| 1 | // Mathematical Special Functions for -*- C++ -*- | 
 
 
 
 
 | 2 |  | 
 
 
 
 
 | 3 | // Copyright (C) 2006-2021 Free Software Foundation, Inc. | 
 
 
 
 
 | 4 | // | 
 
 
 
 
 | 5 | // This file is part of the GNU ISO C++ Library.  This library is free | 
 
 
 
 
 | 6 | // software; you can redistribute it and/or modify it under the | 
 
 
 
 
 | 7 | // terms of the GNU General Public License as published by the | 
 
 
 
 
 | 8 | // Free Software Foundation; either version 3, or (at your option) | 
 
 
 
 
 | 9 | // any later version. | 
 
 
 
 
 | 10 |  | 
 
 
 
 
 | 11 | // This library is distributed in the hope that it will be useful, | 
 
 
 
 
 | 12 | // but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 
 
 
 
 | 13 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
 
 
 
 
 | 14 | // GNU General Public License for more details. | 
 
 
 
 
 | 15 |  | 
 
 
 
 
 | 16 | // Under Section 7 of GPL version 3, you are granted additional | 
 
 
 
 
 | 17 | // permissions described in the GCC Runtime Library Exception, version | 
 
 
 
 
 | 18 | // 3.1, as published by the Free Software Foundation. | 
 
 
 
 
 | 19 |  | 
 
 
 
 
 | 20 | // You should have received a copy of the GNU General Public License and | 
 
 
 
 
 | 21 | // a copy of the GCC Runtime Library Exception along with this program; | 
 
 
 
 
 | 22 | // see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see | 
 
 
 
 
 | 23 | // <http://www.gnu.org/licenses/>. | 
 
 
 
 
 | 24 |  | 
 
 
 
 
 | 25 | /** @file bits/specfun.h | 
 
 
 
 
 | 26 | *  This is an internal header file, included by other library headers. | 
 
 
 
 
 | 27 | *  Do not attempt to use it directly. @headername{cmath} | 
 
 
 
 
 | 28 | */ | 
 
 
 
 
 | 29 |  | 
 
 
 
 
 | 30 | #ifndef _GLIBCXX_BITS_SPECFUN_H | 
 
 
 
 
 | 31 | #define _GLIBCXX_BITS_SPECFUN_H 1 | 
 
 
 
 
 | 32 |  | 
 
 
 
 
 | 33 | #pragma GCC visibility push(default) | 
 
 
 
 
 | 34 |  | 
 
 
 
 
 | 35 | #include <bits/c++config.h> | 
 
 
 
 
 | 36 |  | 
 
 
 
 
 | 37 | #define __STDCPP_MATH_SPEC_FUNCS__ 201003L | 
 
 
 
 
 | 38 |  | 
 
 
 
 
 | 39 | #define __cpp_lib_math_special_functions 201603L | 
 
 
 
 
 | 40 |  | 
 
 
 
 
 | 41 | #if __cplusplus <= 201403L && __STDCPP_WANT_MATH_SPEC_FUNCS__ == 0 | 
 
 
 
 
 | 42 | # error include <cmath> and define __STDCPP_WANT_MATH_SPEC_FUNCS__ | 
 
 
 
 
 | 43 | #endif | 
 
 
 
 
 | 44 |  | 
 
 
 
 
 | 45 | #include <bits/stl_algobase.h> | 
 
 
 
 
 | 46 | #include <limits> | 
 
 
 
 
 | 47 | #include <type_traits> | 
 
 
 
 
 | 48 |  | 
 
 
 
 
 | 49 | #include <tr1/gamma.tcc> | 
 
 
 
 
 | 50 | #include <tr1/bessel_function.tcc> | 
 
 
 
 
 | 51 | #include <tr1/beta_function.tcc> | 
 
 
 
 
 | 52 | #include <tr1/ell_integral.tcc> | 
 
 
 
 
 | 53 | #include <tr1/exp_integral.tcc> | 
 
 
 
 
 | 54 | #include <tr1/hypergeometric.tcc> | 
 
 
 
 
 | 55 | #include <tr1/legendre_function.tcc> | 
 
 
 
 
 | 56 | #include <tr1/modified_bessel_func.tcc> | 
 
 
 
 
 | 57 | #include <tr1/poly_hermite.tcc> | 
 
 
 
 
 | 58 | #include <tr1/poly_laguerre.tcc> | 
 
 
 
 
 | 59 | #include <tr1/riemann_zeta.tcc> | 
 
 
 
 
 | 60 |  | 
 
 
 
 
 | 61 | namespace std _GLIBCXX_VISIBILITY(default) | 
 
 
 
 
 | 62 | { | 
 
 
 
 
 | 63 | _GLIBCXX_BEGIN_NAMESPACE_VERSION | 
 
 
 
 
 | 64 |  | 
 
 
 
 
 | 65 | /** | 
 
 
 
 
 | 66 | * @defgroup mathsf Mathematical Special Functions | 
 
 
 
 
 | 67 | * @ingroup numerics | 
 
 
 
 
 | 68 | * | 
 
 
 
 
 | 69 | * @section mathsf_desc Mathematical Special Functions | 
 
 
 
 
 | 70 | * | 
 
 
 
 
 | 71 | * A collection of advanced mathematical special functions, | 
 
 
 
 
 | 72 | * defined by ISO/IEC IS 29124 and then added to ISO C++ 2017. | 
 
 
 
 
 | 73 | * | 
 
 
 
 
 | 74 | * | 
 
 
 
 
 | 75 | * @subsection mathsf_intro Introduction and History | 
 
 
 
 
 | 76 | * The first significant library upgrade on the road to C++2011, | 
 
 
 
 
 | 77 | * <a href="http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2005/n1836.pdf"> | 
 
 
 
 
 | 78 | * TR1</a>, included a set of 23 mathematical functions that significantly | 
 
 
 
 
 | 79 | * extended the standard transcendental functions inherited from C and declared | 
 
 
 
 
 | 80 | * in @<cmath@>. | 
 
 
 
 
 | 81 | * | 
 
 
 
 
 | 82 | * Although most components from TR1 were eventually adopted for C++11 these | 
 
 
 
 
 | 83 | * math functions were left behind out of concern for implementability. | 
 
 
 
 
 | 84 | * The math functions were published as a separate international standard | 
 
 
 
 
 | 85 | * <a href="http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2010/n3060.pdf"> | 
 
 
 
 
 | 86 | * IS 29124 - Extensions to the C++ Library to Support Mathematical Special | 
 
 
 
 
 | 87 | * Functions</a>. | 
 
 
 
 
 | 88 | * | 
 
 
 
 
 | 89 | * For C++17 these functions were incorporated into the main standard. | 
 
 
 
 
 | 90 | * | 
 
 
 
 
 | 91 | * @subsection mathsf_contents Contents | 
 
 
 
 
 | 92 | * The following functions are implemented in namespace @c std: | 
 
 
 
 
 | 93 | * - @ref assoc_laguerre "assoc_laguerre - Associated Laguerre functions" | 
 
 
 
 
 | 94 | * - @ref assoc_legendre "assoc_legendre - Associated Legendre functions" | 
 
 
 
 
 | 95 | * - @ref beta "beta - Beta functions" | 
 
 
 
 
 | 96 | * - @ref comp_ellint_1 "comp_ellint_1 - Complete elliptic functions of the first kind" | 
 
 
 
 
 | 97 | * - @ref comp_ellint_2 "comp_ellint_2 - Complete elliptic functions of the second kind" | 
 
 
 
 
 | 98 | * - @ref comp_ellint_3 "comp_ellint_3 - Complete elliptic functions of the third kind" | 
 
 
 
 
 | 99 | * - @ref cyl_bessel_i "cyl_bessel_i - Regular modified cylindrical Bessel functions" | 
 
 
 
 
 | 100 | * - @ref cyl_bessel_j "cyl_bessel_j - Cylindrical Bessel functions of the first kind" | 
 
 
 
 
 | 101 | * - @ref cyl_bessel_k "cyl_bessel_k - Irregular modified cylindrical Bessel functions" | 
 
 
 
 
 | 102 | * - @ref cyl_neumann "cyl_neumann - Cylindrical Neumann functions or Cylindrical Bessel functions of the second kind" | 
 
 
 
 
 | 103 | * - @ref ellint_1 "ellint_1 - Incomplete elliptic functions of the first kind" | 
 
 
 
 
 | 104 | * - @ref ellint_2 "ellint_2 - Incomplete elliptic functions of the second kind" | 
 
 
 
 
 | 105 | * - @ref ellint_3 "ellint_3 - Incomplete elliptic functions of the third kind" | 
 
 
 
 
 | 106 | * - @ref expint "expint - The exponential integral" | 
 
 
 
 
 | 107 | * - @ref hermite "hermite - Hermite polynomials" | 
 
 
 
 
 | 108 | * - @ref laguerre "laguerre - Laguerre functions" | 
 
 
 
 
 | 109 | * - @ref legendre "legendre - Legendre polynomials" | 
 
 
 
 
 | 110 | * - @ref riemann_zeta "riemann_zeta - The Riemann zeta function" | 
 
 
 
 
 | 111 | * - @ref sph_bessel "sph_bessel - Spherical Bessel functions" | 
 
 
 
 
 | 112 | * - @ref sph_legendre "sph_legendre - Spherical Legendre functions" | 
 
 
 
 
 | 113 | * - @ref sph_neumann "sph_neumann - Spherical Neumann functions" | 
 
 
 
 
 | 114 | * | 
 
 
 
 
 | 115 | * The hypergeometric functions were stricken from the TR29124 and C++17 | 
 
 
 
 
 | 116 | * versions of this math library because of implementation concerns. | 
 
 
 
 
 | 117 | * However, since they were in the TR1 version and since they are popular | 
 
 
 
 
 | 118 | * we kept them as an extension in namespace @c __gnu_cxx: | 
 
 
 
 
 | 119 | * - @ref __gnu_cxx::conf_hyperg "conf_hyperg - Confluent hypergeometric functions" | 
 
 
 
 
 | 120 | * - @ref __gnu_cxx::hyperg "hyperg - Hypergeometric functions" | 
 
 
 
 
 | 121 | * | 
 
 
 
 
 | 122 | * <!-- @subsection mathsf_general General Features --> | 
 
 
 
 
 | 123 | * | 
 
 
 
 
 | 124 | * @subsection mathsf_promotion Argument Promotion | 
 
 
 
 
 | 125 | * The arguments suppled to the non-suffixed functions will be promoted | 
 
 
 
 
 | 126 | * according to the following rules: | 
 
 
 
 
 | 127 | * 1. If any argument intended to be floating point is given an integral value | 
 
 
 
 
 | 128 | * That integral value is promoted to double. | 
 
 
 
 
 | 129 | * 2. All floating point arguments are promoted up to the largest floating | 
 
 
 
 
 | 130 | *    point precision among them. | 
 
 
 
 
 | 131 | * | 
 
 
 
 
 | 132 | * @subsection mathsf_NaN NaN Arguments | 
 
 
 
 
 | 133 | * If any of the floating point arguments supplied to these functions is | 
 
 
 
 
 | 134 | * invalid or NaN (std::numeric_limits<Tp>::quiet_NaN), | 
 
 
 
 
 | 135 | * the value NaN is returned. | 
 
 
 
 
 | 136 | * | 
 
 
 
 
 | 137 | * @subsection mathsf_impl Implementation | 
 
 
 
 
 | 138 | * | 
 
 
 
 
 | 139 | * We strive to implement the underlying math with type generic algorithms | 
 
 
 
 
 | 140 | * to the greatest extent possible.  In practice, the functions are thin | 
 
 
 
 
 | 141 | * wrappers that dispatch to function templates. Type dependence is | 
 
 
 
 
 | 142 | * controlled with std::numeric_limits and functions thereof. | 
 
 
 
 
 | 143 | * | 
 
 
 
 
 | 144 | * We don't promote @c float to @c double or @c double to <tt>long double</tt> | 
 
 
 
 
 | 145 | * reflexively.  The goal is for @c float functions to operate more quickly, | 
 
 
 
 
 | 146 | * at the cost of @c float accuracy and possibly a smaller domain of validity. | 
 
 
 
 
 | 147 | * Similaryly, <tt>long double</tt> should give you more dynamic range | 
 
 
 
 
 | 148 | * and slightly more pecision than @c double on many systems. | 
 
 
 
 
 | 149 | * | 
 
 
 
 
 | 150 | * @subsection mathsf_testing Testing | 
 
 
 
 
 | 151 | * | 
 
 
 
 
 | 152 | * These functions have been tested against equivalent implementations | 
 
 
 
 
 | 153 | * from the <a href="http://www.gnu.org/software/gsl"> | 
 
 
 
 
 | 154 | * Gnu Scientific Library, GSL</a> and | 
 
 
 
 
 | 155 | * <a href="http://www.boost.org/doc/libs/1_60_0/libs/math/doc/html/index.html">Boost</a> | 
 
 
 
 
 | 156 | * and the ratio | 
 
 
 
 
 | 157 | * @f[ | 
 
 
 
 
 | 158 | *   \frac{|f - f_{test}|}{|f_{test}|} | 
 
 
 
 
 | 159 | * @f] | 
 
 
 
 
 | 160 | * is generally found to be within 10<sup>-15</sup> for 64-bit double on | 
 
 
 
 
 | 161 | * linux-x86_64 systems over most of the ranges of validity. | 
 
 
 
 
 | 162 | * | 
 
 
 
 
 | 163 | * @todo Provide accuracy comparisons on a per-function basis for a small | 
 
 
 
 
 | 164 | *       number of targets. | 
 
 
 
 
 | 165 | * | 
 
 
 
 
 | 166 | * @subsection mathsf_bibliography General Bibliography | 
 
 
 
 
 | 167 | * | 
 
 
 
 
 | 168 | * @see Abramowitz and Stegun: Handbook of Mathematical Functions, | 
 
 
 
 
 | 169 | * with Formulas, Graphs, and Mathematical Tables | 
 
 
 
 
 | 170 | * Edited by Milton Abramowitz and Irene A. Stegun, | 
 
 
 
 
 | 171 | * National Bureau of Standards  Applied Mathematics Series - 55 | 
 
 
 
 
 | 172 | * Issued June 1964, Tenth Printing, December 1972, with corrections | 
 
 
 
 
 | 173 | * Electronic versions of A&S abound including both pdf and navigable html. | 
 
 
 
 
 | 174 | * @see for example  http://people.math.sfu.ca/~cbm/aands/ | 
 
 
 
 
 | 175 | * | 
 
 
 
 
 | 176 | * @see The old A&S has been redone as the | 
 
 
 
 
 | 177 | * NIST Digital Library of Mathematical Functions: http://dlmf.nist.gov/ | 
 
 
 
 
 | 178 | * This version is far more navigable and includes more recent work. | 
 
 
 
 
 | 179 | * | 
 
 
 
 
 | 180 | * @see An Atlas of Functions: with Equator, the Atlas Function Calculator | 
 
 
 
 
 | 181 | * 2nd Edition, by Oldham, Keith B., Myland, Jan, Spanier, Jerome | 
 
 
 
 
 | 182 | * | 
 
 
 
 
 | 183 | * @see Asymptotics and Special Functions by Frank W. J. Olver, | 
 
 
 
 
 | 184 | * Academic Press, 1974 | 
 
 
 
 
 | 185 | * | 
 
 
 
 
 | 186 | * @see Numerical Recipes in C, The Art of Scientific Computing, | 
 
 
 
 
 | 187 | * by William H. Press, Second Ed., Saul A. Teukolsky, | 
 
 
 
 
 | 188 | * William T. Vetterling, and Brian P. Flannery, | 
 
 
 
 
 | 189 | * Cambridge University Press, 1992 | 
 
 
 
 
 | 190 | * | 
 
 
 
 
 | 191 | * @see The Special Functions and Their Approximations: Volumes 1 and 2, | 
 
 
 
 
 | 192 | * by Yudell L. Luke, Academic Press, 1969 | 
 
 
 
 
 | 193 | * | 
 
 
 
 
 | 194 | * @{ | 
 
 
 
 
 | 195 | */ | 
 
 
 
 
 | 196 |  | 
 
 
 
 
 | 197 | // Associated Laguerre polynomials | 
 
 
 
 
 | 198 |  | 
 
 
 
 
 | 199 | /** | 
 
 
 
 
 | 200 | * Return the associated Laguerre polynomial of order @c n, | 
 
 
 
 
 | 201 | * degree @c m: @f$ L_n^m(x) @f$ for @c float argument. | 
 
 
 
 
 | 202 | * | 
 
 
 
 
 | 203 | * @see assoc_laguerre for more details. | 
 
 
 
 
 | 204 | */ | 
 
 
 
 
 | 205 | inline float | 
 
 
 
 
 | 206 | assoc_laguerref(unsigned int __n, unsigned int __m, float __x) | 
 
 
 
 
 | 207 | { return __detail::__assoc_laguerre<float>(__n, __m, __x); } | 
 
 
 
 
 | 208 |  | 
 
 
 
 
 | 209 | /** | 
 
 
 
 
 | 210 | * Return the associated Laguerre polynomial of order @c n, | 
 
 
 
 
 | 211 | * degree @c m: @f$ L_n^m(x) @f$. | 
 
 
 
 
 | 212 | * | 
 
 
 
 
 | 213 | * @see assoc_laguerre for more details. | 
 
 
 
 
 | 214 | */ | 
 
 
 
 
 | 215 | inline long double | 
 
 
 
 
 | 216 | assoc_laguerrel(unsigned int __n, unsigned int __m, long double __x) | 
 
 
 
 
 | 217 | { return __detail::__assoc_laguerre<long double>(__n, __m, __x); } | 
 
 
 
 
 | 218 |  | 
 
 
 
 
 | 219 | /** | 
 
 
 
 
 | 220 | * Return the associated Laguerre polynomial of nonnegative order @c n, | 
 
 
 
 
 | 221 | * nonnegative degree @c m and real argument @c x: @f$ L_n^m(x) @f$. | 
 
 
 
 
 | 222 | * | 
 
 
 
 
 | 223 | * The associated Laguerre function of real degree @f$ \alpha @f$, | 
 
 
 
 
 | 224 | * @f$ L_n^\alpha(x) @f$, is defined by | 
 
 
 
 
 | 225 | * @f[ | 
 
 
 
 
 | 226 | *     L_n^\alpha(x) = \frac{(\alpha + 1)_n}{n!} | 
 
 
 
 
 | 227 | *                     {}_1F_1(-n; \alpha + 1; x) | 
 
 
 
 
 | 228 | * @f] | 
 
 
 
 
 | 229 | * where @f$ (\alpha)_n @f$ is the Pochhammer symbol and | 
 
 
 
 
 | 230 | * @f$ {}_1F_1(a; c; x) @f$ is the confluent hypergeometric function. | 
 
 
 
 
 | 231 | * | 
 
 
 
 
 | 232 | * The associated Laguerre polynomial is defined for integral | 
 
 
 
 
 | 233 | * degree @f$ \alpha = m @f$ by: | 
 
 
 
 
 | 234 | * @f[ | 
 
 
 
 
 | 235 | *     L_n^m(x) = (-1)^m \frac{d^m}{dx^m} L_{n + m}(x) | 
 
 
 
 
 | 236 | * @f] | 
 
 
 
 
 | 237 | * where the Laguerre polynomial is defined by: | 
 
 
 
 
 | 238 | * @f[ | 
 
 
 
 
 | 239 | *     L_n(x) = \frac{e^x}{n!} \frac{d^n}{dx^n} (x^ne^{-x}) | 
 
 
 
 
 | 240 | * @f] | 
 
 
 
 
 | 241 | * and @f$ x >= 0 @f$. | 
 
 
 
 
 | 242 | * @see laguerre for details of the Laguerre function of degree @c n | 
 
 
 
 
 | 243 | * | 
 
 
 
 
 | 244 | * @tparam _Tp The floating-point type of the argument @c __x. | 
 
 
 
 
 | 245 | * @param __n The order of the Laguerre function, <tt>__n >= 0</tt>. | 
 
 
 
 
 | 246 | * @param __m The degree of the Laguerre function, <tt>__m >= 0</tt>. | 
 
 
 
 
 | 247 | * @param __x The argument of the Laguerre function, <tt>__x >= 0</tt>. | 
 
 
 
 
 | 248 | * @throw std::domain_error if <tt>__x < 0</tt>. | 
 
 
 
 
 | 249 | */ | 
 
 
 
 
 | 250 | template<typename _Tp> | 
 
 
 
 
 | 251 | inline typename __gnu_cxx::__promote<_Tp>::__type | 
 
 
 
 
 | 252 | assoc_laguerre(unsigned int __n, unsigned int __m, _Tp __x) | 
 
 
 
 
 | 253 | { | 
 
 
 
 
 | 254 | typedef typename __gnu_cxx::__promote<_Tp>::__type __type; | 
 
 
 
 
 | 255 | return __detail::__assoc_laguerre<__type>(__n, __m, __x); | 
 
 
 
 
 | 256 | } | 
 
 
 
 
 | 257 |  | 
 
 
 
 
 | 258 | // Associated Legendre functions | 
 
 
 
 
 | 259 |  | 
 
 
 
 
 | 260 | /** | 
 
 
 
 
 | 261 | * Return the associated Legendre function of degree @c l and order @c m | 
 
 
 
 
 | 262 | * for @c float argument. | 
 
 
 
 
 | 263 | * | 
 
 
 
 
 | 264 | * @see assoc_legendre for more details. | 
 
 
 
 
 | 265 | */ | 
 
 
 
 
 | 266 | inline float | 
 
 
 
 
 | 267 | assoc_legendref(unsigned int __l, unsigned int __m, float __x) | 
 
 
 
 
 | 268 | { return __detail::__assoc_legendre_p<float>(__l, __m, __x); } | 
 
 
 
 
 | 269 |  | 
 
 
 
 
 | 270 | /** | 
 
 
 
 
 | 271 | * Return the associated Legendre function of degree @c l and order @c m. | 
 
 
 
 
 | 272 | * | 
 
 
 
 
 | 273 | * @see assoc_legendre for more details. | 
 
 
 
 
 | 274 | */ | 
 
 
 
 
 | 275 | inline long double | 
 
 
 
 
 | 276 | assoc_legendrel(unsigned int __l, unsigned int __m, long double __x) | 
 
 
 
 
 | 277 | { return __detail::__assoc_legendre_p<long double>(__l, __m, __x); } | 
 
 
 
 
 | 278 |  | 
 
 
 
 
 | 279 |  | 
 
 
 
 
 | 280 | /** | 
 
 
 
 
 | 281 | * Return the associated Legendre function of degree @c l and order @c m. | 
 
 
 
 
 | 282 | * | 
 
 
 
 
 | 283 | * The associated Legendre function is derived from the Legendre function | 
 
 
 
 
 | 284 | * @f$ P_l(x) @f$ by the Rodrigues formula: | 
 
 
 
 
 | 285 | * @f[ | 
 
 
 
 
 | 286 | *   P_l^m(x) = (1 - x^2)^{m/2}\frac{d^m}{dx^m}P_l(x) | 
 
 
 
 
 | 287 | * @f] | 
 
 
 
 
 | 288 | * @see legendre for details of the Legendre function of degree @c l | 
 
 
 
 
 | 289 | * | 
 
 
 
 
 | 290 | * @tparam _Tp The floating-point type of the argument @c __x. | 
 
 
 
 
 | 291 | * @param  __l  The degree <tt>__l >= 0</tt>. | 
 
 
 
 
 | 292 | * @param  __m  The order <tt>__m <= l</tt>. | 
 
 
 
 
 | 293 | * @param  __x  The argument, <tt>abs(__x) <= 1</tt>. | 
 
 
 
 
 | 294 | * @throw std::domain_error if <tt>abs(__x) > 1</tt>. | 
 
 
 
 
 | 295 | */ | 
 
 
 
 
 | 296 | template<typename _Tp> | 
 
 
 
 
 | 297 | inline typename __gnu_cxx::__promote<_Tp>::__type | 
 
 
 
 
 | 298 | assoc_legendre(unsigned int __l, unsigned int __m, _Tp __x) | 
 
 
 
 
 | 299 | { | 
 
 
 
 
 | 300 | typedef typename __gnu_cxx::__promote<_Tp>::__type __type; | 
 
 
 
 
 | 301 | return __detail::__assoc_legendre_p<__type>(__l, __m, __x); | 
 
 
 
 
 | 302 | } | 
 
 
 
 
 | 303 |  | 
 
 
 
 
 | 304 | // Beta functions | 
 
 
 
 
 | 305 |  | 
 
 
 
 
 | 306 | /** | 
 
 
 
 
 | 307 | * Return the beta function, @f$ B(a,b) @f$, for @c float parameters @c a, @c b. | 
 
 
 
 
 | 308 | * | 
 
 
 
 
 | 309 | * @see beta for more details. | 
 
 
 
 
 | 310 | */ | 
 
 
 
 
 | 311 | inline float | 
 
 
 
 
 | 312 | betaf(float __a, float __b) | 
 
 
 
 
 | 313 | { return __detail::__beta<float>(__a, __b); } | 
 
 
 
 
 | 314 |  | 
 
 
 
 
 | 315 | /** | 
 
 
 
 
 | 316 | * Return the beta function, @f$B(a,b)@f$, for long double | 
 
 
 
 
 | 317 | * parameters @c a, @c b. | 
 
 
 
 
 | 318 | * | 
 
 
 
 
 | 319 | * @see beta for more details. | 
 
 
 
 
 | 320 | */ | 
 
 
 
 
 | 321 | inline long double | 
 
 
 
 
 | 322 | betal(long double __a, long double __b) | 
 
 
 
 
 | 323 | { return __detail::__beta<long double>(__a, __b); } | 
 
 
 
 
 | 324 |  | 
 
 
 
 
 | 325 | /** | 
 
 
 
 
 | 326 | * Return the beta function, @f$B(a,b)@f$, for real parameters @c a, @c b. | 
 
 
 
 
 | 327 | * | 
 
 
 
 
 | 328 | * The beta function is defined by | 
 
 
 
 
 | 329 | * @f[ | 
 
 
 
 
 | 330 | *   B(a,b) = \int_0^1 t^{a - 1} (1 - t)^{b - 1} dt | 
 
 
 
 
 | 331 | *          = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)} | 
 
 
 
 
 | 332 | * @f] | 
 
 
 
 
 | 333 | * where @f$ a > 0 @f$ and @f$ b > 0 @f$ | 
 
 
 
 
 | 334 | * | 
 
 
 
 
 | 335 | * @tparam _Tpa The floating-point type of the parameter @c __a. | 
 
 
 
 
 | 336 | * @tparam _Tpb The floating-point type of the parameter @c __b. | 
 
 
 
 
 | 337 | * @param __a The first argument of the beta function, <tt> __a > 0 </tt>. | 
 
 
 
 
 | 338 | * @param __b The second argument of the beta function, <tt> __b > 0 </tt>. | 
 
 
 
 
 | 339 | * @throw std::domain_error if <tt> __a < 0 </tt> or <tt> __b < 0 </tt>. | 
 
 
 
 
 | 340 | */ | 
 
 
 
 
 | 341 | template<typename _Tpa, typename _Tpb> | 
 
 
 
 
 | 342 | inline typename __gnu_cxx::__promote_2<_Tpa, _Tpb>::__type | 
 
 
 
 
 | 343 | beta(_Tpa __a, _Tpb __b) | 
 
 
 
 
 | 344 | { | 
 
 
 
 
 | 345 | typedef typename __gnu_cxx::__promote_2<_Tpa, _Tpb>::__type __type; | 
 
 
 
 
 | 346 | return __detail::__beta<__type>(__a, __b); | 
 
 
 
 
 | 347 | } | 
 
 
 
 
 | 348 |  | 
 
 
 
 
 | 349 | // Complete elliptic integrals of the first kind | 
 
 
 
 
 | 350 |  | 
 
 
 
 
 | 351 | /** | 
 
 
 
 
 | 352 | * Return the complete elliptic integral of the first kind @f$ E(k) @f$ | 
 
 
 
 
 | 353 | * for @c float modulus @c k. | 
 
 
 
 
 | 354 | * | 
 
 
 
 
 | 355 | * @see comp_ellint_1 for details. | 
 
 
 
 
 | 356 | */ | 
 
 
 
 
 | 357 | inline float | 
 
 
 
 
 | 358 | comp_ellint_1f(float __k) | 
 
 
 
 
 | 359 | { return __detail::__comp_ellint_1<float>(__k); } | 
 
 
 
 
 | 360 |  | 
 
 
 
 
 | 361 | /** | 
 
 
 
 
 | 362 | * Return the complete elliptic integral of the first kind @f$ E(k) @f$ | 
 
 
 
 
 | 363 | * for long double modulus @c k. | 
 
 
 
 
 | 364 | * | 
 
 
 
 
 | 365 | * @see comp_ellint_1 for details. | 
 
 
 
 
 | 366 | */ | 
 
 
 
 
 | 367 | inline long double | 
 
 
 
 
 | 368 | comp_ellint_1l(long double __k) | 
 
 
 
 
 | 369 | { return __detail::__comp_ellint_1<long double>(__k); } | 
 
 
 
 
 | 370 |  | 
 
 
 
 
 | 371 | /** | 
 
 
 
 
 | 372 | * Return the complete elliptic integral of the first kind | 
 
 
 
 
 | 373 | * @f$ K(k) @f$ for real modulus @c k. | 
 
 
 
 
 | 374 | * | 
 
 
 
 
 | 375 | * The complete elliptic integral of the first kind is defined as | 
 
 
 
 
 | 376 | * @f[ | 
 
 
 
 
 | 377 | *   K(k) = F(k,\pi/2) = \int_0^{\pi/2}\frac{d\theta} | 
 
 
 
 
 | 378 | *                                         {\sqrt{1 - k^2 sin^2\theta}} | 
 
 
 
 
 | 379 | * @f] | 
 
 
 
 
 | 380 | * where @f$ F(k,\phi) @f$ is the incomplete elliptic integral of the | 
 
 
 
 
 | 381 | * first kind and the modulus @f$ |k| <= 1 @f$. | 
 
 
 
 
 | 382 | * @see ellint_1 for details of the incomplete elliptic function | 
 
 
 
 
 | 383 | * of the first kind. | 
 
 
 
 
 | 384 | * | 
 
 
 
 
 | 385 | * @tparam _Tp The floating-point type of the modulus @c __k. | 
 
 
 
 
 | 386 | * @param  __k  The modulus, <tt> abs(__k) <= 1 </tt> | 
 
 
 
 
 | 387 | * @throw std::domain_error if <tt> abs(__k) > 1 </tt>. | 
 
 
 
 
 | 388 | */ | 
 
 
 
 
 | 389 | template<typename _Tp> | 
 
 
 
 
 | 390 | inline typename __gnu_cxx::__promote<_Tp>::__type | 
 
 
 
 
 | 391 | comp_ellint_1(_Tp __k) | 
 
 
 
 
 | 392 | { | 
 
 
 
 
 | 393 | typedef typename __gnu_cxx::__promote<_Tp>::__type __type; | 
 
 
 
 
 | 394 | return __detail::__comp_ellint_1<__type>(__k); | 
 
 
 
 
 | 395 | } | 
 
 
 
 
 | 396 |  | 
 
 
 
 
 | 397 | // Complete elliptic integrals of the second kind | 
 
 
 
 
 | 398 |  | 
 
 
 
 
 | 399 | /** | 
 
 
 
 
 | 400 | * Return the complete elliptic integral of the second kind @f$ E(k) @f$ | 
 
 
 
 
 | 401 | * for @c float modulus @c k. | 
 
 
 
 
 | 402 | * | 
 
 
 
 
 | 403 | * @see comp_ellint_2 for details. | 
 
 
 
 
 | 404 | */ | 
 
 
 
 
 | 405 | inline float | 
 
 
 
 
 | 406 | comp_ellint_2f(float __k) | 
 
 
 
 
 | 407 | { return __detail::__comp_ellint_2<float>(__k); } | 
 
 
 
 
 | 408 |  | 
 
 
 
 
 | 409 | /** | 
 
 
 
 
 | 410 | * Return the complete elliptic integral of the second kind @f$ E(k) @f$ | 
 
 
 
 
 | 411 | * for long double modulus @c k. | 
 
 
 
 
 | 412 | * | 
 
 
 
 
 | 413 | * @see comp_ellint_2 for details. | 
 
 
 
 
 | 414 | */ | 
 
 
 
 
 | 415 | inline long double | 
 
 
 
 
 | 416 | comp_ellint_2l(long double __k) | 
 
 
 
 
 | 417 | { return __detail::__comp_ellint_2<long double>(__k); } | 
 
 
 
 
 | 418 |  | 
 
 
 
 
 | 419 | /** | 
 
 
 
 
 | 420 | * Return the complete elliptic integral of the second kind @f$ E(k) @f$ | 
 
 
 
 
 | 421 | * for real modulus @c k. | 
 
 
 
 
 | 422 | * | 
 
 
 
 
 | 423 | * The complete elliptic integral of the second kind is defined as | 
 
 
 
 
 | 424 | * @f[ | 
 
 
 
 
 | 425 | *   E(k) = E(k,\pi/2) = \int_0^{\pi/2}\sqrt{1 - k^2 sin^2\theta} | 
 
 
 
 
 | 426 | * @f] | 
 
 
 
 
 | 427 | * where @f$ E(k,\phi) @f$ is the incomplete elliptic integral of the | 
 
 
 
 
 | 428 | * second kind and the modulus @f$ |k| <= 1 @f$. | 
 
 
 
 
 | 429 | * @see ellint_2 for details of the incomplete elliptic function | 
 
 
 
 
 | 430 | * of the second kind. | 
 
 
 
 
 | 431 | * | 
 
 
 
 
 | 432 | * @tparam _Tp The floating-point type of the modulus @c __k. | 
 
 
 
 
 | 433 | * @param  __k  The modulus, @c abs(__k) <= 1 | 
 
 
 
 
 | 434 | * @throw std::domain_error if @c abs(__k) > 1. | 
 
 
 
 
 | 435 | */ | 
 
 
 
 
 | 436 | template<typename _Tp> | 
 
 
 
 
 | 437 | inline typename __gnu_cxx::__promote<_Tp>::__type | 
 
 
 
 
 | 438 | comp_ellint_2(_Tp __k) | 
 
 
 
 
 | 439 | { | 
 
 
 
 
 | 440 | typedef typename __gnu_cxx::__promote<_Tp>::__type __type; | 
 
 
 
 
 | 441 | return __detail::__comp_ellint_2<__type>(__k); | 
 
 
 
 
 | 442 | } | 
 
 
 
 
 | 443 |  | 
 
 
 
 
 | 444 | // Complete elliptic integrals of the third kind | 
 
 
 
 
 | 445 |  | 
 
 
 
 
 | 446 | /** | 
 
 
 
 
 | 447 | * @brief Return the complete elliptic integral of the third kind | 
 
 
 
 
 | 448 | * @f$ \Pi(k,\nu) @f$ for @c float modulus @c k. | 
 
 
 
 
 | 449 | * | 
 
 
 
 
 | 450 | * @see comp_ellint_3 for details. | 
 
 
 
 
 | 451 | */ | 
 
 
 
 
 | 452 | inline float | 
 
 
 
 
 | 453 | comp_ellint_3f(float __k, float __nu) | 
 
 
 
 
 | 454 | { return __detail::__comp_ellint_3<float>(__k, __nu); } | 
 
 
 
 
 | 455 |  | 
 
 
 
 
 | 456 | /** | 
 
 
 
 
 | 457 | * @brief Return the complete elliptic integral of the third kind | 
 
 
 
 
 | 458 | * @f$ \Pi(k,\nu) @f$ for <tt>long double</tt> modulus @c k. | 
 
 
 
 
 | 459 | * | 
 
 
 
 
 | 460 | * @see comp_ellint_3 for details. | 
 
 
 
 
 | 461 | */ | 
 
 
 
 
 | 462 | inline long double | 
 
 
 
 
 | 463 | comp_ellint_3l(long double __k, long double __nu) | 
 
 
 
 
 | 464 | { return __detail::__comp_ellint_3<long double>(__k, __nu); } | 
 
 
 
 
 | 465 |  | 
 
 
 
 
 | 466 | /** | 
 
 
 
 
 | 467 | * Return the complete elliptic integral of the third kind | 
 
 
 
 
 | 468 | * @f$ \Pi(k,\nu) = \Pi(k,\nu,\pi/2) @f$ for real modulus @c k. | 
 
 
 
 
 | 469 | * | 
 
 
 
 
 | 470 | * The complete elliptic integral of the third kind is defined as | 
 
 
 
 
 | 471 | * @f[ | 
 
 
 
 
 | 472 | *   \Pi(k,\nu) = \Pi(k,\nu,\pi/2) = \int_0^{\pi/2} | 
 
 
 
 
 | 473 | *                 \frac{d\theta} | 
 
 
 
 
 | 474 | *               {(1 - \nu \sin^2\theta)\sqrt{1 - k^2 \sin^2\theta}} | 
 
 
 
 
 | 475 | * @f] | 
 
 
 
 
 | 476 | * where @f$ \Pi(k,\nu,\phi) @f$ is the incomplete elliptic integral of the | 
 
 
 
 
 | 477 | * second kind and the modulus @f$ |k| <= 1 @f$. | 
 
 
 
 
 | 478 | * @see ellint_3 for details of the incomplete elliptic function | 
 
 
 
 
 | 479 | * of the third kind. | 
 
 
 
 
 | 480 | * | 
 
 
 
 
 | 481 | * @tparam _Tp The floating-point type of the modulus @c __k. | 
 
 
 
 
 | 482 | * @tparam _Tpn The floating-point type of the argument @c __nu. | 
 
 
 
 
 | 483 | * @param  __k  The modulus, @c abs(__k) <= 1 | 
 
 
 
 
 | 484 | * @param  __nu  The argument | 
 
 
 
 
 | 485 | * @throw std::domain_error if @c abs(__k) > 1. | 
 
 
 
 
 | 486 | */ | 
 
 
 
 
 | 487 | template<typename _Tp, typename _Tpn> | 
 
 
 
 
 | 488 | inline typename __gnu_cxx::__promote_2<_Tp, _Tpn>::__type | 
 
 
 
 
 | 489 | comp_ellint_3(_Tp __k, _Tpn __nu) | 
 
 
 
 
 | 490 | { | 
 
 
 
 
 | 491 | typedef typename __gnu_cxx::__promote_2<_Tp, _Tpn>::__type __type; | 
 
 
 
 
 | 492 | return __detail::__comp_ellint_3<__type>(__k, __nu); | 
 
 
 
 
 | 493 | } | 
 
 
 
 
 | 494 |  | 
 
 
 
 
 | 495 | // Regular modified cylindrical Bessel functions | 
 
 
 
 
 | 496 |  | 
 
 
 
 
 | 497 | /** | 
 
 
 
 
 | 498 | * Return the regular modified Bessel function @f$ I_{\nu}(x) @f$ | 
 
 
 
 
 | 499 | * for @c float order @f$ \nu @f$ and argument @f$ x >= 0 @f$. | 
 
 
 
 
 | 500 | * | 
 
 
 
 
 | 501 | * @see cyl_bessel_i for setails. | 
 
 
 
 
 | 502 | */ | 
 
 
 
 
 | 503 | inline float | 
 
 
 
 
 | 504 | cyl_bessel_if(float __nu, float __x) | 
 
 
 
 
 | 505 | { return __detail::__cyl_bessel_i<float>(__nu, __x); } | 
 
 
 
 
 | 506 |  | 
 
 
 
 
 | 507 | /** | 
 
 
 
 
 | 508 | * Return the regular modified Bessel function @f$ I_{\nu}(x) @f$ | 
 
 
 
 
 | 509 | * for <tt>long double</tt> order @f$ \nu @f$ and argument @f$ x >= 0 @f$. | 
 
 
 
 
 | 510 | * | 
 
 
 
 
 | 511 | * @see cyl_bessel_i for setails. | 
 
 
 
 
 | 512 | */ | 
 
 
 
 
 | 513 | inline long double | 
 
 
 
 
 | 514 | cyl_bessel_il(long double __nu, long double __x) | 
 
 
 
 
 | 515 | { return __detail::__cyl_bessel_i<long double>(__nu, __x); } | 
 
 
 
 
 | 516 |  | 
 
 
 
 
 | 517 | /** | 
 
 
 
 
 | 518 | * Return the regular modified Bessel function @f$ I_{\nu}(x) @f$ | 
 
 
 
 
 | 519 | * for real order @f$ \nu @f$ and argument @f$ x >= 0 @f$. | 
 
 
 
 
 | 520 | * | 
 
 
 
 
 | 521 | * The regular modified cylindrical Bessel function is: | 
 
 
 
 
 | 522 | * @f[ | 
 
 
 
 
 | 523 | *  I_{\nu}(x) = i^{-\nu}J_\nu(ix) = \sum_{k=0}^{\infty} | 
 
 
 
 
 | 524 | *            \frac{(x/2)^{\nu + 2k}}{k!\Gamma(\nu+k+1)} | 
 
 
 
 
 | 525 | * @f] | 
 
 
 
 
 | 526 | * | 
 
 
 
 
 | 527 | * @tparam _Tpnu The floating-point type of the order @c __nu. | 
 
 
 
 
 | 528 | * @tparam _Tp The floating-point type of the argument @c __x. | 
 
 
 
 
 | 529 | * @param  __nu  The order | 
 
 
 
 
 | 530 | * @param  __x   The argument, <tt> __x >= 0 </tt> | 
 
 
 
 
 | 531 | * @throw std::domain_error if <tt> __x < 0 </tt>. | 
 
 
 
 
 | 532 | */ | 
 
 
 
 
 | 533 | template<typename _Tpnu, typename _Tp> | 
 
 
 
 
 | 534 | inline typename __gnu_cxx::__promote_2<_Tpnu, _Tp>::__type | 
 
 
 
 
 | 535 | cyl_bessel_i(_Tpnu __nu, _Tp __x) | 
 
 
 
 
 | 536 | { | 
 
 
 
 
 | 537 | typedef typename __gnu_cxx::__promote_2<_Tpnu, _Tp>::__type __type; | 
 
 
 
 
 | 538 | return __detail::__cyl_bessel_i<__type>(__nu, __x); | 
 
 
 
 
 | 539 | } | 
 
 
 
 
 | 540 |  | 
 
 
 
 
 | 541 | // Cylindrical Bessel functions (of the first kind) | 
 
 
 
 
 | 542 |  | 
 
 
 
 
 | 543 | /** | 
 
 
 
 
 | 544 | * Return the Bessel function of the first kind @f$ J_{\nu}(x) @f$ | 
 
 
 
 
 | 545 | * for @c float order @f$ \nu @f$ and argument @f$ x >= 0 @f$. | 
 
 
 
 
 | 546 | * | 
 
 
 
 
 | 547 | * @see cyl_bessel_j for setails. | 
 
 
 
 
 | 548 | */ | 
 
 
 
 
 | 549 | inline float | 
 
 
 
 
 | 550 | cyl_bessel_jf(float __nu, float __x) | 
 
 
 
 
 | 551 | { return __detail::__cyl_bessel_j<float>(__nu, __x); } | 
 
 
 
 
 | 552 |  | 
 
 
 
 
 | 553 | /** | 
 
 
 
 
 | 554 | * Return the Bessel function of the first kind @f$ J_{\nu}(x) @f$ | 
 
 
 
 
 | 555 | * for <tt>long double</tt> order @f$ \nu @f$ and argument @f$ x >= 0 @f$. | 
 
 
 
 
 | 556 | * | 
 
 
 
 
 | 557 | * @see cyl_bessel_j for setails. | 
 
 
 
 
 | 558 | */ | 
 
 
 
 
 | 559 | inline long double | 
 
 
 
 
 | 560 | cyl_bessel_jl(long double __nu, long double __x) | 
 
 
 
 
 | 561 | { return __detail::__cyl_bessel_j<long double>(__nu, __x); } | 
 
 
 
 
 | 562 |  | 
 
 
 
 
 | 563 | /** | 
 
 
 
 
 | 564 | * Return the Bessel function @f$ J_{\nu}(x) @f$ of real order @f$ \nu @f$ | 
 
 
 
 
 | 565 | * and argument @f$ x >= 0 @f$. | 
 
 
 
 
 | 566 | * | 
 
 
 
 
 | 567 | * The cylindrical Bessel function is: | 
 
 
 
 
 | 568 | * @f[ | 
 
 
 
 
 | 569 | *    J_{\nu}(x) = \sum_{k=0}^{\infty} | 
 
 
 
 
 | 570 | *              \frac{(-1)^k (x/2)^{\nu + 2k}}{k!\Gamma(\nu+k+1)} | 
 
 
 
 
 | 571 | * @f] | 
 
 
 
 
 | 572 | * | 
 
 
 
 
 | 573 | * @tparam _Tpnu The floating-point type of the order @c __nu. | 
 
 
 
 
 | 574 | * @tparam _Tp The floating-point type of the argument @c __x. | 
 
 
 
 
 | 575 | * @param  __nu  The order | 
 
 
 
 
 | 576 | * @param  __x   The argument, <tt> __x >= 0 </tt> | 
 
 
 
 
 | 577 | * @throw std::domain_error if <tt> __x < 0 </tt>. | 
 
 
 
 
 | 578 | */ | 
 
 
 
 
 | 579 | template<typename _Tpnu, typename _Tp> | 
 
 
 
 
 | 580 | inline typename __gnu_cxx::__promote_2<_Tpnu, _Tp>::__type | 
 
 
 
 
 | 581 | cyl_bessel_j(_Tpnu __nu, _Tp __x) | 
 
 
 
 
 | 582 | { | 
 
 
 
 
 | 583 | typedef typename __gnu_cxx::__promote_2<_Tpnu, _Tp>::__type __type; | 
 
 
 
 
 | 584 | return __detail::__cyl_bessel_j<__type>(__nu, __x); | 
 
 
 
 
 | 585 | } | 
 
 
 
 
 | 586 |  | 
 
 
 
 
 | 587 | // Irregular modified cylindrical Bessel functions | 
 
 
 
 
 | 588 |  | 
 
 
 
 
 | 589 | /** | 
 
 
 
 
 | 590 | * Return the irregular modified Bessel function @f$ K_{\nu}(x) @f$ | 
 
 
 
 
 | 591 | * for @c float order @f$ \nu @f$ and argument @f$ x >= 0 @f$. | 
 
 
 
 
 | 592 | * | 
 
 
 
 
 | 593 | * @see cyl_bessel_k for setails. | 
 
 
 
 
 | 594 | */ | 
 
 
 
 
 | 595 | inline float | 
 
 
 
 
 | 596 | cyl_bessel_kf(float __nu, float __x) | 
 
 
 
 
 | 597 | { return __detail::__cyl_bessel_k<float>(__nu, __x); } | 
 
 
 
 
 | 598 |  | 
 
 
 
 
 | 599 | /** | 
 
 
 
 
 | 600 | * Return the irregular modified Bessel function @f$ K_{\nu}(x) @f$ | 
 
 
 
 
 | 601 | * for <tt>long double</tt> order @f$ \nu @f$ and argument @f$ x >= 0 @f$. | 
 
 
 
 
 | 602 | * | 
 
 
 
 
 | 603 | * @see cyl_bessel_k for setails. | 
 
 
 
 
 | 604 | */ | 
 
 
 
 
 | 605 | inline long double | 
 
 
 
 
 | 606 | cyl_bessel_kl(long double __nu, long double __x) | 
 
 
 
 
 | 607 | { return __detail::__cyl_bessel_k<long double>(__nu, __x); } | 
 
 
 
 
 | 608 |  | 
 
 
 
 
 | 609 | /** | 
 
 
 
 
 | 610 | * Return the irregular modified Bessel function @f$ K_{\nu}(x) @f$ | 
 
 
 
 
 | 611 | * of real order @f$ \nu @f$ and argument @f$ x @f$. | 
 
 
 
 
 | 612 | * | 
 
 
 
 
 | 613 | * The irregular modified Bessel function is defined by: | 
 
 
 
 
 | 614 | * @f[ | 
 
 
 
 
 | 615 | *    K_{\nu}(x) = \frac{\pi}{2} | 
 
 
 
 
 | 616 | *                 \frac{I_{-\nu}(x) - I_{\nu}(x)}{\sin \nu\pi} | 
 
 
 
 
 | 617 | * @f] | 
 
 
 
 
 | 618 | * where for integral @f$ \nu = n @f$ a limit is taken: | 
 
 
 
 
 | 619 | * @f$ lim_{\nu \to n} @f$. | 
 
 
 
 
 | 620 | * For negative argument we have simply: | 
 
 
 
 
 | 621 | * @f[ | 
 
 
 
 
 | 622 | *    K_{-\nu}(x) = K_{\nu}(x) | 
 
 
 
 
 | 623 | * @f] | 
 
 
 
 
 | 624 | * | 
 
 
 
 
 | 625 | * @tparam _Tpnu The floating-point type of the order @c __nu. | 
 
 
 
 
 | 626 | * @tparam _Tp The floating-point type of the argument @c __x. | 
 
 
 
 
 | 627 | * @param  __nu  The order | 
 
 
 
 
 | 628 | * @param  __x   The argument, <tt> __x >= 0 </tt> | 
 
 
 
 
 | 629 | * @throw std::domain_error if <tt> __x < 0 </tt>. | 
 
 
 
 
 | 630 | */ | 
 
 
 
 
 | 631 | template<typename _Tpnu, typename _Tp> | 
 
 
 
 
 | 632 | inline typename __gnu_cxx::__promote_2<_Tpnu, _Tp>::__type | 
 
 
 
 
 | 633 | cyl_bessel_k(_Tpnu __nu, _Tp __x) | 
 
 
 
 
 | 634 | { | 
 
 
 
 
 | 635 | typedef typename __gnu_cxx::__promote_2<_Tpnu, _Tp>::__type __type; | 
 
 
 
 
 | 636 | return __detail::__cyl_bessel_k<__type>(__nu, __x); | 
 
 
 
 
 | 637 | } | 
 
 
 
 
 | 638 |  | 
 
 
 
 
 | 639 | // Cylindrical Neumann functions | 
 
 
 
 
 | 640 |  | 
 
 
 
 
 | 641 | /** | 
 
 
 
 
 | 642 | * Return the Neumann function @f$ N_{\nu}(x) @f$ | 
 
 
 
 
 | 643 | * of @c float order @f$ \nu @f$ and argument @f$ x @f$. | 
 
 
 
 
 | 644 | * | 
 
 
 
 
 | 645 | * @see cyl_neumann for setails. | 
 
 
 
 
 | 646 | */ | 
 
 
 
 
 | 647 | inline float | 
 
 
 
 
 | 648 | cyl_neumannf(float __nu, float __x) | 
 
 
 
 
 | 649 | { return __detail::__cyl_neumann_n<float>(__nu, __x); } | 
 
 
 
 
 | 650 |  | 
 
 
 
 
 | 651 | /** | 
 
 
 
 
 | 652 | * Return the Neumann function @f$ N_{\nu}(x) @f$ | 
 
 
 
 
 | 653 | * of <tt>long double</tt> order @f$ \nu @f$ and argument @f$ x @f$. | 
 
 
 
 
 | 654 | * | 
 
 
 
 
 | 655 | * @see cyl_neumann for setails. | 
 
 
 
 
 | 656 | */ | 
 
 
 
 
 | 657 | inline long double | 
 
 
 
 
 | 658 | cyl_neumannl(long double __nu, long double __x) | 
 
 
 
 
 | 659 | { return __detail::__cyl_neumann_n<long double>(__nu, __x); } | 
 
 
 
 
 | 660 |  | 
 
 
 
 
 | 661 | /** | 
 
 
 
 
 | 662 | * Return the Neumann function @f$ N_{\nu}(x) @f$ | 
 
 
 
 
 | 663 | * of real order @f$ \nu @f$ and argument @f$ x >= 0 @f$. | 
 
 
 
 
 | 664 | * | 
 
 
 
 
 | 665 | * The Neumann function is defined by: | 
 
 
 
 
 | 666 | * @f[ | 
 
 
 
 
 | 667 | *    N_{\nu}(x) = \frac{J_{\nu}(x) \cos \nu\pi - J_{-\nu}(x)} | 
 
 
 
 
 | 668 | *                      {\sin \nu\pi} | 
 
 
 
 
 | 669 | * @f] | 
 
 
 
 
 | 670 | * where @f$ x >= 0 @f$ and for integral order @f$ \nu = n @f$ | 
 
 
 
 
 | 671 | * a limit is taken: @f$ lim_{\nu \to n} @f$. | 
 
 
 
 
 | 672 | * | 
 
 
 
 
 | 673 | * @tparam _Tpnu The floating-point type of the order @c __nu. | 
 
 
 
 
 | 674 | * @tparam _Tp The floating-point type of the argument @c __x. | 
 
 
 
 
 | 675 | * @param  __nu  The order | 
 
 
 
 
 | 676 | * @param  __x   The argument, <tt> __x >= 0 </tt> | 
 
 
 
 
 | 677 | * @throw std::domain_error if <tt> __x < 0 </tt>. | 
 
 
 
 
 | 678 | */ | 
 
 
 
 
 | 679 | template<typename _Tpnu, typename _Tp> | 
 
 
 
 
 | 680 | inline typename __gnu_cxx::__promote_2<_Tpnu, _Tp>::__type | 
 
 
 
 
 | 681 | cyl_neumann(_Tpnu __nu, _Tp __x) | 
 
 
 
 
 | 682 | { | 
 
 
 
 
 | 683 | typedef typename __gnu_cxx::__promote_2<_Tpnu, _Tp>::__type __type; | 
 
 
 
 
 | 684 | return __detail::__cyl_neumann_n<__type>(__nu, __x); | 
 
 
 
 
 | 685 | } | 
 
 
 
 
 | 686 |  | 
 
 
 
 
 | 687 | // Incomplete elliptic integrals of the first kind | 
 
 
 
 
 | 688 |  | 
 
 
 
 
 | 689 | /** | 
 
 
 
 
 | 690 | * Return the incomplete elliptic integral of the first kind @f$ E(k,\phi) @f$ | 
 
 
 
 
 | 691 | * for @c float modulus @f$ k @f$ and angle @f$ \phi @f$. | 
 
 
 
 
 | 692 | * | 
 
 
 
 
 | 693 | * @see ellint_1 for details. | 
 
 
 
 
 | 694 | */ | 
 
 
 
 
 | 695 | inline float | 
 
 
 
 
 | 696 | ellint_1f(float __k, float __phi) | 
 
 
 
 
 | 697 | { return __detail::__ellint_1<float>(__k, __phi); } | 
 
 
 
 
 | 698 |  | 
 
 
 
 
 | 699 | /** | 
 
 
 
 
 | 700 | * Return the incomplete elliptic integral of the first kind @f$ E(k,\phi) @f$ | 
 
 
 
 
 | 701 | * for <tt>long double</tt> modulus @f$ k @f$ and angle @f$ \phi @f$. | 
 
 
 
 
 | 702 | * | 
 
 
 
 
 | 703 | * @see ellint_1 for details. | 
 
 
 
 
 | 704 | */ | 
 
 
 
 
 | 705 | inline long double | 
 
 
 
 
 | 706 | ellint_1l(long double __k, long double __phi) | 
 
 
 
 
 | 707 | { return __detail::__ellint_1<long double>(__k, __phi); } | 
 
 
 
 
 | 708 |  | 
 
 
 
 
 | 709 | /** | 
 
 
 
 
 | 710 | * Return the incomplete elliptic integral of the first kind @f$ F(k,\phi) @f$ | 
 
 
 
 
 | 711 | * for @c real modulus @f$ k @f$ and angle @f$ \phi @f$. | 
 
 
 
 
 | 712 | * | 
 
 
 
 
 | 713 | * The incomplete elliptic integral of the first kind is defined as | 
 
 
 
 
 | 714 | * @f[ | 
 
 
 
 
 | 715 | *   F(k,\phi) = \int_0^{\phi}\frac{d\theta} | 
 
 
 
 
 | 716 | *                                 {\sqrt{1 - k^2 sin^2\theta}} | 
 
 
 
 
 | 717 | * @f] | 
 
 
 
 
 | 718 | * For  @f$ \phi= \pi/2 @f$ this becomes the complete elliptic integral of | 
 
 
 
 
 | 719 | * the first kind, @f$ K(k) @f$.  @see comp_ellint_1. | 
 
 
 
 
 | 720 | * | 
 
 
 
 
 | 721 | * @tparam _Tp The floating-point type of the modulus @c __k. | 
 
 
 
 
 | 722 | * @tparam _Tpp The floating-point type of the angle @c __phi. | 
 
 
 
 
 | 723 | * @param  __k  The modulus, <tt> abs(__k) <= 1 </tt> | 
 
 
 
 
 | 724 | * @param  __phi  The integral limit argument in radians | 
 
 
 
 
 | 725 | * @throw std::domain_error if <tt> abs(__k) > 1 </tt>. | 
 
 
 
 
 | 726 | */ | 
 
 
 
 
 | 727 | template<typename _Tp, typename _Tpp> | 
 
 
 
 
 | 728 | inline typename __gnu_cxx::__promote_2<_Tp, _Tpp>::__type | 
 
 
 
 
 | 729 | ellint_1(_Tp __k, _Tpp __phi) | 
 
 
 
 
 | 730 | { | 
 
 
 
 
 | 731 | typedef typename __gnu_cxx::__promote_2<_Tp, _Tpp>::__type __type; | 
 
 
 
 
 | 732 | return __detail::__ellint_1<__type>(__k, __phi); | 
 
 
 
 
 | 733 | } | 
 
 
 
 
 | 734 |  | 
 
 
 
 
 | 735 | // Incomplete elliptic integrals of the second kind | 
 
 
 
 
 | 736 |  | 
 
 
 
 
 | 737 | /** | 
 
 
 
 
 | 738 | * @brief Return the incomplete elliptic integral of the second kind | 
 
 
 
 
 | 739 | * @f$ E(k,\phi) @f$ for @c float argument. | 
 
 
 
 
 | 740 | * | 
 
 
 
 
 | 741 | * @see ellint_2 for details. | 
 
 
 
 
 | 742 | */ | 
 
 
 
 
 | 743 | inline float | 
 
 
 
 
 | 744 | ellint_2f(float __k, float __phi) | 
 
 
 
 
 | 745 | { return __detail::__ellint_2<float>(__k, __phi); } | 
 
 
 
 
 | 746 |  | 
 
 
 
 
 | 747 | /** | 
 
 
 
 
 | 748 | * @brief Return the incomplete elliptic integral of the second kind | 
 
 
 
 
 | 749 | * @f$ E(k,\phi) @f$. | 
 
 
 
 
 | 750 | * | 
 
 
 
 
 | 751 | * @see ellint_2 for details. | 
 
 
 
 
 | 752 | */ | 
 
 
 
 
 | 753 | inline long double | 
 
 
 
 
 | 754 | ellint_2l(long double __k, long double __phi) | 
 
 
 
 
 | 755 | { return __detail::__ellint_2<long double>(__k, __phi); } | 
 
 
 
 
 | 756 |  | 
 
 
 
 
 | 757 | /** | 
 
 
 
 
 | 758 | * Return the incomplete elliptic integral of the second kind | 
 
 
 
 
 | 759 | * @f$ E(k,\phi) @f$. | 
 
 
 
 
 | 760 | * | 
 
 
 
 
 | 761 | * The incomplete elliptic integral of the second kind is defined as | 
 
 
 
 
 | 762 | * @f[ | 
 
 
 
 
 | 763 | *   E(k,\phi) = \int_0^{\phi} \sqrt{1 - k^2 sin^2\theta} | 
 
 
 
 
 | 764 | * @f] | 
 
 
 
 
 | 765 | * For  @f$ \phi= \pi/2 @f$ this becomes the complete elliptic integral of | 
 
 
 
 
 | 766 | * the second kind, @f$ E(k) @f$.  @see comp_ellint_2. | 
 
 
 
 
 | 767 | * | 
 
 
 
 
 | 768 | * @tparam _Tp The floating-point type of the modulus @c __k. | 
 
 
 
 
 | 769 | * @tparam _Tpp The floating-point type of the angle @c __phi. | 
 
 
 
 
 | 770 | * @param  __k  The modulus, <tt> abs(__k) <= 1 </tt> | 
 
 
 
 
 | 771 | * @param  __phi  The integral limit argument in radians | 
 
 
 
 
 | 772 | * @return  The elliptic function of the second kind. | 
 
 
 
 
 | 773 | * @throw std::domain_error if <tt> abs(__k) > 1 </tt>. | 
 
 
 
 
 | 774 | */ | 
 
 
 
 
 | 775 | template<typename _Tp, typename _Tpp> | 
 
 
 
 
 | 776 | inline typename __gnu_cxx::__promote_2<_Tp, _Tpp>::__type | 
 
 
 
 
 | 777 | ellint_2(_Tp __k, _Tpp __phi) | 
 
 
 
 
 | 778 | { | 
 
 
 
 
 | 779 | typedef typename __gnu_cxx::__promote_2<_Tp, _Tpp>::__type __type; | 
 
 
 
 
 | 780 | return __detail::__ellint_2<__type>(__k, __phi); | 
 
 
 
 
 | 781 | } | 
 
 
 
 
 | 782 |  | 
 
 
 
 
 | 783 | // Incomplete elliptic integrals of the third kind | 
 
 
 
 
 | 784 |  | 
 
 
 
 
 | 785 | /** | 
 
 
 
 
 | 786 | * @brief Return the incomplete elliptic integral of the third kind | 
 
 
 
 
 | 787 | * @f$ \Pi(k,\nu,\phi) @f$ for @c float argument. | 
 
 
 
 
 | 788 | * | 
 
 
 
 
 | 789 | * @see ellint_3 for details. | 
 
 
 
 
 | 790 | */ | 
 
 
 
 
 | 791 | inline float | 
 
 
 
 
 | 792 | ellint_3f(float __k, float __nu, float __phi) | 
 
 
 
 
 | 793 | { return __detail::__ellint_3<float>(__k, __nu, __phi); } | 
 
 
 
 
 | 794 |  | 
 
 
 
 
 | 795 | /** | 
 
 
 
 
 | 796 | * @brief Return the incomplete elliptic integral of the third kind | 
 
 
 
 
 | 797 | * @f$ \Pi(k,\nu,\phi) @f$. | 
 
 
 
 
 | 798 | * | 
 
 
 
 
 | 799 | * @see ellint_3 for details. | 
 
 
 
 
 | 800 | */ | 
 
 
 
 
 | 801 | inline long double | 
 
 
 
 
 | 802 | ellint_3l(long double __k, long double __nu, long double __phi) | 
 
 
 
 
 | 803 | { return __detail::__ellint_3<long double>(__k, __nu, __phi); } | 
 
 
 
 
 | 804 |  | 
 
 
 
 
 | 805 | /** | 
 
 
 
 
 | 806 | * @brief Return the incomplete elliptic integral of the third kind | 
 
 
 
 
 | 807 | * @f$ \Pi(k,\nu,\phi) @f$. | 
 
 
 
 
 | 808 | * | 
 
 
 
 
 | 809 | * The incomplete elliptic integral of the third kind is defined by: | 
 
 
 
 
 | 810 | * @f[ | 
 
 
 
 
 | 811 | *   \Pi(k,\nu,\phi) = \int_0^{\phi} | 
 
 
 
 
 | 812 | *                     \frac{d\theta} | 
 
 
 
 
 | 813 | *                     {(1 - \nu \sin^2\theta) | 
 
 
 
 
 | 814 | *                      \sqrt{1 - k^2 \sin^2\theta}} | 
 
 
 
 
 | 815 | * @f] | 
 
 
 
 
 | 816 | * For  @f$ \phi= \pi/2 @f$ this becomes the complete elliptic integral of | 
 
 
 
 
 | 817 | * the third kind, @f$ \Pi(k,\nu) @f$.  @see comp_ellint_3. | 
 
 
 
 
 | 818 | * | 
 
 
 
 
 | 819 | * @tparam _Tp The floating-point type of the modulus @c __k. | 
 
 
 
 
 | 820 | * @tparam _Tpn The floating-point type of the argument @c __nu. | 
 
 
 
 
 | 821 | * @tparam _Tpp The floating-point type of the angle @c __phi. | 
 
 
 
 
 | 822 | * @param  __k  The modulus, <tt> abs(__k) <= 1 </tt> | 
 
 
 
 
 | 823 | * @param  __nu  The second argument | 
 
 
 
 
 | 824 | * @param  __phi  The integral limit argument in radians | 
 
 
 
 
 | 825 | * @return  The elliptic function of the third kind. | 
 
 
 
 
 | 826 | * @throw std::domain_error if <tt> abs(__k) > 1 </tt>. | 
 
 
 
 
 | 827 | */ | 
 
 
 
 
 | 828 | template<typename _Tp, typename _Tpn, typename _Tpp> | 
 
 
 
 
 | 829 | inline typename __gnu_cxx::__promote_3<_Tp, _Tpn, _Tpp>::__type | 
 
 
 
 
 | 830 | ellint_3(_Tp __k, _Tpn __nu, _Tpp __phi) | 
 
 
 
 
 | 831 | { | 
 
 
 
 
 | 832 | typedef typename __gnu_cxx::__promote_3<_Tp, _Tpn, _Tpp>::__type __type; | 
 
 
 
 
 | 833 | return __detail::__ellint_3<__type>(__k, __nu, __phi); | 
 
 
 
 
 | 834 | } | 
 
 
 
 
 | 835 |  | 
 
 
 
 
 | 836 | // Exponential integrals | 
 
 
 
 
 | 837 |  | 
 
 
 
 
 | 838 | /** | 
 
 
 
 
 | 839 | * Return the exponential integral @f$ Ei(x) @f$ for @c float argument @c x. | 
 
 
 
 
 | 840 | * | 
 
 
 
 
 | 841 | * @see expint for details. | 
 
 
 
 
 | 842 | */ | 
 
 
 
 
 | 843 | inline float | 
 
 
 
 
 | 844 | expintf(float __x) | 
 
 
 
 
 | 845 | { return __detail::__expint<float>(__x); } | 
 
 
 
 
 | 846 |  | 
 
 
 
 
 | 847 | /** | 
 
 
 
 
 | 848 | * Return the exponential integral @f$ Ei(x) @f$ | 
 
 
 
 
 | 849 | * for <tt>long double</tt> argument @c x. | 
 
 
 
 
 | 850 | * | 
 
 
 
 
 | 851 | * @see expint for details. | 
 
 
 
 
 | 852 | */ | 
 
 
 
 
 | 853 | inline long double | 
 
 
 
 
 | 854 | expintl(long double __x) | 
 
 
 
 
 | 855 | { return __detail::__expint<long double>(__x); } | 
 
 
 
 
 | 856 |  | 
 
 
 
 
 | 857 | /** | 
 
 
 
 
 | 858 | * Return the exponential integral @f$ Ei(x) @f$ for @c real argument @c x. | 
 
 
 
 
 | 859 | * | 
 
 
 
 
 | 860 | * The exponential integral is given by | 
 
 
 
 
 | 861 | * \f[ | 
 
 
 
 
 | 862 | *   Ei(x) = -\int_{-x}^\infty \frac{e^t}{t} dt | 
 
 
 
 
 | 863 | * \f] | 
 
 
 
 
 | 864 | * | 
 
 
 
 
 | 865 | * @tparam _Tp The floating-point type of the argument @c __x. | 
 
 
 
 
 | 866 | * @param  __x  The argument of the exponential integral function. | 
 
 
 
 
 | 867 | */ | 
 
 
 
 
 | 868 | template<typename _Tp> | 
 
 
 
 
 | 869 | inline typename __gnu_cxx::__promote<_Tp>::__type | 
 
 
 
 
 | 870 | expint(_Tp __x) | 
 
 
 
 
 | 871 | { | 
 
 
 
 
 | 872 | typedef typename __gnu_cxx::__promote<_Tp>::__type __type; | 
 
 
 
 
 | 873 | return __detail::__expint<__type>(__x); | 
 
 
 
 
 | 874 | } | 
 
 
 
 
 | 875 |  | 
 
 
 
 
 | 876 | // Hermite polynomials | 
 
 
 
 
 | 877 |  | 
 
 
 
 
 | 878 | /** | 
 
 
 
 
 | 879 | * Return the Hermite polynomial @f$ H_n(x) @f$ of nonnegative order n | 
 
 
 
 
 | 880 | * and float argument @c x. | 
 
 
 
 
 | 881 | * | 
 
 
 
 
 | 882 | * @see hermite for details. | 
 
 
 
 
 | 883 | */ | 
 
 
 
 
 | 884 | inline float | 
 
 
 
 
 | 885 | hermitef(unsigned int __n, float __x) | 
 
 
 
 
 | 886 | { return __detail::__poly_hermite<float>(__n, __x); } | 
 
 
 
 
 | 887 |  | 
 
 
 
 
 | 888 | /** | 
 
 
 
 
 | 889 | * Return the Hermite polynomial @f$ H_n(x) @f$ of nonnegative order n | 
 
 
 
 
 | 890 | * and <tt>long double</tt> argument @c x. | 
 
 
 
 
 | 891 | * | 
 
 
 
 
 | 892 | * @see hermite for details. | 
 
 
 
 
 | 893 | */ | 
 
 
 
 
 | 894 | inline long double | 
 
 
 
 
 | 895 | hermitel(unsigned int __n, long double __x) | 
 
 
 
 
 | 896 | { return __detail::__poly_hermite<long double>(__n, __x); } | 
 
 
 
 
 | 897 |  | 
 
 
 
 
 | 898 | /** | 
 
 
 
 
 | 899 | * Return the Hermite polynomial @f$ H_n(x) @f$ of order n | 
 
 
 
 
 | 900 | * and @c real argument @c x. | 
 
 
 
 
 | 901 | * | 
 
 
 
 
 | 902 | * The Hermite polynomial is defined by: | 
 
 
 
 
 | 903 | * @f[ | 
 
 
 
 
 | 904 | *   H_n(x) = (-1)^n e^{x^2} \frac{d^n}{dx^n} e^{-x^2} | 
 
 
 
 
 | 905 | * @f] | 
 
 
 
 
 | 906 | * | 
 
 
 
 
 | 907 | * The Hermite polynomial obeys a reflection formula: | 
 
 
 
 
 | 908 | * @f[ | 
 
 
 
 
 | 909 | *   H_n(-x) = (-1)^n H_n(x) | 
 
 
 
 
 | 910 | * @f] | 
 
 
 
 
 | 911 | * | 
 
 
 
 
 | 912 | * @tparam _Tp The floating-point type of the argument @c __x. | 
 
 
 
 
 | 913 | * @param __n The order | 
 
 
 
 
 | 914 | * @param __x The argument | 
 
 
 
 
 | 915 | */ | 
 
 
 
 
 | 916 | template<typename _Tp> | 
 
 
 
 
 | 917 | inline typename __gnu_cxx::__promote<_Tp>::__type | 
 
 
 
 
 | 918 | hermite(unsigned int __n, _Tp __x) | 
 
 
 
 
 | 919 | { | 
 
 
 
 
 | 920 | typedef typename __gnu_cxx::__promote<_Tp>::__type __type; | 
 
 
 
 
 | 921 | return __detail::__poly_hermite<__type>(__n, __x); | 
 
 
 
 
 | 922 | } | 
 
 
 
 
 | 923 |  | 
 
 
 
 
 | 924 | // Laguerre polynomials | 
 
 
 
 
 | 925 |  | 
 
 
 
 
 | 926 | /** | 
 
 
 
 
 | 927 | * Returns the Laguerre polynomial @f$ L_n(x) @f$ of nonnegative degree @c n | 
 
 
 
 
 | 928 | * and @c float argument  @f$ x >= 0 @f$. | 
 
 
 
 
 | 929 | * | 
 
 
 
 
 | 930 | * @see laguerre for more details. | 
 
 
 
 
 | 931 | */ | 
 
 
 
 
 | 932 | inline float | 
 
 
 
 
 | 933 | laguerref(unsigned int __n, float __x) | 
 
 
 
 
 | 934 | { return __detail::__laguerre<float>(__n, __x); } | 
 
 
 
 
 | 935 |  | 
 
 
 
 
 | 936 | /** | 
 
 
 
 
 | 937 | * Returns the Laguerre polynomial @f$ L_n(x) @f$ of nonnegative degree @c n | 
 
 
 
 
 | 938 | * and <tt>long double</tt> argument @f$ x >= 0 @f$. | 
 
 
 
 
 | 939 | * | 
 
 
 
 
 | 940 | * @see laguerre for more details. | 
 
 
 
 
 | 941 | */ | 
 
 
 
 
 | 942 | inline long double | 
 
 
 
 
 | 943 | laguerrel(unsigned int __n, long double __x) | 
 
 
 
 
 | 944 | { return __detail::__laguerre<long double>(__n, __x); } | 
 
 
 
 
 | 945 |  | 
 
 
 
 
 | 946 | /** | 
 
 
 
 
 | 947 | * Returns the Laguerre polynomial @f$ L_n(x) @f$ | 
 
 
 
 
 | 948 | * of nonnegative degree @c n and real argument @f$ x >= 0 @f$. | 
 
 
 
 
 | 949 | * | 
 
 
 
 
 | 950 | * The Laguerre polynomial is defined by: | 
 
 
 
 
 | 951 | * @f[ | 
 
 
 
 
 | 952 | *     L_n(x) = \frac{e^x}{n!} \frac{d^n}{dx^n} (x^ne^{-x}) | 
 
 
 
 
 | 953 | * @f] | 
 
 
 
 
 | 954 | * | 
 
 
 
 
 | 955 | * @tparam _Tp The floating-point type of the argument @c __x. | 
 
 
 
 
 | 956 | * @param __n The nonnegative order | 
 
 
 
 
 | 957 | * @param __x The argument <tt> __x >= 0 </tt> | 
 
 
 
 
 | 958 | * @throw std::domain_error if <tt> __x < 0 </tt>. | 
 
 
 
 
 | 959 | */ | 
 
 
 
 
 | 960 | template<typename _Tp> | 
 
 
 
 
 | 961 | inline typename __gnu_cxx::__promote<_Tp>::__type | 
 
 
 
 
 | 962 | laguerre(unsigned int __n, _Tp __x) | 
 
 
 
 
 | 963 | { | 
 
 
 
 
 | 964 | typedef typename __gnu_cxx::__promote<_Tp>::__type __type; | 
 
 
 
 
 | 965 | return __detail::__laguerre<__type>(__n, __x); | 
 
 
 
 
 | 966 | } | 
 
 
 
 
 | 967 |  | 
 
 
 
 
 | 968 | // Legendre polynomials | 
 
 
 
 
 | 969 |  | 
 
 
 
 
 | 970 | /** | 
 
 
 
 
 | 971 | * Return the Legendre polynomial @f$ P_l(x) @f$ of nonnegative | 
 
 
 
 
 | 972 | * degree @f$ l @f$ and @c float argument @f$ |x| <= 0 @f$. | 
 
 
 
 
 | 973 | * | 
 
 
 
 
 | 974 | * @see legendre for more details. | 
 
 
 
 
 | 975 | */ | 
 
 
 
 
 | 976 | inline float | 
 
 
 
 
 | 977 | legendref(unsigned int __l, float __x) | 
 
 
 
 
 | 978 | { return __detail::__poly_legendre_p<float>(__l, __x); } | 
 
 
 
 
 | 979 |  | 
 
 
 
 
 | 980 | /** | 
 
 
 
 
 | 981 | * Return the Legendre polynomial @f$ P_l(x) @f$ of nonnegative | 
 
 
 
 
 | 982 | * degree @f$ l @f$ and <tt>long double</tt> argument @f$ |x| <= 0 @f$. | 
 
 
 
 
 | 983 | * | 
 
 
 
 
 | 984 | * @see legendre for more details. | 
 
 
 
 
 | 985 | */ | 
 
 
 
 
 | 986 | inline long double | 
 
 
 
 
 | 987 | legendrel(unsigned int __l, long double __x) | 
 
 
 
 
 | 988 | { return __detail::__poly_legendre_p<long double>(__l, __x); } | 
 
 
 
 
 | 989 |  | 
 
 
 
 
 | 990 | /** | 
 
 
 
 
 | 991 | * Return the Legendre polynomial @f$ P_l(x) @f$ of nonnegative | 
 
 
 
 
 | 992 | * degree @f$ l @f$ and real argument @f$ |x| <= 0 @f$. | 
 
 
 
 
 | 993 | * | 
 
 
 
 
 | 994 | * The Legendre function of order @f$ l @f$ and argument @f$ x @f$, | 
 
 
 
 
 | 995 | * @f$ P_l(x) @f$, is defined by: | 
 
 
 
 
 | 996 | * @f[ | 
 
 
 
 
 | 997 | *   P_l(x) = \frac{1}{2^l l!}\frac{d^l}{dx^l}(x^2 - 1)^{l} | 
 
 
 
 
 | 998 | * @f] | 
 
 
 
 
 | 999 | * | 
 
 
 
 
 | 1000 | * @tparam _Tp The floating-point type of the argument @c __x. | 
 
 
 
 
 | 1001 | * @param __l The degree @f$ l >= 0 @f$ | 
 
 
 
 
 | 1002 | * @param __x The argument @c abs(__x) <= 1 | 
 
 
 
 
 | 1003 | * @throw std::domain_error if @c abs(__x) > 1 | 
 
 
 
 
 | 1004 | */ | 
 
 
 
 
 | 1005 | template<typename _Tp> | 
 
 
 
 
 | 1006 | inline typename __gnu_cxx::__promote<_Tp>::__type | 
 
 
 
 
 | 1007 | legendre(unsigned int __l, _Tp __x) | 
 
 
 
 
 | 1008 | { | 
 
 
 
 
 | 1009 | typedef typename __gnu_cxx::__promote<_Tp>::__type __type; | 
 
 
 
 
 | 1010 | return __detail::__poly_legendre_p<__type>(__l, __x); | 
 
 
 
 
 | 1011 | } | 
 
 
 
 
 | 1012 |  | 
 
 
 
 
 | 1013 | // Riemann zeta functions | 
 
 
 
 
 | 1014 |  | 
 
 
 
 
 | 1015 | /** | 
 
 
 
 
 | 1016 | * Return the Riemann zeta function @f$ \zeta(s) @f$ | 
 
 
 
 
 | 1017 | * for @c float argument @f$ s @f$. | 
 
 
 
 
 | 1018 | * | 
 
 
 
 
 | 1019 | * @see riemann_zeta for more details. | 
 
 
 
 
 | 1020 | */ | 
 
 
 
 
 | 1021 | inline float | 
 
 
 
 
 | 1022 | riemann_zetaf(float __s) | 
 
 
 
 
 | 1023 | { return __detail::__riemann_zeta<float>(__s); } | 
 
 
 
 
 | 1024 |  | 
 
 
 
 
 | 1025 | /** | 
 
 
 
 
 | 1026 | * Return the Riemann zeta function @f$ \zeta(s) @f$ | 
 
 
 
 
 | 1027 | * for <tt>long double</tt> argument @f$ s @f$. | 
 
 
 
 
 | 1028 | * | 
 
 
 
 
 | 1029 | * @see riemann_zeta for more details. | 
 
 
 
 
 | 1030 | */ | 
 
 
 
 
 | 1031 | inline long double | 
 
 
 
 
 | 1032 | riemann_zetal(long double __s) | 
 
 
 
 
 | 1033 | { return __detail::__riemann_zeta<long double>(__s); } | 
 
 
 
 
 | 1034 |  | 
 
 
 
 
 | 1035 | /** | 
 
 
 
 
 | 1036 | * Return the Riemann zeta function @f$ \zeta(s) @f$ | 
 
 
 
 
 | 1037 | * for real argument @f$ s @f$. | 
 
 
 
 
 | 1038 | * | 
 
 
 
 
 | 1039 | * The Riemann zeta function is defined by: | 
 
 
 
 
 | 1040 | * @f[ | 
 
 
 
 
 | 1041 | *    \zeta(s) = \sum_{k=1}^{\infty} k^{-s} \hbox{ for } s > 1 | 
 
 
 
 
 | 1042 | * @f] | 
 
 
 
 
 | 1043 | * and | 
 
 
 
 
 | 1044 | * @f[ | 
 
 
 
 
 | 1045 | *    \zeta(s) = \frac{1}{1-2^{1-s}}\sum_{k=1}^{\infty}(-1)^{k-1}k^{-s} | 
 
 
 
 
 | 1046 | *              \hbox{ for } 0 <= s <= 1 | 
 
 
 
 
 | 1047 | * @f] | 
 
 
 
 
 | 1048 | * For s < 1 use the reflection formula: | 
 
 
 
 
 | 1049 | * @f[ | 
 
 
 
 
 | 1050 | *    \zeta(s) = 2^s \pi^{s-1} \sin(\frac{\pi s}{2}) \Gamma(1-s) \zeta(1-s) | 
 
 
 
 
 | 1051 | * @f] | 
 
 
 
 
 | 1052 | * | 
 
 
 
 
 | 1053 | * @tparam _Tp The floating-point type of the argument @c __s. | 
 
 
 
 
 | 1054 | * @param __s The argument <tt> s != 1 </tt> | 
 
 
 
 
 | 1055 | */ | 
 
 
 
 
 | 1056 | template<typename _Tp> | 
 
 
 
 
 | 1057 | inline typename __gnu_cxx::__promote<_Tp>::__type | 
 
 
 
 
 | 1058 | riemann_zeta(_Tp __s) | 
 
 
 
 
 | 1059 | { | 
 
 
 
 
 | 1060 | typedef typename __gnu_cxx::__promote<_Tp>::__type __type; | 
 
 
 
 
 | 1061 | return __detail::__riemann_zeta<__type>(__s); | 
 
 
 
 
 | 1062 | } | 
 
 
 
 
 | 1063 |  | 
 
 
 
 
 | 1064 | // Spherical Bessel functions | 
 
 
 
 
 | 1065 |  | 
 
 
 
 
 | 1066 | /** | 
 
 
 
 
 | 1067 | * Return the spherical Bessel function @f$ j_n(x) @f$ of nonnegative order n | 
 
 
 
 
 | 1068 | * and @c float argument @f$ x >= 0 @f$. | 
 
 
 
 
 | 1069 | * | 
 
 
 
 
 | 1070 | * @see sph_bessel for more details. | 
 
 
 
 
 | 1071 | */ | 
 
 
 
 
 | 1072 | inline float | 
 
 
 
 
 | 1073 | sph_besself(unsigned int __n, float __x) | 
 
 
 
 
 | 1074 | { return __detail::__sph_bessel<float>(__n, __x); } | 
 
 
 
 
 | 1075 |  | 
 
 
 
 
 | 1076 | /** | 
 
 
 
 
 | 1077 | * Return the spherical Bessel function @f$ j_n(x) @f$ of nonnegative order n | 
 
 
 
 
 | 1078 | * and <tt>long double</tt> argument @f$ x >= 0 @f$. | 
 
 
 
 
 | 1079 | * | 
 
 
 
 
 | 1080 | * @see sph_bessel for more details. | 
 
 
 
 
 | 1081 | */ | 
 
 
 
 
 | 1082 | inline long double | 
 
 
 
 
 | 1083 | sph_bessell(unsigned int __n, long double __x) | 
 
 
 
 
 | 1084 | { return __detail::__sph_bessel<long double>(__n, __x); } | 
 
 
 
 
 | 1085 |  | 
 
 
 
 
 | 1086 | /** | 
 
 
 
 
 | 1087 | * Return the spherical Bessel function @f$ j_n(x) @f$ of nonnegative order n | 
 
 
 
 
 | 1088 | * and real argument @f$ x >= 0 @f$. | 
 
 
 
 
 | 1089 | * | 
 
 
 
 
 | 1090 | * The spherical Bessel function is defined by: | 
 
 
 
 
 | 1091 | * @f[ | 
 
 
 
 
 | 1092 | *  j_n(x) = \left(\frac{\pi}{2x} \right) ^{1/2} J_{n+1/2}(x) | 
 
 
 
 
 | 1093 | * @f] | 
 
 
 
 
 | 1094 | * | 
 
 
 
 
 | 1095 | * @tparam _Tp The floating-point type of the argument @c __x. | 
 
 
 
 
 | 1096 | * @param  __n  The integral order <tt> n >= 0 </tt> | 
 
 
 
 
 | 1097 | * @param  __x  The real argument <tt> x >= 0 </tt> | 
 
 
 
 
 | 1098 | * @throw std::domain_error if <tt> __x < 0 </tt>. | 
 
 
 
 
 | 1099 | */ | 
 
 
 
 
 | 1100 | template<typename _Tp> | 
 
 
 
 
 | 1101 | inline typename __gnu_cxx::__promote<_Tp>::__type | 
 
 
 
 
 | 1102 | sph_bessel(unsigned int __n, _Tp __x) | 
 
 
 
 
 | 1103 | { | 
 
 
 
 
 | 1104 | typedef typename __gnu_cxx::__promote<_Tp>::__type __type; | 
 
 
 
 
 | 1105 | return __detail::__sph_bessel<__type>(__n, __x); | 
 
 
 
 
 | 1106 | } | 
 
 
 
 
 | 1107 |  | 
 
 
 
 
 | 1108 | // Spherical associated Legendre functions | 
 
 
 
 
 | 1109 |  | 
 
 
 
 
 | 1110 | /** | 
 
 
 
 
 | 1111 | * Return the spherical Legendre function of nonnegative integral | 
 
 
 
 
 | 1112 | * degree @c l and order @c m and float angle @f$ \theta @f$ in radians. | 
 
 
 
 
 | 1113 | * | 
 
 
 
 
 | 1114 | * @see sph_legendre for details. | 
 
 
 
 
 | 1115 | */ | 
 
 
 
 
 | 1116 | inline float | 
 
 
 
 
 | 1117 | sph_legendref(unsigned int __l, unsigned int __m, float __theta) | 
 
 
 
 
 | 1118 | { return __detail::__sph_legendre<float>(__l, __m, __theta); } | 
 
 
 
 
 | 1119 |  | 
 
 
 
 
 | 1120 | /** | 
 
 
 
 
 | 1121 | * Return the spherical Legendre function of nonnegative integral | 
 
 
 
 
 | 1122 | * degree @c l and order @c m and <tt>long double</tt> angle @f$ \theta @f$ | 
 
 
 
 
 | 1123 | * in radians. | 
 
 
 
 
 | 1124 | * | 
 
 
 
 
 | 1125 | * @see sph_legendre for details. | 
 
 
 
 
 | 1126 | */ | 
 
 
 
 
 | 1127 | inline long double | 
 
 
 
 
 | 1128 | sph_legendrel(unsigned int __l, unsigned int __m, long double __theta) | 
 
 
 
 
 | 1129 | { return __detail::__sph_legendre<long double>(__l, __m, __theta); } | 
 
 
 
 
 | 1130 |  | 
 
 
 
 
 | 1131 | /** | 
 
 
 
 
 | 1132 | * Return the spherical Legendre function of nonnegative integral | 
 
 
 
 
 | 1133 | * degree @c l and order @c m and real angle @f$ \theta @f$ in radians. | 
 
 
 
 
 | 1134 | * | 
 
 
 
 
 | 1135 | * The spherical Legendre function is defined by | 
 
 
 
 
 | 1136 | * @f[ | 
 
 
 
 
 | 1137 | *  Y_l^m(\theta,\phi) = (-1)^m[\frac{(2l+1)}{4\pi} | 
 
 
 
 
 | 1138 | *                              \frac{(l-m)!}{(l+m)!}] | 
 
 
 
 
 | 1139 | *                   P_l^m(\cos\theta) \exp^{im\phi} | 
 
 
 
 
 | 1140 | * @f] | 
 
 
 
 
 | 1141 | * | 
 
 
 
 
 | 1142 | * @tparam _Tp The floating-point type of the angle @c __theta. | 
 
 
 
 
 | 1143 | * @param __l The order <tt> __l >= 0 </tt> | 
 
 
 
 
 | 1144 | * @param __m The degree <tt> __m >= 0 </tt> and <tt> __m <= __l </tt> | 
 
 
 
 
 | 1145 | * @param __theta The radian polar angle argument | 
 
 
 
 
 | 1146 | */ | 
 
 
 
 
 | 1147 | template<typename _Tp> | 
 
 
 
 
 | 1148 | inline typename __gnu_cxx::__promote<_Tp>::__type | 
 
 
 
 
 | 1149 | sph_legendre(unsigned int __l, unsigned int __m, _Tp __theta) | 
 
 
 
 
 | 1150 | { | 
 
 
 
 
 | 1151 | typedef typename __gnu_cxx::__promote<_Tp>::__type __type; | 
 
 
 
 
 | 1152 | return __detail::__sph_legendre<__type>(__l, __m, __theta); | 
 
 
 
 
 | 1153 | } | 
 
 
 
 
 | 1154 |  | 
 
 
 
 
 | 1155 | // Spherical Neumann functions | 
 
 
 
 
 | 1156 |  | 
 
 
 
 
 | 1157 | /** | 
 
 
 
 
 | 1158 | * Return the spherical Neumann function of integral order @f$ n >= 0 @f$ | 
 
 
 
 
 | 1159 | * and @c float argument @f$ x >= 0 @f$. | 
 
 
 
 
 | 1160 | * | 
 
 
 
 
 | 1161 | * @see sph_neumann for details. | 
 
 
 
 
 | 1162 | */ | 
 
 
 
 
 | 1163 | inline float | 
 
 
 
 
 | 1164 | sph_neumannf(unsigned int __n, float __x) | 
 
 
 
 
 | 1165 | { return __detail::__sph_neumann<float>(__n, __x); } | 
 
 
 
 
 | 1166 |  | 
 
 
 
 
 | 1167 | /** | 
 
 
 
 
 | 1168 | * Return the spherical Neumann function of integral order @f$ n >= 0 @f$ | 
 
 
 
 
 | 1169 | * and <tt>long double</tt> @f$ x >= 0 @f$. | 
 
 
 
 
 | 1170 | * | 
 
 
 
 
 | 1171 | * @see sph_neumann for details. | 
 
 
 
 
 | 1172 | */ | 
 
 
 
 
 | 1173 | inline long double | 
 
 
 
 
 | 1174 | sph_neumannl(unsigned int __n, long double __x) | 
 
 
 
 
 | 1175 | { return __detail::__sph_neumann<long double>(__n, __x); } | 
 
 
 
 
 | 1176 |  | 
 
 
 
 
 | 1177 | /** | 
 
 
 
 
 | 1178 | * Return the spherical Neumann function of integral order @f$ n >= 0 @f$ | 
 
 
 
 
 | 1179 | * and real argument @f$ x >= 0 @f$. | 
 
 
 
 
 | 1180 | * | 
 
 
 
 
 | 1181 | * The spherical Neumann function is defined by | 
 
 
 
 
 | 1182 | * @f[ | 
 
 
 
 
 | 1183 | *    n_n(x) = \left(\frac{\pi}{2x} \right) ^{1/2} N_{n+1/2}(x) | 
 
 
 
 
 | 1184 | * @f] | 
 
 
 
 
 | 1185 | * | 
 
 
 
 
 | 1186 | * @tparam _Tp The floating-point type of the argument @c __x. | 
 
 
 
 
 | 1187 | * @param  __n  The integral order <tt> n >= 0 </tt> | 
 
 
 
 
 | 1188 | * @param  __x  The real argument <tt> __x >= 0 </tt> | 
 
 
 
 
 | 1189 | * @throw std::domain_error if <tt> __x < 0 </tt>. | 
 
 
 
 
 | 1190 | */ | 
 
 
 
 
 | 1191 | template<typename _Tp> | 
 
 
 
 
 | 1192 | inline typename __gnu_cxx::__promote<_Tp>::__type | 
 
 
 
 
 | 1193 | sph_neumann(unsigned int __n, _Tp __x) | 
 
 
 
 
 | 1194 | { | 
 
 
 
 
 | 1195 | typedef typename __gnu_cxx::__promote<_Tp>::__type __type; | 
 
 
 
 
 | 1196 | return __detail::__sph_neumann<__type>(__n, __x); | 
 
 
 
 
 | 1197 | } | 
 
 
 
 
 | 1198 |  | 
 
 
 
 
 | 1199 | /// @} group mathsf | 
 
 
 
 
 | 1200 |  | 
 
 
 
 
 | 1201 | _GLIBCXX_END_NAMESPACE_VERSION | 
 
 
 
 
 | 1202 | } // namespace std | 
 
 
 
 
 | 1203 |  | 
 
 
 
 
 | 1204 | #ifndef __STRICT_ANSI__ | 
 
 
 
 
 | 1205 | namespace __gnu_cxx _GLIBCXX_VISIBILITY(default) | 
 
 
 
 
 | 1206 | { | 
 
 
 
 
 | 1207 | _GLIBCXX_BEGIN_NAMESPACE_VERSION | 
 
 
 
 
 | 1208 |  | 
 
 
 
 
 | 1209 | /** @addtogroup mathsf | 
 
 
 
 
 | 1210 | *  @{ | 
 
 
 
 
 | 1211 | */ | 
 
 
 
 
 | 1212 |  | 
 
 
 
 
 | 1213 | // Airy functions | 
 
 
 
 
 | 1214 |  | 
 
 
 
 
 | 1215 | /** | 
 
 
 
 
 | 1216 | * Return the Airy function @f$ Ai(x) @f$ of @c float argument x. | 
 
 
 
 
 | 1217 | */ | 
 
 
 
 
 | 1218 | inline float | 
 
 
 
 
 | 1219 | airy_aif(float __x) | 
 
 
 
 
 | 1220 | { | 
 
 
 
 
 | 1221 | float __Ai, __Bi, __Aip, __Bip; | 
 
 
 
 
 | 1222 | std::__detail::__airy<float>(__x, __Ai, __Bi, __Aip, __Bip); | 
 
 
 
 
 | 1223 | return __Ai; | 
 
 
 
 
 | 1224 | } | 
 
 
 
 
 | 1225 |  | 
 
 
 
 
 | 1226 | /** | 
 
 
 
 
 | 1227 | * Return the Airy function @f$ Ai(x) @f$ of <tt>long double</tt> argument x. | 
 
 
 
 
 | 1228 | */ | 
 
 
 
 
 | 1229 | inline long double | 
 
 
 
 
 | 1230 | airy_ail(long double __x) | 
 
 
 
 
 | 1231 | { | 
 
 
 
 
 | 1232 | long double __Ai, __Bi, __Aip, __Bip; | 
 
 
 
 
 | 1233 | std::__detail::__airy<long double>(__x, __Ai, __Bi, __Aip, __Bip); | 
 
 
 
 
 | 1234 | return __Ai; | 
 
 
 
 
 | 1235 | } | 
 
 
 
 
 | 1236 |  | 
 
 
 
 
 | 1237 | /** | 
 
 
 
 
 | 1238 | * Return the Airy function @f$ Ai(x) @f$ of real argument x. | 
 
 
 
 
 | 1239 | */ | 
 
 
 
 
 | 1240 | template<typename _Tp> | 
 
 
 
 
 | 1241 | inline typename __gnu_cxx::__promote<_Tp>::__type | 
 
 
 
 
 | 1242 | airy_ai(_Tp __x) | 
 
 
 
 
 | 1243 | { | 
 
 
 
 
 | 1244 | typedef typename __gnu_cxx::__promote<_Tp>::__type __type; | 
 
 
 
 
 | 1245 | __type __Ai, __Bi, __Aip, __Bip; | 
 
 
 
 
 | 1246 | std::__detail::__airy<__type>(__x, __Ai, __Bi, __Aip, __Bip); | 
 
 
 
 
 | 1247 | return __Ai; | 
 
 
 
 
 | 1248 | } | 
 
 
 
 
 | 1249 |  | 
 
 
 
 
 | 1250 | /** | 
 
 
 
 
 | 1251 | * Return the Airy function @f$ Bi(x) @f$ of @c float argument x. | 
 
 
 
 
 | 1252 | */ | 
 
 
 
 
 | 1253 | inline float | 
 
 
 
 
 | 1254 | airy_bif(float __x) | 
 
 
 
 
 | 1255 | { | 
 
 
 
 
 | 1256 | float __Ai, __Bi, __Aip, __Bip; | 
 
 
 
 
 | 1257 | std::__detail::__airy<float>(__x, __Ai, __Bi, __Aip, __Bip); | 
 
 
 
 
 | 1258 | return __Bi; | 
 
 
 
 
 | 1259 | } | 
 
 
 
 
 | 1260 |  | 
 
 
 
 
 | 1261 | /** | 
 
 
 
 
 | 1262 | * Return the Airy function @f$ Bi(x) @f$ of <tt>long double</tt> argument x. | 
 
 
 
 
 | 1263 | */ | 
 
 
 
 
 | 1264 | inline long double | 
 
 
 
 
 | 1265 | airy_bil(long double __x) | 
 
 
 
 
 | 1266 | { | 
 
 
 
 
 | 1267 | long double __Ai, __Bi, __Aip, __Bip; | 
 
 
 
 
 | 1268 | std::__detail::__airy<long double>(__x, __Ai, __Bi, __Aip, __Bip); | 
 
 
 
 
 | 1269 | return __Bi; | 
 
 
 
 
 | 1270 | } | 
 
 
 
 
 | 1271 |  | 
 
 
 
 
 | 1272 | /** | 
 
 
 
 
 | 1273 | * Return the Airy function @f$ Bi(x) @f$ of real argument x. | 
 
 
 
 
 | 1274 | */ | 
 
 
 
 
 | 1275 | template<typename _Tp> | 
 
 
 
 
 | 1276 | inline typename __gnu_cxx::__promote<_Tp>::__type | 
 
 
 
 
 | 1277 | airy_bi(_Tp __x) | 
 
 
 
 
 | 1278 | { | 
 
 
 
 
 | 1279 | typedef typename __gnu_cxx::__promote<_Tp>::__type __type; | 
 
 
 
 
 | 1280 | __type __Ai, __Bi, __Aip, __Bip; | 
 
 
 
 
 | 1281 | std::__detail::__airy<__type>(__x, __Ai, __Bi, __Aip, __Bip); | 
 
 
 
 
 | 1282 | return __Bi; | 
 
 
 
 
 | 1283 | } | 
 
 
 
 
 | 1284 |  | 
 
 
 
 
 | 1285 | // Confluent hypergeometric functions | 
 
 
 
 
 | 1286 |  | 
 
 
 
 
 | 1287 | /** | 
 
 
 
 
 | 1288 | * Return the confluent hypergeometric function @f$ {}_1F_1(a;c;x) @f$ | 
 
 
 
 
 | 1289 | * of @c float numeratorial parameter @c a, denominatorial parameter @c c, | 
 
 
 
 
 | 1290 | * and argument @c x. | 
 
 
 
 
 | 1291 | * | 
 
 
 
 
 | 1292 | * @see conf_hyperg for details. | 
 
 
 
 
 | 1293 | */ | 
 
 
 
 
 | 1294 | inline float | 
 
 
 
 
 | 1295 | conf_hypergf(float __a, float __c, float __x) | 
 
 
 
 
 | 1296 | { return std::__detail::__conf_hyperg<float>(__a, __c, __x); } | 
 
 
 
 
 | 1297 |  | 
 
 
 
 
 | 1298 | /** | 
 
 
 
 
 | 1299 | * Return the confluent hypergeometric function @f$ {}_1F_1(a;c;x) @f$ | 
 
 
 
 
 | 1300 | * of <tt>long double</tt> numeratorial parameter @c a, | 
 
 
 
 
 | 1301 | * denominatorial parameter @c c, and argument @c x. | 
 
 
 
 
 | 1302 | * | 
 
 
 
 
 | 1303 | * @see conf_hyperg for details. | 
 
 
 
 
 | 1304 | */ | 
 
 
 
 
 | 1305 | inline long double | 
 
 
 
 
 | 1306 | conf_hypergl(long double __a, long double __c, long double __x) | 
 
 
 
 
 | 1307 | { return std::__detail::__conf_hyperg<long double>(__a, __c, __x); } | 
 
 
 
 
 | 1308 |  | 
 
 
 
 
 | 1309 | /** | 
 
 
 
 
 | 1310 | * Return the confluent hypergeometric function @f$ {}_1F_1(a;c;x) @f$ | 
 
 
 
 
 | 1311 | * of real numeratorial parameter @c a, denominatorial parameter @c c, | 
 
 
 
 
 | 1312 | * and argument @c x. | 
 
 
 
 
 | 1313 | * | 
 
 
 
 
 | 1314 | * The confluent hypergeometric function is defined by | 
 
 
 
 
 | 1315 | * @f[ | 
 
 
 
 
 | 1316 | *    {}_1F_1(a;c;x) = \sum_{n=0}^{\infty} \frac{(a)_n x^n}{(c)_n n!} | 
 
 
 
 
 | 1317 | * @f] | 
 
 
 
 
 | 1318 | * where the Pochhammer symbol is @f$ (x)_k = (x)(x+1)...(x+k-1) @f$, | 
 
 
 
 
 | 1319 | * @f$ (x)_0 = 1 @f$ | 
 
 
 
 
 | 1320 | * | 
 
 
 
 
 | 1321 | * @param __a The numeratorial parameter | 
 
 
 
 
 | 1322 | * @param __c The denominatorial parameter | 
 
 
 
 
 | 1323 | * @param __x The argument | 
 
 
 
 
 | 1324 | */ | 
 
 
 
 
 | 1325 | template<typename _Tpa, typename _Tpc, typename _Tp> | 
 
 
 
 
 | 1326 | inline typename __gnu_cxx::__promote_3<_Tpa, _Tpc, _Tp>::__type | 
 
 
 
 
 | 1327 | conf_hyperg(_Tpa __a, _Tpc __c, _Tp __x) | 
 
 
 
 
 | 1328 | { | 
 
 
 
 
 | 1329 | typedef typename __gnu_cxx::__promote_3<_Tpa, _Tpc, _Tp>::__type __type; | 
 
 
 
 
 | 1330 | return std::__detail::__conf_hyperg<__type>(__a, __c, __x); | 
 
 
 
 
 | 1331 | } | 
 
 
 
 
 | 1332 |  | 
 
 
 
 
 | 1333 | // Hypergeometric functions | 
 
 
 
 
 | 1334 |  | 
 
 
 
 
 | 1335 | /** | 
 
 
 
 
 | 1336 | * Return the hypergeometric function @f$ {}_2F_1(a,b;c;x) @f$ | 
 
 
 
 
 | 1337 | * of @ float numeratorial parameters @c a and @c b, | 
 
 
 
 
 | 1338 | * denominatorial parameter @c c, and argument @c x. | 
 
 
 
 
 | 1339 | * | 
 
 
 
 
 | 1340 | * @see hyperg for details. | 
 
 
 
 
 | 1341 | */ | 
 
 
 
 
 | 1342 | inline float | 
 
 
 
 
 | 1343 | hypergf(float __a, float __b, float __c, float __x) | 
 
 
 
 
 | 1344 | { return std::__detail::__hyperg<float>(__a, __b, __c, __x); } | 
 
 
 
 
 | 1345 |  | 
 
 
 
 
 | 1346 | /** | 
 
 
 
 
 | 1347 | * Return the hypergeometric function @f$ {}_2F_1(a,b;c;x) @f$ | 
 
 
 
 
 | 1348 | * of <tt>long double</tt> numeratorial parameters @c a and @c b, | 
 
 
 
 
 | 1349 | * denominatorial parameter @c c, and argument @c x. | 
 
 
 
 
 | 1350 | * | 
 
 
 
 
 | 1351 | * @see hyperg for details. | 
 
 
 
 
 | 1352 | */ | 
 
 
 
 
 | 1353 | inline long double | 
 
 
 
 
 | 1354 | hypergl(long double __a, long double __b, long double __c, long double __x) | 
 
 
 
 
 | 1355 | { return std::__detail::__hyperg<long double>(__a, __b, __c, __x); } | 
 
 
 
 
 | 1356 |  | 
 
 
 
 
 | 1357 | /** | 
 
 
 
 
 | 1358 | * Return the hypergeometric function @f$ {}_2F_1(a,b;c;x) @f$ | 
 
 
 
 
 | 1359 | * of real numeratorial parameters @c a and @c b, | 
 
 
 
 
 | 1360 | * denominatorial parameter @c c, and argument @c x. | 
 
 
 
 
 | 1361 | * | 
 
 
 
 
 | 1362 | * The hypergeometric function is defined by | 
 
 
 
 
 | 1363 | * @f[ | 
 
 
 
 
 | 1364 | *    {}_2F_1(a;c;x) = \sum_{n=0}^{\infty} \frac{(a)_n (b)_n x^n}{(c)_n n!} | 
 
 
 
 
 | 1365 | * @f] | 
 
 
 
 
 | 1366 | * where the Pochhammer symbol is @f$ (x)_k = (x)(x+1)...(x+k-1) @f$, | 
 
 
 
 
 | 1367 | * @f$ (x)_0 = 1 @f$ | 
 
 
 
 
 | 1368 | * | 
 
 
 
 
 | 1369 | * @param __a The first numeratorial parameter | 
 
 
 
 
 | 1370 | * @param __b The second numeratorial parameter | 
 
 
 
 
 | 1371 | * @param __c The denominatorial parameter | 
 
 
 
 
 | 1372 | * @param __x The argument | 
 
 
 
 
 | 1373 | */ | 
 
 
 
 
 | 1374 | template<typename _Tpa, typename _Tpb, typename _Tpc, typename _Tp> | 
 
 
 
 
 | 1375 | inline typename __gnu_cxx::__promote_4<_Tpa, _Tpb, _Tpc, _Tp>::__type | 
 
 
 
 
 | 1376 | hyperg(_Tpa __a, _Tpb __b, _Tpc __c, _Tp __x) | 
 
 
 
 
 | 1377 | { | 
 
 
 
 
 | 1378 | typedef typename __gnu_cxx::__promote_4<_Tpa, _Tpb, _Tpc, _Tp> | 
 
 
 
 
 | 1379 | ::__type __type; | 
 
 
 
 
 | 1380 | return std::__detail::__hyperg<__type>(__a, __b, __c, __x); | 
 
 
 
 
 | 1381 | } | 
 
 
 
 
 | 1382 |  | 
 
 
 
 
 | 1383 | /// @} | 
 
 
 
 
 | 1384 | _GLIBCXX_END_NAMESPACE_VERSION | 
 
 
 
 
 | 1385 | } // namespace __gnu_cxx | 
 
 
 
 
 | 1386 | #endif // __STRICT_ANSI__ | 
 
 
 
 
 | 1387 |  | 
 
 
 
 
 | 1388 | #pragma GCC visibility pop | 
 
 
 
 
 | 1389 |  | 
 
 
 
 
 | 1390 | #endif // _GLIBCXX_BITS_SPECFUN_H |