
typedef typename __ostream_type::ios_base __ios_base; |
| 360 |
|
| 361 |
const typename __ios_base::fmtflags __flags = __os.flags(); |
| 362 |
const _CharT __fill = __os.fill(); |
| 363 |
const _CharT __space = __os.widen(' '); |
| 364 |
__os.flags(__ios_base::dec | __ios_base::fixed | __ios_base::left); |
| 365 |
__os.fill(__space); |
| 366 |
|
| 367 |
for (size_t __i = 0; __i < __x._M_nstate32; ++__i) |
| 368 |
__os << __x._M_state32[__i] << __space; |
| 369 |
__os << __x._M_pos; |
| 370 |
|
| 371 |
__os.flags(__flags); |
| 372 |
__os.fill(__fill); |
| 373 |
return __os; |
| 374 |
} |
| 375 |
|
| 376 |
|
| 377 |
template<typename _UIntType, size_t __m, |
| 378 |
size_t __pos1, size_t __sl1, size_t __sl2, |
| 379 |
size_t __sr1, size_t __sr2, |
| 380 |
uint32_t __msk1, uint32_t __msk2, |
| 381 |
uint32_t __msk3, uint32_t __msk4, |
| 382 |
uint32_t __parity1, uint32_t __parity2, |
| 383 |
uint32_t __parity3, uint32_t __parity4, |
| 384 |
typename _CharT, typename _Traits> |
| 385 |
std::basic_istream<_CharT, _Traits>& |
| 386 |
operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| 387 |
__gnu_cxx::simd_fast_mersenne_twister_engine<_UIntType, |
| 388 |
__m, __pos1, __sl1, __sl2, __sr1, __sr2, |
| 389 |
__msk1, __msk2, __msk3, __msk4, |
| 390 |
__parity1, __parity2, __parity3, __parity4>& __x) |
| 391 |
{ |
| 392 |
typedef std::basic_istream<_CharT, _Traits> __istream_type; |
| 393 |
typedef typename __istream_type::ios_base __ios_base; |
| 394 |
|
| 395 |
const typename __ios_base::fmtflags __flags = __is.flags(); |
| 396 |
__is.flags(__ios_base::dec | __ios_base::skipws); |
| 397 |
|
| 398 |
for (size_t __i = 0; __i < __x._M_nstate32; ++__i) |
| 399 |
__is >> __x._M_state32[__i]; |
| 400 |
__is >> __x._M_pos; |
| 401 |
|
| 402 |
__is.flags(__flags); |
| 403 |
return __is; |
| 404 |
} |
| 405 |
|
| 406 |
#endif // __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ |
| 407 |
|
| 408 |
/** |
| 409 |
* Iteration method due to M.D. J<o:>hnk. |
| 410 |
* |
| 411 |
* M.D. J<o:>hnk, Erzeugung von betaverteilten und gammaverteilten |
| 412 |
* Zufallszahlen, Metrika, Volume 8, 1964 |
| 413 |
*/ |
| 414 |
template<typename _RealType> |
| 415 |
template<typename _UniformRandomNumberGenerator> |
| 416 |
typename beta_distribution<_RealType>::result_type |
| 417 |
beta_distribution<_RealType>:: |
| 418 |
operator()(_UniformRandomNumberGenerator& __urng, |
| 419 |
const param_type& __param) |
| 420 |
{ |
| 421 |
std::__detail::_Adaptor<_UniformRandomNumberGenerator, result_type> |
| 422 |
__aurng(__urng); |
| 423 |
|
| 424 |
result_type __x, __y; |
| 425 |
do |
| 426 |
{ |
| 427 |
__x = std::exp(std::log(__aurng()) / __param.alpha()); |
| 428 |
__y = std::exp(std::log(__aurng()) / __param.beta()); |
| 429 |
} |
| 430 |
while (__x + __y > result_type(1)); |
| 431 |
|
| 432 |
return __x / (__x + __y); |
| 433 |
} |
| 434 |
|
| 435 |
template<typename _RealType> |
| 436 |
template<typename _OutputIterator, |
| 437 |
typename _UniformRandomNumberGenerator> |
| 438 |
void |
| 439 |
beta_distribution<_RealType>:: |
| 440 |
__generate_impl(_OutputIterator __f, _OutputIterator __t, |
| 441 |
_UniformRandomNumberGenerator& __urng, |
| 442 |
const param_type& __param) |
| 443 |
{ |
| 444 |
__glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator, |
| 445 |
result_type>) |
| 446 |
|
| 447 |
std::__detail::_Adaptor<_UniformRandomNumberGenerator, result_type> |
| 448 |
__aurng(__urng); |
| 449 |
|
| 450 |
while (__f != __t) |
| 451 |
{ |
| 452 |
result_type __x, __y; |
| 453 |
do |
| 454 |
{ |
| 455 |
__x = std::exp(std::log(__aurng()) / __param.alpha()); |
| 456 |
__y = std::exp(std::log(__aurng()) / __param.beta()); |
| 457 |
} |
| 458 |
while (__x + __y > result_type(1)); |
| 459 |
|
| 460 |
*__f++ = __x / (__x + __y); |
| 461 |
} |
| 462 |
} |
| 463 |
|
| 464 |
template<typename _RealType, typename _CharT, typename _Traits> |
| 465 |
std::basic_ostream<_CharT, _Traits>& |
| 466 |
operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| 467 |
const __gnu_cxx::beta_distribution<_RealType>& __x) |
| 468 |
{ |
| 469 |
typedef std::basic_ostream<_CharT, _Traits> __ostream_type; |
| 470 |
typedef typename __ostream_type::ios_base __ios_base; |
| 471 |
|
| 472 |
const typename __ios_base::fmtflags __flags = __os.flags(); |
| 473 |
const _CharT __fill = __os.fill(); |
| 474 |
const std::streamsize __precision = __os.precision(); |
| 475 |
const _CharT __space = __os.widen(' '); |
| 476 |
__os.flags(__ios_base::scientific | __ios_base::left); |
| 477 |
__os.fill(__space); |
| 478 |
__os.precision(std::numeric_limits<_RealType>::max_digits10); |
| 479 |
|
| 480 |
__os << __x.alpha() << __space << __x.beta(); |
| 481 |
|
| 482 |
__os.flags(__flags); |
| 483 |
__os.fill(__fill); |
| 484 |
__os.precision(__precision); |
| 485 |
return __os; |
| 486 |
} |
| 487 |
|
| 488 |
template<typename _RealType, typename _CharT, typename _Traits> |
| 489 |
std::basic_istream<_CharT, _Traits>& |
| 490 |
operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| 491 |
__gnu_cxx::beta_distribution<_RealType>& __x) |
| 492 |
{ |
| 493 |
typedef std::basic_istream<_CharT, _Traits> __istream_type; |
| 494 |
typedef typename __istream_type::ios_base __ios_base; |
| 495 |
|
| 496 |
const typename __ios_base::fmtflags __flags = __is.flags(); |
| 497 |
__is.flags(__ios_base::dec | __ios_base::skipws); |
| 498 |
|
| 499 |
_RealType __alpha_val, __beta_val; |
| 500 |
__is >> __alpha_val >> __beta_val; |
| 501 |
__x.param(typename __gnu_cxx::beta_distribution<_RealType>:: |
| 502 |
param_type(__alpha_val, __beta_val)); |
| 503 |
|
| 504 |
__is.flags(__flags); |
| 505 |
return __is; |
| 506 |
} |
| 507 |
|
| 508 |
|
| 509 |
template<std::size_t _Dimen, typename _RealType> |
| 510 |
template<typename _InputIterator1, typename _InputIterator2> |
| 511 |
void |
| 512 |
normal_mv_distribution<_Dimen, _RealType>::param_type:: |
| 513 |
_M_init_full(_InputIterator1 __meanbegin, _InputIterator1 __meanend, |
| 514 |
_InputIterator2 __varcovbegin, _InputIterator2 __varcovend) |
| 515 |
{ |
| 516 |
__glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>) |
| 517 |
__glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>) |
| 518 |
std::fill(std::copy(__meanbegin, __meanend, _M_mean.begin()), |
| 519 |
_M_mean.end(), _RealType(0)); |
| 520 |
|
| 521 |
// Perform the Cholesky decomposition |
| 522 |
auto __w = _M_t.begin(); |
| 523 |
for (size_t __j = 0; __j < _Dimen; ++__j) |
| 524 |
{ |
| 525 |
_RealType __sum = _RealType(0); |
| 526 |
|
| 527 |
auto __slitbegin = __w; |
| 528 |
auto __cit = _M_t.begin(); |
| 529 |
for (size_t __i = 0; __i < __j; ++__i) |
| 530 |
{ |
| 531 |
auto __slit = __slitbegin; |
| 532 |
_RealType __s = *__varcovbegin++; |
| 533 |
for (size_t __k = 0; __k < __i; ++__k) |
| 534 |
__s -= *__slit++ * *__cit++; |
| 535 |
|
| 536 |
*__w++ = __s /= *__cit++; |
| 537 |
__sum += __s * __s; |
| 538 |
} |
| 539 |
|
| 540 |
__sum = *__varcovbegin - __sum; |
| 541 |
if (__builtin_expect(__sum <= _RealType(0), 0)) |
| 542 |
std::__throw_runtime_error(__N("normal_mv_distribution::" |
| 543 |
"param_type::_M_init_full")); |
| 544 |
*__w++ = std::sqrt(__sum); |
| 545 |
|
| 546 |
std::advance(__varcovbegin, _Dimen - __j); |
| 547 |
} |
| 548 |
} |
| 549 |
|
| 550 |
template<std::size_t _Dimen, typename _RealType> |
| 551 |
template<typename _InputIterator1, typename _InputIterator2> |
| 552 |
void |
| 553 |
normal_mv_distribution<_Dimen, _RealType>::param_type:: |
| 554 |
_M_init_lower(_InputIterator1 __meanbegin, _InputIterator1 __meanend, |
| 555 |
_InputIterator2 __varcovbegin, _InputIterator2 __varcovend) |
| 556 |
{ |
| 557 |
__glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>) |
| 558 |
__glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>) |
| 559 |
std::fill(std::copy(__meanbegin, __meanend, _M_mean.begin()), |
| 560 |
_M_mean.end(), _RealType(0)); |
| 561 |
|
| 562 |
// Perform the Cholesky decomposition |
| 563 |
auto __w = _M_t.begin(); |
| 564 |
for (size_t __j = 0; __j < _Dimen; ++__j) |
| 565 |
{ |
| 566 |
_RealType __sum = _RealType(0); |
| 567 |
|
| 568 |
auto __slitbegin = __w; |
| 569 |
auto __cit = _M_t.begin(); |
| 570 |
for (size_t __i = 0; __i < __j; ++__i) |
| 571 |
{ |
| 572 |
auto __slit = __slitbegin; |
| 573 |
_RealType __s = *__varcovbegin++; |
| 574 |
for (size_t __k = 0; __k < __i; ++__k) |
| 575 |
__s -= *__slit++ * *__cit++; |
| 576 |
|
| 577 |
*__w++ = __s /= *__cit++; |
| 578 |
__sum += __s * __s; |
| 579 |
} |
| 580 |
|
| 581 |
__sum = *__varcovbegin++ - __sum; |
| 582 |
if (__builtin_expect(__sum <= _RealType(0), 0)) |
| 583 |
std::__throw_runtime_error(__N("normal_mv_distribution::" |
| 584 |
"param_type::_M_init_lower")); |
| 585 |
*__w++ = std::sqrt(__sum); |
| 586 |
} |
| 587 |
} |
| 588 |
|
| 589 |
template<std::size_t _Dimen, typename _RealType> |
| 590 |
template<typename _InputIterator1, typename _InputIterator2> |
| 591 |
void |
| 592 |
normal_mv_distribution<_Dimen, _RealType>::param_type:: |
| 593 |
_M_init_diagonal(_InputIterator1 __meanbegin, _InputIterator1 __meanend, |
| 594 |
_InputIterator2 __varbegin, _InputIterator2 __varend) |
| 595 |
{ |
| 596 |
__glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>) |
| 597 |
__glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>) |
| 598 |
std::fill(std::copy(__meanbegin, __meanend, _M_mean.begin()), |
| 599 |
_M_mean.end(), _RealType(0)); |
| 600 |
|
| 601 |
auto __w = _M_t.begin(); |
| 602 |
size_t __step = 0; |
| 603 |
while (__varbegin != __varend) |
| 604 |
{ |
| 605 |
std::fill_n(__w, __step, _RealType(0)); |
| 606 |
__w += __step++; |
| 607 |
if (__builtin_expect(*__varbegin < _RealType(0), 0)) |
| 608 |
std::__throw_runtime_error(__N("normal_mv_distribution::" |
| 609 |
"param_type::_M_init_diagonal")); |
| 610 |
*__w++ = std::sqrt(*__varbegin++); |
| 611 |
} |
| 612 |
} |
| 613 |
|
| 614 |
template<std::size_t _Dimen, typename _RealType> |
| 615 |
template<typename _UniformRandomNumberGenerator> |
| 616 |
typename normal_mv_distribution<_Dimen, _RealType>::result_type |
| 617 |
normal_mv_distribution<_Dimen, _RealType>:: |
| 618 |
operator()(_UniformRandomNumberGenerator& __urng, |
| 619 |
const param_type& __param) |
| 620 |
{ |
| 621 |
result_type __ret; |
| 622 |
|
| 623 |
_M_nd.__generate(__ret.begin(), __ret.end(), __urng); |
| 624 |
|
| 625 |
auto __t_it = __param._M_t.crbegin(); |
| 626 |
for (size_t __i = _Dimen; __i > 0; --__i) |
| 627 |
{ |
| 628 |
_RealType __sum = _RealType(0); |
| 629 |
for (size_t __j = __i; __j > 0; --__j) |
| 630 |
__sum += __ret[__j - 1] * *__t_it++; |
| 631 |
__ret[__i - 1] = __sum; |
| 632 |
} |
| 633 |
|
| 634 |
return __ret; |
| 635 |
} |
| 636 |
|
| 637 |
template<std::size_t _Dimen, typename _RealType> |
| 638 |
template<typename _ForwardIterator, typename _UniformRandomNumberGenerator> |
| 639 |
void |
| 640 |
normal_mv_distribution<_Dimen, _RealType>:: |
| 641 |
__generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| 642 |
_UniformRandomNumberGenerator& __urng, |
| 643 |
const param_type& __param) |
| 644 |
{ |
| 645 |
__glibcxx_function_requires(_Mutable_ForwardIteratorConcept< |
| 646 |
_ForwardIterator>) |
| 647 |
while (__f != __t) |
| 648 |
*__f++ = this->operator()(__urng, __param); |
| 649 |
} |
| 650 |
|
| 651 |
template<size_t _Dimen, typename _RealType> |
| 652 |
bool |
| 653 |
operator==(const __gnu_cxx::normal_mv_distribution<_Dimen, _RealType>& |
| 654 |
__d1, |
| 655 |
const __gnu_cxx::normal_mv_distribution<_Dimen, _RealType>& |
| 656 |
__d2) |
| 657 |
{ |
| 658 |
return __d1._M_param == __d2._M_param && __d1._M_nd == __d2._M_nd; |
| 659 |
} |
| 660 |
|
| 661 |
template<size_t _Dimen, typename _RealType, typename _CharT, typename _Traits> |
| 662 |
std::basic_ostream<_CharT, _Traits>& |
| 663 |
operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| 664 |
const __gnu_cxx::normal_mv_distribution<_Dimen, _RealType>& __x) |
| 665 |
{ |
| 666 |
typedef std::basic_ostream<_CharT, _Traits> __ostream_type; |
| 667 |
typedef typename __ostream_type::ios_base __ios_base; |
| 668 |
|
| 669 |
const typename __ios_base::fmtflags __flags = __os.flags(); |
| 670 |
const _CharT __fill = __os.fill(); |
| 671 |
const std::streamsize __precision = __os.precision(); |
| 672 |
const _CharT __space = __os.widen(' '); |
| 673 |
__os.flags(__ios_base::scientific | __ios_base::left); |
| 674 |
__os.fill(__space); |
| 675 |
__os.precision(std::numeric_limits<_RealType>::max_digits10); |
| 676 |
|
| 677 |
auto __mean = __x._M_param.mean(); |
| 678 |
for (auto __it : __mean) |
| 679 |
__os << __it << __space; |
| 680 |
auto __t = __x._M_param.varcov(); |
| 681 |
for (auto __it : __t) |
| 682 |
__os << __it << __space; |
| 683 |
|
| 684 |
__os << __x._M_nd; |
| 685 |
|
| 686 |
__os.flags(__flags); |
| 687 |
__os.fill(__fill); |
| 688 |
__os.precision(__precision); |
| 689 |
return __os; |
| 690 |
} |
| 691 |
|
| 692 |
template<size_t _Dimen, typename _RealType, typename _CharT, typename _Traits> |
| 693 |
std::basic_istream<_CharT, _Traits>& |
| 694 |
operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| 695 |
__gnu_cxx::normal_mv_distribution<_Dimen, _RealType>& __x) |
| 696 |
{ |
| 697 |
typedef std::basic_istream<_CharT, _Traits> __istream_type; |
| 698 |
typedef typename __istream_type::ios_base __ios_base; |
| 699 |
|
| 700 |
const typename __ios_base::fmtflags __flags = __is.flags(); |
| 701 |
__is.flags(__ios_base::dec | __ios_base::skipws); |
| 702 |
|
| 703 |
std::array<_RealType, _Dimen> __mean; |
| 704 |
for (auto& __it : __mean) |
| 705 |
__is >> __it; |
| 706 |
std::array<_RealType, _Dimen * (_Dimen + 1) / 2> __varcov; |
| 707 |
for (auto& __it : __varcov) |
| 708 |
__is >> __it; |
| 709 |
|
| 710 |
__is >> __x._M_nd; |
| 711 |
|
| 712 |
// The param_type temporary is built with a private constructor, |
| 713 |
// to skip the Cholesky decomposition that would be performed |
| 714 |
// otherwise. |
| 715 |
__x.param(typename normal_mv_distribution<_Dimen, _RealType>:: |
| 716 |
param_type(__mean, __varcov)); |
| 717 |
|
| 718 |
__is.flags(__flags); |
| 719 |
return __is; |
| 720 |
} |
| 721 |
|
| 722 |
|
| 723 |
template<typename _RealType> |
| 724 |
template<typename _OutputIterator, |
| 725 |
typename _UniformRandomNumberGenerator> |
| 726 |
void |
| 727 |
rice_distribution<_RealType>:: |
| 728 |
__generate_impl(_OutputIterator __f, _OutputIterator __t, |
| 729 |
_UniformRandomNumberGenerator& __urng, |
| 730 |
const param_type& __p) |
| 731 |
{ |
| 732 |
__glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator, |
| 733 |
result_type>) |
| 734 |
|
| 735 |
while (__f != __t) |
| 736 |
{ |
| 737 |
typename std::normal_distribution<result_type>::param_type |
| 738 |
__px(__p.nu(), __p.sigma()), __py(result_type(0), __p.sigma()); |
| 739 |
result_type __x = this->_M_ndx(__px, __urng); |
| 740 |
result_type __y = this->_M_ndy(__py, __urng); |
| 741 |
#if _GLIBCXX_USE_C99_MATH_TR1 |
| 742 |
*__f++ = std::hypot(__x, __y); |
| 743 |
#else |
| 744 |
*__f++ = std::sqrt(__x * __x + __y * __y); |
| 745 |
#endif |
| 746 |
} |
| 747 |
} |
| 748 |
|
| 749 |
template<typename _RealType, typename _CharT, typename _Traits> |
| 750 |
std::basic_ostream<_CharT, _Traits>& |
| 751 |
operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| 752 |
const rice_distribution<_RealType>& __x) |
| 753 |
{ |
| 754 |
typedef std::basic_ostream<_CharT, _Traits> __ostream_type; |
| 755 |
typedef typename __ostream_type::ios_base __ios_base; |
| 756 |
|
| 757 |
const typename __ios_base::fmtflags __flags = __os.flags(); |
| 758 |
const _CharT __fill = __os.fill(); |
| 759 |
const std::streamsize __precision = __os.precision(); |
| 760 |
const _CharT __space = __os.widen(' '); |
| 761 |
__os.flags(__ios_base::scientific | __ios_base::left); |
| 762 |
__os.fill(__space); |
| 763 |
__os.precision(std::numeric_limits<_RealType>::max_digits10); |
| 764 |
|
| 765 |
__os << __x.nu() << __space << __x.sigma(); |
| 766 |
__os << __space << __x._M_ndx; |
| 767 |
__os << __space << __x._M_ndy; |
| 768 |
|
| 769 |
__os.flags(__flags); |
| 770 |
__os.fill(__fill); |
| 771 |
__os.precision(__precision); |
| 772 |
return __os; |
| 773 |
} |
| 774 |
|
| 775 |
template<typename _RealType, typename _CharT, typename _Traits> |
| 776 |
std::basic_istream<_CharT, _Traits>& |
| 777 |
operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| 778 |
rice_distribution<_RealType>& __x) |
| 779 |
{ |
| 780 |
typedef std::basic_istream<_CharT, _Traits> __istream_type; |
| 781 |
typedef typename __istream_type::ios_base __ios_base; |
| 782 |
|
| 783 |
const typename __ios_base::fmtflags __flags = __is.flags(); |
| 784 |
__is.flags(__ios_base::dec | __ios_base::skipws); |
| 785 |
|
| 786 |
_RealType __nu_val, __sigma_val; |
| 787 |
__is >> __nu_val >> __sigma_val; |
| 788 |
__is >> __x._M_ndx; |
| 789 |
__is >> __x._M_ndy; |
| 790 |
__x.param(typename rice_distribution<_RealType>:: |
| 791 |
param_type(__nu_val, __sigma_val)); |
| 792 |
|
| 793 |
__is.flags(__flags); |
| 794 |
return __is; |
| 795 |
} |
| 796 |
|
| 797 |
|
| 798 |
template<typename _RealType> |
| 799 |
template<typename _OutputIterator, |
| 800 |
typename _UniformRandomNumberGenerator> |
| 801 |
void |
| 802 |
nakagami_distribution<_RealType>:: |
| 803 |
__generate_impl(_OutputIterator __f, _OutputIterator __t, |
| 804 |
_UniformRandomNumberGenerator& __urng, |
| 805 |
const param_type& __p) |
| 806 |
{ |
| 807 |
__glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator, |
| 808 |
result_type>) |
| 809 |
|
| 810 |
typename std::gamma_distribution<result_type>::param_type |
| 811 |
__pg(__p.mu(), __p.omega() / __p.mu()); |
| 812 |
while (__f != __t) |
| 813 |
*__f++ = std::sqrt(this->_M_gd(__pg, __urng)); |
| 814 |
} |
| 815 |
|
| 816 |
template<typename _RealType, typename _CharT, typename _Traits> |
| 817 |
std::basic_ostream<_CharT, _Traits>& |
| 818 |
operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| 819 |
const nakagami_distribution<_RealType>& __x) |
| 820 |
{ |
| 821 |
typedef std::basic_ostream<_CharT, _Traits> __ostream_type; |
| 822 |
typedef typename __ostream_type::ios_base __ios_base; |
| 823 |
|
| 824 |
const typename __ios_base::fmtflags __flags = __os.flags(); |
| 825 |
const _CharT __fill = __os.fill(); |
| 826 |
const std::streamsize __precision = __os.precision(); |
| 827 |
const _CharT __space = __os.widen(' '); |
| 828 |
__os.flags(__ios_base::scientific | __ios_base::left); |
| 829 |
__os.fill(__space); |
| 830 |
__os.precision(std::numeric_limits<_RealType>::max_digits10); |
| 831 |
|
| 832 |
__os << __x.mu() << __space << __x.omega(); |
| 833 |
__os << __space << __x._M_gd; |
| 834 |
|
| 835 |
__os.flags(__flags); |
| 836 |
__os.fill(__fill); |
| 837 |
__os.precision(__precision); |
| 838 |
return __os; |
| 839 |
} |
| 840 |
|
| 841 |
template<typename _RealType, typename _CharT, typename _Traits> |
| 842 |
std::basic_istream<_CharT, _Traits>& |
| 843 |
operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| 844 |
nakagami_distribution<_RealType>& __x) |
| 845 |
{ |
| 846 |
typedef std::basic_istream<_CharT, _Traits> __istream_type; |
| 847 |
typedef typename __istream_type::ios_base __ios_base; |
| 848 |
|
| 849 |
const typename __ios_base::fmtflags __flags = __is.flags(); |
| 850 |
__is.flags(__ios_base::dec | __ios_base::skipws); |
| 851 |
|
| 852 |
_RealType __mu_val, __omega_val; |
| 853 |
__is >> __mu_val >> __omega_val; |
| 854 |
__is >> __x._M_gd; |
| 855 |
__x.param(typename nakagami_distribution<_RealType>:: |
| 856 |
param_type(__mu_val, __omega_val)); |
| 857 |
|
| 858 |
__is.flags(__flags); |
| 859 |
return __is; |
| 860 |
} |
| 861 |
|
| 862 |
|
| 863 |
template<typename _RealType> |
| 864 |
template<typename _OutputIterator, |
| 865 |
typename _UniformRandomNumberGenerator> |
| 866 |
void |
| 867 |
pareto_distribution<_RealType>:: |
| 868 |
__generate_impl(_OutputIterator __f, _OutputIterator __t, |
| 869 |
_UniformRandomNumberGenerator& __urng, |
| 870 |
const param_type& __p) |
| 871 |
{ |
| 872 |
__glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator, |
| 873 |
result_type>) |
| 874 |
|
| 875 |
result_type __mu_val = __p.mu(); |
| 876 |
result_type __malphinv = -result_type(1) / __p.alpha(); |
| 877 |
while (__f != __t) |
| 878 |
*__f++ = __mu_val * std::pow(this->_M_ud(__urng), __malphinv); |
| 879 |
} |
| 880 |
|
| 881 |
template<typename _RealType, typename _CharT, typename _Traits> |
| 882 |
std::basic_ostream<_CharT, _Traits>& |
| 883 |
operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| 884 |
const pareto_distribution<_RealType>& __x) |
| 885 |
{ |
| 886 |
typedef std::basic_ostream<_CharT, _Traits> __ostream_type; |
| 887 |
typedef typename __ostream_type::ios_base __ios_base; |
| 888 |
|
| 889 |
const typename __ios_base::fmtflags __flags = __os.flags(); |
| 890 |
const _CharT __fill = __os.fill(); |
| 891 |
const std::streamsize __precision = __os.precision(); |
| 892 |
const _CharT __space = __os.widen(' '); |
| 893 |
__os.flags(__ios_base::scientific | __ios_base::left); |
| 894 |
__os.fill(__space); |
| 895 |
__os.precision(std::numeric_limits<_RealType>::max_digits10); |
| 896 |
|
| 897 |
__os << __x.alpha() << __space << __x.mu(); |
| 898 |
__os << __space << __x._M_ud; |
| 899 |
|
| 900 |
__os.flags(__flags); |
| 901 |
__os.fill(__fill); |
| 902 |
__os.precision(__precision); |
| 903 |
return __os; |
| 904 |
} |
| 905 |
|
| 906 |
template<typename _RealType, typename _CharT, typename _Traits> |
| 907 |
std::basic_istream<_CharT, _Traits>& |
| 908 |
operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| 909 |
pareto_distribution<_RealType>& __x) |
| 910 |
{ |
| 911 |
typedef std::basic_istream<_CharT, _Traits> __istream_type; |
| 912 |
typedef typename __istream_type::ios_base __ios_base; |
| 913 |
|
| 914 |
const typename __ios_base::fmtflags __flags = __is.flags(); |
| 915 |
__is.flags(__ios_base::dec | __ios_base::skipws); |
| 916 |
|
| 917 |
_RealType __alpha_val, __mu_val; |
| 918 |
__is >> __alpha_val >> __mu_val; |
| 919 |
__is >> __x._M_ud; |
| 920 |
__x.param(typename pareto_distribution<_RealType>:: |
| 921 |
param_type(__alpha_val, __mu_val)); |
| 922 |
|
| 923 |
__is.flags(__flags); |
| 924 |
return __is; |
| 925 |
} |
| 926 |
|
| 927 |
|
| 928 |
template<typename _RealType> |
| 929 |
template<typename _UniformRandomNumberGenerator> |
| 930 |
typename k_distribution<_RealType>::result_type |
| 931 |
k_distribution<_RealType>:: |
| 932 |
operator()(_UniformRandomNumberGenerator& __urng) |
| 933 |
{ |
| 934 |
result_type __x = this->_M_gd1(__urng); |
| 935 |
result_type __y = this->_M_gd2(__urng); |
| 936 |
return std::sqrt(__x * __y); |
| 937 |
} |
| 938 |
|
| 939 |
template<typename _RealType> |
| 940 |
template<typename _UniformRandomNumberGenerator> |
| 941 |
typename k_distribution<_RealType>::result_type |
| 942 |
k_distribution<_RealType>:: |
| 943 |
operator()(_UniformRandomNumberGenerator& __urng, |
| 944 |
const param_type& __p) |
| 945 |
{ |
| 946 |
typename std::gamma_distribution<result_type>::param_type |
| 947 |
__p1(__p.lambda(), result_type(1) / __p.lambda()), |
| 948 |
__p2(__p.nu(), __p.mu() / __p.nu()); |
| 949 |
result_type __x = this->_M_gd1(__p1, __urng); |
| 950 |
result_type __y = this->_M_gd2(__p2, __urng); |
| 951 |
return std::sqrt(__x * __y); |
| 952 |
} |
| 953 |
|
| 954 |
template<typename _RealType> |
| 955 |
template<typename _OutputIterator, |
| 956 |
typename _UniformRandomNumberGenerator> |
| 957 |
void |
| 958 |
k_distribution<_RealType>:: |
| 959 |
__generate_impl(_OutputIterator __f, _OutputIterator __t, |
| 960 |
_UniformRandomNumberGenerator& __urng, |
| 961 |
const param_type& __p) |
| 962 |
{ |
| 963 |
__glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator, |
| 964 |
result_type>) |
| 965 |
|
| 966 |
typename std::gamma_distribution<result_type>::param_type |
| 967 |
__p1(__p.lambda(), result_type(1) / __p.lambda()), |
| 968 |
__p2(__p.nu(), __p.mu() / __p.nu()); |
| 969 |
while (__f != __t) |
| 970 |
{ |
| 971 |
result_type __x = this->_M_gd1(__p1, __urng); |
| 972 |
result_type __y = this->_M_gd2(__p2, __urng); |
| 973 |
*__f++ = std::sqrt(__x * __y); |
| 974 |
} |
| 975 |
} |
| 976 |
|
| 977 |
template<typename _RealType, typename _CharT, typename _Traits> |
| 978 |
std::basic_ostream<_CharT, _Traits>& |
| 979 |
operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| 980 |
const k_distribution<_RealType>& __x) |
| 981 |
{ |
| 982 |
typedef std::basic_ostream<_CharT, _Traits> __ostream_type; |
| 983 |
typedef typename __ostream_type::ios_base __ios_base; |
| 984 |
|
| 985 |
const typename __ios_base::fmtflags __flags = __os.flags(); |
| 986 |
const _CharT __fill = __os.fill(); |
| 987 |
const std::streamsize __precision = __os.precision(); |
| 988 |
const _CharT __space = __os.widen(' '); |
| 989 |
__os.flags(__ios_base::scientific | __ios_base::left); |
| 990 |
__os.fill(__space); |
| 991 |
__os.precision(std::numeric_limits<_RealType>::max_digits10); |
| 992 |
|
| 993 |
__os << __x.lambda() << __space << __x.mu() << __space << __x.nu(); |
| 994 |
__os << __space << __x._M_gd1; |
| 995 |
__os << __space << __x._M_gd2; |
| 996 |
|
| 997 |
__os.flags(__flags); |
| 998 |
__os.fill(__fill); |
| 999 |
__os.precision(__precision); |
| 1000 |
return __os; |
| 1001 |
} |
| 1002 |
|
| 1003 |
template<typename _RealType, typename _CharT, typename _Traits> |
| 1004 |
std::basic_istream<_CharT, _Traits>& |
| 1005 |
operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| 1006 |
k_distribution<_RealType>& __x) |
| 1007 |
{ |
| 1008 |
typedef std::basic_istream<_CharT, _Traits> __istream_type; |
| 1009 |
typedef typename __istream_type::ios_base __ios_base; |
| 1010 |
|
| 1011 |
const typename __ios_base::fmtflags __flags = __is.flags(); |
| 1012 |
__is.flags(__ios_base::dec | __ios_base::skipws); |
| 1013 |
|
| 1014 |
_RealType __lambda_val, __mu_val, __nu_val; |
| 1015 |
__is >> __lambda_val >> __mu_val >> __nu_val; |
| 1016 |
__is >> __x._M_gd1; |
| 1017 |
__is >> __x._M_gd2; |
| 1018 |
__x.param(typename k_distribution<_RealType>:: |
| 1019 |
param_type(__lambda_val, __mu_val, __nu_val)); |
| 1020 |
|
| 1021 |
__is.flags(__flags); |
| 1022 |
return __is; |
| 1023 |
} |
| 1024 |
|
| 1025 |
|
| 1026 |
template<typename _RealType> |
| 1027 |
template<typename _OutputIterator, |
| 1028 |
typename _UniformRandomNumberGenerator> |
| 1029 |
void |
| 1030 |
arcsine_distribution<_RealType>:: |
| 1031 |
__generate_impl(_OutputIterator __f, _OutputIterator __t, |
| 1032 |
_UniformRandomNumberGenerator& __urng, |
| 1033 |
const param_type& __p) |
| 1034 |
{ |
| 1035 |
__glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator, |
| 1036 |
result_type>) |
| 1037 |
|
| 1038 |
result_type __dif = __p.b() - __p.a(); |
| 1039 |
result_type __sum = __p.a() + __p.b(); |
| 1040 |
while (__f != __t) |
| 1041 |
{ |
| 1042 |
result_type __x = std::sin(this->_M_ud(__urng)); |
| 1043 |
*__f++ = (__x * __dif + __sum) / result_type(2); |
| 1044 |
} |
| 1045 |
} |
| 1046 |
|
| 1047 |
template<typename _RealType, typename _CharT, typename _Traits> |
| 1048 |
std::basic_ostream<_CharT, _Traits>& |
| 1049 |
operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| 1050 |
const arcsine_distribution<_RealType>& __x) |
| 1051 |
{ |
| 1052 |
typedef std::basic_ostream<_CharT, _Traits> __ostream_type; |
| 1053 |
typedef typename __ostream_type::ios_base __ios_base; |
| 1054 |
|
| 1055 |
const typename __ios_base::fmtflags __flags = __os.flags(); |
| 1056 |
const _CharT __fill = __os.fill(); |
| 1057 |
const std::streamsize __precision = __os.precision(); |
| 1058 |
const _CharT __space = __os.widen(' '); |
| 1059 |
__os.flags(__ios_base::scientific | __ios_base::left); |
| 1060 |
__os.fill(__space); |
| 1061 |
__os.precision(std::numeric_limits<_RealType>::max_digits10); |
| 1062 |
|
| 1063 |
__os << __x.a() << __space << __x.b(); |
| 1064 |
__os << __space << __x._M_ud; |
| 1065 |
|
| 1066 |
__os.flags(__flags); |
| 1067 |
__os.fill(__fill); |
| 1068 |
__os.precision(__precision); |
| 1069 |
return __os; |
| 1070 |
} |
| 1071 |
|
| 1072 |
template<typename _RealType, typename _CharT, typename _Traits> |
| 1073 |
std::basic_istream<_CharT, _Traits>& |
| 1074 |
operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| 1075 |
arcsine_distribution<_RealType>& __x) |
| 1076 |
{ |
| 1077 |
typedef std::basic_istream<_CharT, _Traits> __istream_type; |
| 1078 |
typedef typename __istream_type::ios_base __ios_base; |
| 1079 |
|
| 1080 |
const typename __ios_base::fmtflags __flags = __is.flags(); |
| 1081 |
__is.flags(__ios_base::dec | __ios_base::skipws); |
| 1082 |
|
| 1083 |
_RealType __a, __b; |
| 1084 |
__is >> __a >> __b; |
| 1085 |
__is >> __x._M_ud; |
| 1086 |
__x.param(typename arcsine_distribution<_RealType>:: |
| 1087 |
param_type(__a, __b)); |
| 1088 |
|
| 1089 |
__is.flags(__flags); |
| 1090 |
return __is; |
| 1091 |
} |
| 1092 |
|
| 1093 |
|
| 1094 |
template<typename _RealType> |
| 1095 |
template<typename _UniformRandomNumberGenerator> |
| 1096 |
typename hoyt_distribution<_RealType>::result_type |
| 1097 |
hoyt_distribution<_RealType>:: |
| 1098 |
operator()(_UniformRandomNumberGenerator& __urng) |
| 1099 |
{ |
| 1100 |
result_type __x = this->_M_ad(__urng); |
| 1101 |
result_type __y = this->_M_ed(__urng); |
| 1102 |
return (result_type(2) * this->q() |
| 1103 |
/ (result_type(1) + this->q() * this->q())) |
| 1104 |
* std::sqrt(this->omega() * __x * __y); |
| 1105 |
} |
| 1106 |
|
| 1107 |
template<typename _RealType> |
| 1108 |
template<typename _UniformRandomNumberGenerator> |
| 1109 |
typename hoyt_distribution<_RealType>::result_type |
| 1110 |
hoyt_distribution<_RealType>:: |
| 1111 |
operator()(_UniformRandomNumberGenerator& __urng, |
| 1112 |
const param_type& __p) |
| 1113 |
{ |
| 1114 |
result_type __q2 = __p.q() * __p.q(); |
| 1115 |
result_type __num = result_type(0.5L) * (result_type(1) + __q2); |
| 1116 |
typename __gnu_cxx::arcsine_distribution<result_type>::param_type |
| 1117 |
__pa(__num, __num / __q2); |
| 1118 |
result_type __x = this->_M_ad(__pa, __urng); |
| 1119 |
result_type __y = this->_M_ed(__urng); |
| 1120 |
return (result_type(2) * __p.q() / (result_type(1) + __q2)) |
| 1121 |
* std::sqrt(__p.omega() * __x * __y); |
| 1122 |
} |
| 1123 |
|
| 1124 |
template<typename _RealType> |
| 1125 |
template<typename _OutputIterator, |
| 1126 |
typename _UniformRandomNumberGenerator> |
| 1127 |
void |
| 1128 |
hoyt_distribution<_RealType>:: |
| 1129 |
__generate_impl(_OutputIterator __f, _OutputIterator __t, |
| 1130 |
_UniformRandomNumberGenerator& __urng, |
| 1131 |
const param_type& __p) |
| 1132 |
{ |
| 1133 |
__glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator, |
| 1134 |
result_type>) |
| 1135 |
|
| 1136 |
result_type __2q = result_type(2) * __p.q(); |
| 1137 |
result_type __q2 = __p.q() * __p.q(); |
| 1138 |
result_type __q2p1 = result_type(1) + __q2; |
| 1139 |
result_type __num = result_type(0.5L) * __q2p1; |
| 1140 |
result_type __omega = __p.omega(); |
| 1141 |
typename __gnu_cxx::arcsine_distribution<result_type>::param_type |
| 1142 |
__pa(__num, __num / __q2); |
| 1143 |
while (__f != __t) |
| 1144 |
{ |
| 1145 |
result_type __x = this->_M_ad(__pa, __urng); |
| 1146 |
result_type __y = this->_M_ed(__urng); |
| 1147 |
*__f++ = (__2q / __q2p1) * std::sqrt(__omega * __x * __y); |
| 1148 |
} |
| 1149 |
} |
| 1150 |
|
| 1151 |
template<typename _RealType, typename _CharT, typename _Traits> |
| 1152 |
std::basic_ostream<_CharT, _Traits>& |
| 1153 |
operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| 1154 |
const hoyt_distribution<_RealType>& __x) |
| 1155 |
{ |
| 1156 |
typedef std::basic_ostream<_CharT, _Traits> __ostream_type; |
| 1157 |
typedef typename __ostream_type::ios_base __ios_base; |
| 1158 |
|
| 1159 |
const typename __ios_base::fmtflags __flags = __os.flags(); |
| 1160 |
const _CharT __fill = __os.fill(); |
| 1161 |
const std::streamsize __precision = __os.precision(); |
| 1162 |
const _CharT __space = __os.widen(' '); |
| 1163 |
__os.flags(__ios_base::scientific | __ios_base::left); |
| 1164 |
__os.fill(__space); |
| 1165 |
__os.precision(std::numeric_limits<_RealType>::max_digits10); |
| 1166 |
|
| 1167 |
__os << __x.q() << __space << __x.omega(); |
| 1168 |
__os << __space << __x._M_ad; |
| 1169 |
__os << __space << __x._M_ed; |
| 1170 |
|
| 1171 |
__os.flags(__flags); |
| 1172 |
__os.fill(__fill); |
| 1173 |
__os.precision(__precision); |
| 1174 |
return __os; |
| 1175 |
} |
| 1176 |
|
| 1177 |
template<typename _RealType, typename _CharT, typename _Traits> |
| 1178 |
std::basic_istream<_CharT, _Traits>& |
| 1179 |
operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| 1180 |
hoyt_distribution<_RealType>& __x) |
| 1181 |
{ |
| 1182 |
typedef std::basic_istream<_CharT, _Traits> __istream_type; |
| 1183 |
typedef typename __istream_type::ios_base __ios_base; |
| 1184 |
|
| 1185 |
const typename __ios_base::fmtflags __flags = __is.flags(); |
| 1186 |
__is.flags(__ios_base::dec | __ios_base::skipws); |
| 1187 |
|
| 1188 |
_RealType __q, __omega; |
| 1189 |
__is >> __q >> __omega; |
| 1190 |
__is >> __x._M_ad; |
| 1191 |
__is >> __x._M_ed; |
| 1192 |
__x.param(typename hoyt_distribution<_RealType>:: |
| 1193 |
param_type(__q, __omega)); |
| 1194 |
|
| 1195 |
__is.flags(__flags); |
| 1196 |
return __is; |
| 1197 |
} |
| 1198 |
|
| 1199 |
|
| 1200 |
template<typename _RealType> |
| 1201 |
template<typename _OutputIterator, |
| 1202 |
typename _UniformRandomNumberGenerator> |
| 1203 |
void |
| 1204 |
triangular_distribution<_RealType>:: |
| 1205 |
__generate_impl(_OutputIterator __f, _OutputIterator __t, |
| 1206 |
_UniformRandomNumberGenerator& __urng, |
| 1207 |
const param_type& __param) |
| 1208 |
{ |
| 1209 |
__glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator, |
| 1210 |
result_type>) |
| 1211 |
|
| 1212 |
while (__f != __t) |
| 1213 |
*__f++ = this->operator()(__urng, __param); |
| 1214 |
} |
| 1215 |
|
| 1216 |
template<typename _RealType, typename _CharT, typename _Traits> |
| 1217 |
std::basic_ostream<_CharT, _Traits>& |
| 1218 |
operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| 1219 |
const __gnu_cxx::triangular_distribution<_RealType>& __x) |
| 1220 |
{ |
| 1221 |
typedef std::basic_ostream<_CharT, _Traits> __ostream_type; |
| 1222 |
typedef typename __ostream_type::ios_base __ios_base; |
| 1223 |
|
| 1224 |
const typename __ios_base::fmtflags __flags = __os.flags(); |
| 1225 |
const _CharT __fill = __os.fill(); |
| 1226 |
const std::streamsize __precision = __os.precision(); |
| 1227 |
const _CharT __space = __os.widen(' '); |
| 1228 |
__os.flags(__ios_base::scientific | __ios_base::left); |
| 1229 |
__os.fill(__space); |
| 1230 |
__os.precision(std::numeric_limits<_RealType>::max_digits10); |
| 1231 |
|
| 1232 |
__os << __x.a() << __space << __x.b() << __space << __x.c(); |
| 1233 |
|
| 1234 |
__os.flags(__flags); |
| 1235 |
__os.fill(__fill); |
| 1236 |
__os.precision(__precision); |
| 1237 |
return __os; |
| 1238 |
} |
| 1239 |
|
| 1240 |
template<typename _RealType, typename _CharT, typename _Traits> |
| 1241 |
std::basic_istream<_CharT, _Traits>& |
| 1242 |
operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| 1243 |
__gnu_cxx::triangular_distribution<_RealType>& __x) |
| 1244 |
{ |
| 1245 |
typedef std::basic_istream<_CharT, _Traits> __istream_type; |
| 1246 |
typedef typename __istream_type::ios_base __ios_base; |
| 1247 |
|
| 1248 |
const typename __ios_base::fmtflags __flags = __is.flags(); |
| 1249 |
__is.flags(__ios_base::dec | __ios_base::skipws); |
| 1250 |
|
| 1251 |
_RealType __a, __b, __c; |
| 1252 |
__is >> __a >> __b >> __c; |
| 1253 |
__x.param(typename __gnu_cxx::triangular_distribution<_RealType>:: |
| 1254 |
param_type(__a, __b, __c)); |
| 1255 |
|
| 1256 |
__is.flags(__flags); |
| 1257 |
return __is; |
| 1258 |
} |
| 1259 |
|
| 1260 |
|
| 1261 |
template<typename _RealType> |
| 1262 |
template<typename _UniformRandomNumberGenerator> |
| 1263 |
typename von_mises_distribution<_RealType>::result_type |
| 1264 |
von_mises_distribution<_RealType>:: |
| 1265 |
operator()(_UniformRandomNumberGenerator& __urng, |
| 1266 |
const param_type& __p) |
| 1267 |
{ |
| 1268 |
const result_type __pi |
| 1269 |
= __gnu_cxx::__math_constants<result_type>::__pi; |
| 1270 |
std::__detail::_Adaptor<_UniformRandomNumberGenerator, result_type> |
| 1271 |
__aurng(__urng); |
| 1272 |
|
| 1273 |
result_type __f; |
| 1274 |
while (1) |
| 1275 |
{ |
| 1276 |
result_type __rnd = std::cos(__pi * __aurng()); |
| 1277 |
__f = (result_type(1) + __p._M_r * __rnd) / (__p._M_r + __rnd); |
| 1278 |
result_type __c = __p._M_kappa * (__p._M_r - __f); |
| 1279 |
|
| 1280 |
result_type __rnd2 = __aurng(); |
| 1281 |
if (__c * (result_type(2) - __c) > __rnd2) |
| 1282 |
break; |
| 1283 |
if (std::log(__c / __rnd2) >= __c - result_type(1)) |
| 1284 |
break; |
| 1285 |
} |
| 1286 |
|
| 1287 |
result_type __res = std::acos(__f); |
| 1288 |
#if _GLIBCXX_USE_C99_MATH_TR1 |
| 1289 |
__res = std::copysign(__res, __aurng() - result_type(0.5)); |
| 1290 |
#else |
| 1291 |
if (__aurng() < result_type(0.5)) |
| 1292 |
__res = -__res; |
| 1293 |
#endif |
| 1294 |
__res += __p._M_mu; |
| 1295 |
if (__res > __pi) |
| 1296 |
__res -= result_type(2) * __pi; |
| 1297 |
else if (__res < -__pi) |
| 1298 |
__res += result_type(2) * __pi; |
| 1299 |
return __res; |
| 1300 |
} |
| 1301 |
|
| 1302 |
template<typename _RealType> |
| 1303 |
template<typename _OutputIterator, |
| 1304 |
typename _UniformRandomNumberGenerator> |
| 1305 |
void |
| 1306 |
von_mises_distribution<_RealType>:: |
| 1307 |
__generate_impl(_OutputIterator __f, _OutputIterator __t, |
| 1308 |
_UniformRandomNumberGenerator& __urng, |
| 1309 |
const param_type& __param) |
| 1310 |
{ |
| 1311 |
__glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator, |
| 1312 |
result_type>) |
| 1313 |
|
| 1314 |
while (__f != __t) |
| 1315 |
*__f++ = this->operator()(__urng, __param); |
| 1316 |
} |
| 1317 |
|
| 1318 |
template<typename _RealType, typename _CharT, typename _Traits> |
| 1319 |
std::basic_ostream<_CharT, _Traits>& |
| 1320 |
operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| 1321 |
const __gnu_cxx::von_mises_distribution<_RealType>& __x) |
| 1322 |
{ |
| 1323 |
typedef std::basic_ostream<_CharT, _Traits> __ostream_type; |
| 1324 |
typedef typename __ostream_type::ios_base __ios_base; |
| 1325 |
|
| 1326 |
const typename __ios_base::fmtflags __flags = __os.flags(); |
| 1327 |
const _CharT __fill = __os.fill(); |
| 1328 |
const std::streamsize __precision = __os.precision(); |
| 1329 |
const _CharT __space = __os.widen(' '); |
| 1330 |
__os.flags(__ios_base::scientific | __ios_base::left); |
| 1331 |
__os.fill(__space); |
| 1332 |
__os.precision(std::numeric_limits<_RealType>::max_digits10); |
| 1333 |
|
| 1334 |
__os << __x.mu() << __space << __x.kappa(); |
| 1335 |
|
| 1336 |
__os.flags(__flags); |
| 1337 |
__os.fill(__fill); |
| 1338 |
__os.precision(__precision); |
| 1339 |
return __os; |
| 1340 |
} |
| 1341 |
|
| 1342 |
template<typename _RealType, typename _CharT, typename _Traits> |
| 1343 |
std::basic_istream<_CharT, _Traits>& |
| 1344 |
operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| 1345 |
__gnu_cxx::von_mises_distribution<_RealType>& __x) |
| 1346 |
{ |
| 1347 |
typedef std::basic_istream<_CharT, _Traits> __istream_type; |
| 1348 |
typedef typename __istream_type::ios_base __ios_base; |
| 1349 |
|
| 1350 |
const typename __ios_base::fmtflags __flags = __is.flags(); |
| 1351 |
__is.flags(__ios_base::dec | __ios_base::skipws); |
| 1352 |
|
| 1353 |
_RealType __mu, __kappa; |
| 1354 |
__is >> __mu >> __kappa; |
| 1355 |
__x.param(typename __gnu_cxx::von_mises_distribution<_RealType>:: |
| 1356 |
param_type(__mu, __kappa)); |
| 1357 |
|
| 1358 |
__is.flags(__flags); |
| 1359 |
return __is; |
| 1360 |
} |
| 1361 |
|
| 1362 |
|
| 1363 |
template<typename _UIntType> |
| 1364 |
template<typename _UniformRandomNumberGenerator> |
| 1365 |
typename hypergeometric_distribution<_UIntType>::result_type |
| 1366 |
hypergeometric_distribution<_UIntType>:: |
| 1367 |
operator()(_UniformRandomNumberGenerator& __urng, |
| 1368 |
const param_type& __param) |
| 1369 |
{ |
| 1370 |
std::__detail::_Adaptor<_UniformRandomNumberGenerator, double> |
| 1371 |
__aurng(__urng); |
| 1372 |
|
| 1373 |
result_type __a = __param.successful_size(); |
| 1374 |
result_type __b = __param.total_size(); |
| 1375 |
result_type __k = 0; |
| 1376 |
|
| 1377 |
if (__param.total_draws() < __param.total_size() / 2) |
| 1378 |
{ |
| 1379 |
for (result_type __i = 0; __i < __param.total_draws(); ++__i) |
| 1380 |
{ |
| 1381 |
if (__b * __aurng() < __a) |
| 1382 |
{ |
| 1383 |
++__k; |
| 1384 |
if (__k == __param.successful_size()) |
| 1385 |
return __k; |
| 1386 |
--__a; |
| 1387 |
} |
| 1388 |
--__b; |
| 1389 |
} |
| 1390 |
return __k; |
| 1391 |
} |
| 1392 |
else |
| 1393 |
{ |
| 1394 |
for (result_type __i = 0; __i < __param.unsuccessful_size(); ++__i) |
| 1395 |
{ |
| 1396 |
if (__b * __aurng() < __a) |
| 1397 |
{ |
| 1398 |
++__k; |
| 1399 |
if (__k == __param.successful_size()) |
| 1400 |
return __param.successful_size() - __k; |
| 1401 |
--__a; |
| 1402 |
} |
| 1403 |
--__b; |
| 1404 |
} |
| 1405 |
return __param.successful_size() - __k; |
| 1406 |
} |
| 1407 |
} |
| 1408 |
|
| 1409 |
template<typename _UIntType> |
| 1410 |
template<typename _OutputIterator, |
| 1411 |
typename _UniformRandomNumberGenerator> |
| 1412 |
void |
| 1413 |
hypergeometric_distribution<_UIntType>:: |
| 1414 |
__generate_impl(_OutputIterator __f, _OutputIterator __t, |
| 1415 |
_UniformRandomNumberGenerator& __urng, |
| 1416 |
const param_type& __param) |
| 1417 |
{ |
| 1418 |
__glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator, |
| 1419 |
result_type>) |
| 1420 |
|
| 1421 |
while (__f != __t) |
| 1422 |
*__f++ = this->operator()(__urng); |
| 1423 |
} |
| 1424 |
|
| 1425 |
template<typename _UIntType, typename _CharT, typename _Traits> |
| 1426 |
std::basic_ostream<_CharT, _Traits>& |
| 1427 |
operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| 1428 |
const __gnu_cxx::hypergeometric_distribution<_UIntType>& __x) |
| 1429 |
{ |
| 1430 |
typedef std::basic_ostream<_CharT, _Traits> __ostream_type; |
| 1431 |
typedef typename __ostream_type::ios_base __ios_base; |
| 1432 |
|
| 1433 |
const typename __ios_base::fmtflags __flags = __os.flags(); |
| 1434 |
const _CharT __fill = __os.fill(); |
| 1435 |
const std::streamsize __precision = __os.precision(); |
| 1436 |
const _CharT __space = __os.widen(' '); |
| 1437 |
__os.flags(__ios_base::scientific | __ios_base::left); |
| 1438 |
__os.fill(__space); |
| 1439 |
__os.precision(std::numeric_limits<_UIntType>::max_digits10); |
| 1440 |
|
| 1441 |
__os << __x.total_size() << __space << __x.successful_size() << __space |
| 1442 |
<< __x.total_draws(); |
| 1443 |
|
| 1444 |
__os.flags(__flags); |
| 1445 |
__os.fill(__fill); |
| 1446 |
__os.precision(__precision); |
| 1447 |
return __os; |
| 1448 |
} |
| 1449 |
|
| 1450 |
template<typename _UIntType, typename _CharT, typename _Traits> |
| 1451 |
std::basic_istream<_CharT, _Traits>& |
| 1452 |
operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| 1453 |
__gnu_cxx::hypergeometric_distribution<_UIntType>& __x) |
| 1454 |
{ |
| 1455 |
typedef std::basic_istream<_CharT, _Traits> __istream_type; |
| 1456 |
typedef typename __istream_type::ios_base __ios_base; |
| 1457 |
|
| 1458 |
const typename __ios_base::fmtflags __flags = __is.flags(); |
| 1459 |
__is.flags(__ios_base::dec | __ios_base::skipws); |
| 1460 |
|
| 1461 |
_UIntType __total_size, __successful_size, __total_draws; |
| 1462 |
__is >> __total_size >> __successful_size >> __total_draws; |
| 1463 |
__x.param(typename __gnu_cxx::hypergeometric_distribution<_UIntType>:: |
| 1464 |
param_type(__total_size, __successful_size, __total_draws)); |
| 1465 |
|
| 1466 |
__is.flags(__flags); |
| 1467 |
return __is; |
| 1468 |
} |
| 1469 |
|
| 1470 |
|
| 1471 |
template<typename _RealType> |
| 1472 |
template<typename _UniformRandomNumberGenerator> |
| 1473 |
typename logistic_distribution<_RealType>::result_type |
| 1474 |
logistic_distribution<_RealType>:: |
| 1475 |
operator()(_UniformRandomNumberGenerator& __urng, |
| 1476 |
const param_type& __p) |
| 1477 |
{ |
| 1478 |
std::__detail::_Adaptor<_UniformRandomNumberGenerator, result_type> |
| 1479 |
__aurng(__urng); |
| 1480 |
|
| 1481 |
result_type __arg = result_type(1); |
| 1482 |
while (__arg == result_type(1) || __arg == result_type(0)) |
| 1483 |
__arg = __aurng(); |
| 1484 |
return __p.a() |
| 1485 |
+ __p.b() * std::log(__arg / (result_type(1) - __arg)); |
| 1486 |
} |
| 1487 |
|
| 1488 |
template<typename _RealType> |
| 1489 |
template<typename _OutputIterator, |
| 1490 |
typename _UniformRandomNumberGenerator> |
| 1491 |
void |
| 1492 |
logistic_distribution<_RealType>:: |
| 1493 |
__generate_impl(_OutputIterator __f, _OutputIterator __t, |
| 1494 |
_UniformRandomNumberGenerator& __urng, |
| 1495 |
const param_type& __p) |
| 1496 |
{ |
| 1497 |
__glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator, |
| 1498 |
result_type>) |
| 1499 |
|
| 1500 |
std::__detail::_Adaptor<_UniformRandomNumberGenerator, result_type> |
| 1501 |
__aurng(__urng); |
| 1502 |
|
| 1503 |
while (__f != __t) |
| 1504 |
{ |
| 1505 |
result_type __arg = result_type(1); |
| 1506 |
while (__arg == result_type(1) || __arg == result_type(0)) |
| 1507 |
__arg = __aurng(); |
| 1508 |
*__f++ = __p.a() |
| 1509 |
+ __p.b() * std::log(__arg / (result_type(1) - __arg)); |
| 1510 |
} |
| 1511 |
} |
| 1512 |
|
| 1513 |
template<typename _RealType, typename _CharT, typename _Traits> |
| 1514 |
std::basic_ostream<_CharT, _Traits>& |
| 1515 |
operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| 1516 |
const logistic_distribution<_RealType>& __x) |
| 1517 |
{ |
| 1518 |
typedef std::basic_ostream<_CharT, _Traits> __ostream_type; |
| 1519 |
typedef typename __ostream_type::ios_base __ios_base; |
| 1520 |
|
| 1521 |
const typename __ios_base::fmtflags __flags = __os.flags(); |
| 1522 |
const _CharT __fill = __os.fill(); |
| 1523 |
const std::streamsize __precision = __os.precision(); |
| 1524 |
const _CharT __space = __os.widen(' '); |
| 1525 |
__os.flags(__ios_base::scientific | __ios_base::left); |
| 1526 |
__os.fill(__space); |
| 1527 |
__os.precision(std::numeric_limits<_RealType>::max_digits10); |
| 1528 |
|
| 1529 |
__os << __x.a() << __space << __x.b(); |
| 1530 |
|
| 1531 |
__os.flags(__flags); |
| 1532 |
__os.fill(__fill); |
| 1533 |
__os.precision(__precision); |
| 1534 |
return __os; |
| 1535 |
} |
| 1536 |
|
| 1537 |
template<typename _RealType, typename _CharT, typename _Traits> |
| 1538 |
std::basic_istream<_CharT, _Traits>& |
| 1539 |
operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| 1540 |
logistic_distribution<_RealType>& __x) |
| 1541 |
{ |
| 1542 |
typedef std::basic_istream<_CharT, _Traits> __istream_type; |
| 1543 |
typedef typename __istream_type::ios_base __ios_base; |
| 1544 |
|
| 1545 |
const typename __ios_base::fmtflags __flags = __is.flags(); |
| 1546 |
__is.flags(__ios_base::dec | __ios_base::skipws); |
| 1547 |
|
| 1548 |
_RealType __a, __b; |
| 1549 |
__is >> __a >> __b; |
| 1550 |
__x.param(typename logistic_distribution<_RealType>:: |
| 1551 |
param_type(__a, __b)); |
| 1552 |
|
| 1553 |
__is.flags(__flags); |
| 1554 |
return __is; |
| 1555 |
} |
| 1556 |
|
| 1557 |
|
| 1558 |
namespace { |
| 1559 |
|
| 1560 |
// Helper class for the uniform_on_sphere_distribution generation |
| 1561 |
// function. |
| 1562 |
template<std::size_t _Dimen, typename _RealType> |
| 1563 |
class uniform_on_sphere_helper |
| 1564 |
{ |
| 1565 |
typedef typename uniform_on_sphere_distribution<_Dimen, _RealType>:: |
| 1566 |
result_type result_type; |
| 1567 |
|
| 1568 |
public: |
| 1569 |
template<typename _NormalDistribution, |
| 1570 |
typename _UniformRandomNumberGenerator> |
| 1571 |
result_type operator()(_NormalDistribution& __nd, |
| 1572 |
_UniformRandomNumberGenerator& __urng) |
| 1573 |
{ |
| 1574 |
result_type __ret; |
| 1575 |
typename result_type::value_type __norm; |
| 1576 |
|
| 1577 |
do |
| 1578 |
{ |
| 1579 |
auto __sum = _RealType(0); |
| 1580 |
|
| 1581 |
std::generate(__ret.begin(), __ret.end(), |
| 1582 |
[&__nd, &__urng, &__sum](){ |
| 1583 |
_RealType __t = __nd(__urng); |
| 1584 |
__sum += __t * __t; |
| 1585 |
return __t; }); |
| 1586 |
__norm = std::sqrt(__sum); |
| 1587 |
} |
| 1588 |
while (__norm == _RealType(0) || ! __builtin_isfinite(__norm)); |
| 1589 |
|
| 1590 |
std::transform(__ret.begin(), __ret.end(), __ret.begin(), |
| 1591 |
[__norm](_RealType __val){ return __val / __norm; }); |
| 1592 |
|
| 1593 |
return __ret; |
| 1594 |
} |
| 1595 |
}; |
| 1596 |
|
| 1597 |
|
| 1598 |
template<typename _RealType> |
| 1599 |
class uniform_on_sphere_helper<2, _RealType> |
| 1600 |
{ |
| 1601 |
typedef typename uniform_on_sphere_distribution<2, _RealType>:: |
| 1602 |
result_type result_type; |
| 1603 |
|
| 1604 |
public: |
| 1605 |
template<typename _NormalDistribution, |
| 1606 |
typename _UniformRandomNumberGenerator> |
| 1607 |
result_type operator()(_NormalDistribution&, |
| 1608 |
_UniformRandomNumberGenerator& __urng) |
| 1609 |
{ |
| 1610 |
result_type __ret; |
| 1611 |
_RealType __sq; |
| 1612 |
std::__detail::_Adaptor<_UniformRandomNumberGenerator, |
| 1613 |
_RealType> __aurng(__urng); |
| 1614 |
|
| 1615 |
do |
| 1616 |
{ |
| 1617 |
__ret[0] = _RealType(2) * __aurng() - _RealType(1); |
| 1618 |
__ret[1] = _RealType(2) * __aurng() - _RealType(1); |
| 1619 |
|
| 1620 |
__sq = __ret[0] * __ret[0] + __ret[1] * __ret[1]; |
| 1621 |
} |
| 1622 |
while (__sq == _RealType(0) || __sq > _RealType(1)); |
| 1623 |
|
| 1624 |
#if _GLIBCXX_USE_C99_MATH_TR1 |
| 1625 |
// Yes, we do not just use sqrt(__sq) because hypot() is more |
| 1626 |
// accurate. |
| 1627 |
auto __norm = std::hypot(__ret[0], __ret[1]); |
| 1628 |
#else |
| 1629 |
auto __norm = std::sqrt(__sq); |
| 1630 |
#endif |
| 1631 |
__ret[0] /= __norm; |
| 1632 |
__ret[1] /= __norm; |
| 1633 |
|
| 1634 |
return __ret; |
| 1635 |
} |
| 1636 |
}; |
| 1637 |
|
| 1638 |
} |
| 1639 |
|
| 1640 |
|
| 1641 |
template<std::size_t _Dimen, typename _RealType> |
| 1642 |
template<typename _UniformRandomNumberGenerator> |
| 1643 |
typename uniform_on_sphere_distribution<_Dimen, _RealType>::result_type |
| 1644 |
uniform_on_sphere_distribution<_Dimen, _RealType>:: |
| 1645 |
operator()(_UniformRandomNumberGenerator& __urng, |
| 1646 |
const param_type& __p) |
| 1647 |
{ |
| 1648 |
uniform_on_sphere_helper<_Dimen, _RealType> __helper; |
| 1649 |
return __helper(_M_nd, __urng); |
| 1650 |
} |
| 1651 |
|
| 1652 |
template<std::size_t _Dimen, typename _RealType> |
| 1653 |
template<typename _OutputIterator, |
| 1654 |
typename _UniformRandomNumberGenerator> |
| 1655 |
void |
| 1656 |
uniform_on_sphere_distribution<_Dimen, _RealType>:: |
| 1657 |
__generate_impl(_OutputIterator __f, _OutputIterator __t, |
| 1658 |
_UniformRandomNumberGenerator& __urng, |
| 1659 |
const param_type& __param) |
| 1660 |
{ |
| 1661 |
__glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator, |
| 1662 |
result_type>) |
| 1663 |
|
| 1664 |
while (__f != __t) |
| 1665 |
*__f++ = this->operator()(__urng, __param); |
| 1666 |
} |
| 1667 |
|
| 1668 |
template<std::size_t _Dimen, typename _RealType, typename _CharT, |
| 1669 |
typename _Traits> |
| 1670 |
std::basic_ostream<_CharT, _Traits>& |
| 1671 |
operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| 1672 |
const __gnu_cxx::uniform_on_sphere_distribution<_Dimen, |
| 1673 |
_RealType>& __x) |
| 1674 |
{ |
| 1675 |
return __os << __x._M_nd; |
| 1676 |
} |
| 1677 |
|
| 1678 |
template<std::size_t _Dimen, typename _RealType, typename _CharT, |
| 1679 |
typename _Traits> |
| 1680 |
std::basic_istream<_CharT, _Traits>& |
| 1681 |
operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| 1682 |
__gnu_cxx::uniform_on_sphere_distribution<_Dimen, |
| 1683 |
_RealType>& __x) |
| 1684 |
{ |
| 1685 |
return __is >> __x._M_nd; |
| 1686 |
} |
| 1687 |
|
| 1688 |
|
| 1689 |
namespace { |
| 1690 |
|
| 1691 |
// Helper class for the uniform_inside_sphere_distribution generation |
| 1692 |
// function. |
| 1693 |
template<std::size_t _Dimen, bool _SmallDimen, typename _RealType> |
| 1694 |
class uniform_inside_sphere_helper; |
| 1695 |
|
| 1696 |
template<std::size_t _Dimen, typename _RealType> |
| 1697 |
class uniform_inside_sphere_helper<_Dimen, false, _RealType> |
| 1698 |
{ |
| 1699 |
using result_type |
| 1700 |
= typename uniform_inside_sphere_distribution<_Dimen, _RealType>:: |
| 1701 |
result_type; |
| 1702 |
|
| 1703 |
public: |
| 1704 |
template<typename _UniformOnSphereDistribution, |
| 1705 |
typename _UniformRandomNumberGenerator> |
| 1706 |
result_type |
| 1707 |
operator()(_UniformOnSphereDistribution& __uosd, |
| 1708 |
_UniformRandomNumberGenerator& __urng, |
| 1709 |
_RealType __radius) |
| 1710 |
{ |
| 1711 |
std::__detail::_Adaptor<_UniformRandomNumberGenerator, |
| 1712 |
_RealType> __aurng(__urng); |
| 1713 |
|
| 1714 |
_RealType __pow = 1 / _RealType(_Dimen); |
| 1715 |
_RealType __urt = __radius * std::pow(__aurng(), __pow); |
| 1716 |
result_type __ret = __uosd(__aurng); |
| 1717 |
|
| 1718 |
std::transform(__ret.begin(), __ret.end(), __ret.begin(), |
| 1719 |
[__urt](_RealType __val) |
| 1720 |
{ return __val * __urt; }); |
| 1721 |
|
| 1722 |
return __ret; |
| 1723 |
} |
| 1724 |
}; |
| 1725 |
|
| 1726 |
// Helper class for the uniform_inside_sphere_distribution generation |
| 1727 |
// function specialized for small dimensions. |
| 1728 |
template<std::size_t _Dimen, typename _RealType> |
| 1729 |
class uniform_inside_sphere_helper<_Dimen, true, _RealType> |
| 1730 |
{ |
| 1731 |
using result_type |
| 1732 |
= typename uniform_inside_sphere_distribution<_Dimen, _RealType>:: |
| 1733 |
result_type; |
| 1734 |
|
| 1735 |
public: |
| 1736 |
template<typename _UniformOnSphereDistribution, |
| 1737 |
typename _UniformRandomNumberGenerator> |
| 1738 |
result_type |
| 1739 |
operator()(_UniformOnSphereDistribution&, |
| 1740 |
_UniformRandomNumberGenerator& __urng, |
| 1741 |
_RealType __radius) |
| 1742 |
{ |
| 1743 |
result_type __ret; |
| 1744 |
_RealType __sq; |
| 1745 |
_RealType __radsq = __radius * __radius; |
| 1746 |
std::__detail::_Adaptor<_UniformRandomNumberGenerator, |
| 1747 |
_RealType> __aurng(__urng); |
| 1748 |
|
| 1749 |
do |
| 1750 |
{ |
| 1751 |
__sq = _RealType(0); |
| 1752 |
for (int i = 0; i < _Dimen; ++i) |
| 1753 |
{ |
| 1754 |
__ret[i] = _RealType(2) * __aurng() - _RealType(1); |
| 1755 |
__sq += __ret[i] * __ret[i]; |
| 1756 |
} |
| 1757 |
} |
| 1758 |
while (__sq > _RealType(1)); |
| 1759 |
|
| 1760 |
for (int i = 0; i < _Dimen; ++i) |
| 1761 |
__ret[i] *= __radius; |
| 1762 |
|
| 1763 |
return __ret; |
| 1764 |
} |
| 1765 |
}; |
| 1766 |
} // namespace |
| 1767 |
|
| 1768 |
// |
| 1769 |
// Experiments have shown that rejection is more efficient than transform |
| 1770 |
// for dimensions less than 8. |
| 1771 |
// |
| 1772 |
template<std::size_t _Dimen, typename _RealType> |
| 1773 |
template<typename _UniformRandomNumberGenerator> |
| 1774 |
typename uniform_inside_sphere_distribution<_Dimen, _RealType>::result_type |
| 1775 |
uniform_inside_sphere_distribution<_Dimen, _RealType>:: |
| 1776 |
operator()(_UniformRandomNumberGenerator& __urng, |
| 1777 |
const param_type& __p) |
| 1778 |
{ |
| 1779 |
uniform_inside_sphere_helper<_Dimen, _Dimen < 8, _RealType> __helper; |
| 1780 |
return __helper(_M_uosd, __urng, __p.radius()); |
| 1781 |
} |
| 1782 |
|
| 1783 |
template<std::size_t _Dimen, typename _RealType> |
| 1784 |
template<typename _OutputIterator, |
| 1785 |
typename _UniformRandomNumberGenerator> |
| 1786 |
void |
| 1787 |
uniform_inside_sphere_distribution<_Dimen, _RealType>:: |
| 1788 |
__generate_impl(_OutputIterator __f, _OutputIterator __t, |
| 1789 |
_UniformRandomNumberGenerator& __urng, |
| 1790 |
const param_type& __param) |
| 1791 |
{ |
| 1792 |
__glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator, |
| 1793 |
result_type>) |
| 1794 |
|
| 1795 |
while (__f != __t) |
| 1796 |
*__f++ = this->operator()(__urng, __param); |
| 1797 |
} |
| 1798 |
|
| 1799 |
template<std::size_t _Dimen, typename _RealType, typename _CharT, |
| 1800 |
typename _Traits> |
| 1801 |
std::basic_ostream<_CharT, _Traits>& |
| 1802 |
operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| 1803 |
const __gnu_cxx::uniform_inside_sphere_distribution<_Dimen, |
| 1804 |
_RealType>& __x) |
| 1805 |
{ |
| 1806 |
typedef std::basic_ostream<_CharT, _Traits> __ostream_type; |
| 1807 |
typedef typename __ostream_type::ios_base __ios_base; |
| 1808 |
|
| 1809 |
const typename __ios_base::fmtflags __flags = __os.flags(); |
| 1810 |
const _CharT __fill = __os.fill(); |
| 1811 |
const std::streamsize __precision = __os.precision(); |
| 1812 |
const _CharT __space = __os.widen(' '); |
| 1813 |
__os.flags(__ios_base::scientific | __ios_base::left); |
| 1814 |
__os.fill(__space); |
| 1815 |
__os.precision(std::numeric_limits<_RealType>::max_digits10); |
| 1816 |
|
| 1817 |
__os << __x.radius() << __space << __x._M_uosd; |
| 1818 |
|
| 1819 |
__os.flags(__flags); |
| 1820 |
__os.fill(__fill); |
| 1821 |
__os.precision(__precision); |
| 1822 |
|
| 1823 |
return __os; |
| 1824 |
} |
| 1825 |
|
| 1826 |
template<std::size_t _Dimen, typename _RealType, typename _CharT, |
| 1827 |
typename _Traits> |
| 1828 |
std::basic_istream<_CharT, _Traits>& |
| 1829 |
operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| 1830 |
__gnu_cxx::uniform_inside_sphere_distribution<_Dimen, |
| 1831 |
_RealType>& __x) |
| 1832 |
{ |
| 1833 |
typedef std::basic_istream<_CharT, _Traits> __istream_type; |
| 1834 |
typedef typename __istream_type::ios_base __ios_base; |
| 1835 |
|
| 1836 |
const typename __ios_base::fmtflags __flags = __is.flags(); |
| 1837 |
__is.flags(__ios_base::dec | __ios_base::skipws); |
| 1838 |
|
| 1839 |
_RealType __radius_val; |
| 1840 |
__is >> __radius_val >> __x._M_uosd; |
| 1841 |
__x.param(typename uniform_inside_sphere_distribution<_Dimen, _RealType>:: |
| 1842 |
param_type(__radius_val)); |
| 1843 |
|
| 1844 |
__is.flags(__flags); |
| 1845 |
|
| 1846 |
return __is; |
| 1847 |
} |
| 1848 |
|
| 1849 |
_GLIBCXX_END_NAMESPACE_VERSION |
| 1850 |
} // namespace __gnu_cxx |
| 1851 |
|
| 1852 |
|
| 1853 |
#endif // _EXT_RANDOM_TCC |