| 1 |
// Mathematical Special Functions for -*- C++ -*- |
| 2 |
|
| 3 |
// Copyright (C) 2006-2021 Free Software Foundation, Inc. |
| 4 |
// |
| 5 |
// This file is part of the GNU ISO C++ Library. This library is free |
| 6 |
// software; you can redistribute it and/or modify it under the |
| 7 |
// terms of the GNU General Public License as published by the |
| 8 |
// Free Software Foundation; either version 3, or (at your option) |
| 9 |
// any later version. |
| 10 |
|
| 11 |
// This library is distributed in the hope that it will be useful, |
| 12 |
// but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 13 |
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 14 |
// GNU General Public License for more details. |
| 15 |
|
| 16 |
// Under Section 7 of GPL version 3, you are granted additional |
| 17 |
// permissions described in the GCC Runtime Library Exception, version |
| 18 |
// 3.1, as published by the Free Software Foundation. |
| 19 |
|
| 20 |
// You should have received a copy of the GNU General Public License and |
| 21 |
// a copy of the GCC Runtime Library Exception along with this program; |
| 22 |
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see |
| 23 |
// <http://www.gnu.org/licenses/>. |
| 24 |
|
| 25 |
/** @file bits/specfun.h |
| 26 |
* This is an internal header file, included by other library headers. |
| 27 |
* Do not attempt to use it directly. @headername{cmath} |
| 28 |
*/ |
| 29 |
|
| 30 |
#ifndef _GLIBCXX_BITS_SPECFUN_H |
| 31 |
#define _GLIBCXX_BITS_SPECFUN_H 1 |
| 32 |
|
| 33 |
#pragma GCC visibility push(default) |
| 34 |
|
| 35 |
#include <bits/c++config.h> |
| 36 |
|
| 37 |
#define __STDCPP_MATH_SPEC_FUNCS__ 201003L |
| 38 |
|
| 39 |
#define __cpp_lib_math_special_functions 201603L |
| 40 |
|
| 41 |
#if __cplusplus <= 201403L && __STDCPP_WANT_MATH_SPEC_FUNCS__ == 0 |
| 42 |
# error include <cmath> and define __STDCPP_WANT_MATH_SPEC_FUNCS__ |
| 43 |
#endif |
| 44 |
|
| 45 |
#include <bits/stl_algobase.h> |
| 46 |
#include <limits> |
| 47 |
#include <type_traits> |
| 48 |
|
| 49 |
#include <tr1/gamma.tcc> |
| 50 |
#include <tr1/bessel_function.tcc> |
| 51 |
#include <tr1/beta_function.tcc> |
| 52 |
#include <tr1/ell_integral.tcc> |
| 53 |
#include <tr1/exp_integral.tcc> |
| 54 |
#include <tr1/hypergeometric.tcc> |
| 55 |
#include <tr1/legendre_function.tcc> |
| 56 |
#include <tr1/modified_bessel_func.tcc> |
| 57 |
#include <tr1/poly_hermite.tcc> |
| 58 |
#include <tr1/poly_laguerre.tcc> |
| 59 |
#include <tr1/riemann_zeta.tcc> |
| 60 |
|
| 61 |
namespace std _GLIBCXX_VISIBILITY(default) |
| 62 |
{ |
| 63 |
_GLIBCXX_BEGIN_NAMESPACE_VERSION |
| 64 |
|
| 65 |
/** |
| 66 |
* @defgroup mathsf Mathematical Special Functions |
| 67 |
* @ingroup numerics |
| 68 |
* |
| 69 |
* @section mathsf_desc Mathematical Special Functions |
| 70 |
* |
| 71 |
* A collection of advanced mathematical special functions, |
| 72 |
* defined by ISO/IEC IS 29124 and then added to ISO C++ 2017. |
| 73 |
* |
| 74 |
* |
| 75 |
* @subsection mathsf_intro Introduction and History |
| 76 |
* The first significant library upgrade on the road to C++2011, |
| 77 |
* <a href="http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2005/n1836.pdf"> |
| 78 |
* TR1</a>, included a set of 23 mathematical functions that significantly |
| 79 |
* extended the standard transcendental functions inherited from C and declared |
| 80 |
* in @<cmath@>. |
| 81 |
* |
| 82 |
* Although most components from TR1 were eventually adopted for C++11 these |
| 83 |
* math functions were left behind out of concern for implementability. |
| 84 |
* The math functions were published as a separate international standard |
| 85 |
* <a href="http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2010/n3060.pdf"> |
| 86 |
* IS 29124 - Extensions to the C++ Library to Support Mathematical Special |
| 87 |
* Functions</a>. |
| 88 |
* |
| 89 |
* For C++17 these functions were incorporated into the main standard. |
| 90 |
* |
| 91 |
* @subsection mathsf_contents Contents |
| 92 |
* The following functions are implemented in namespace @c std: |
| 93 |
* - @ref assoc_laguerre "assoc_laguerre - Associated Laguerre functions" |
| 94 |
* - @ref assoc_legendre "assoc_legendre - Associated Legendre functions" |
| 95 |
* - @ref beta "beta - Beta functions" |
| 96 |
* - @ref comp_ellint_1 "comp_ellint_1 - Complete elliptic functions of the first kind" |
| 97 |
* - @ref comp_ellint_2 "comp_ellint_2 - Complete elliptic functions of the second kind" |
| 98 |
* - @ref comp_ellint_3 "comp_ellint_3 - Complete elliptic functions of the third kind" |
| 99 |
* - @ref cyl_bessel_i "cyl_bessel_i - Regular modified cylindrical Bessel functions" |
| 100 |
* - @ref cyl_bessel_j "cyl_bessel_j - Cylindrical Bessel functions of the first kind" |
| 101 |
* - @ref cyl_bessel_k "cyl_bessel_k - Irregular modified cylindrical Bessel functions" |
| 102 |
* - @ref cyl_neumann "cyl_neumann - Cylindrical Neumann functions or Cylindrical Bessel functions of the second kind" |
| 103 |
* - @ref ellint_1 "ellint_1 - Incomplete elliptic functions of the first kind" |
| 104 |
* - @ref ellint_2 "ellint_2 - Incomplete elliptic functions of the second kind" |
| 105 |
* - @ref ellint_3 "ellint_3 - Incomplete elliptic functions of the third kind" |
| 106 |
* - @ref expint "expint - The exponential integral" |
| 107 |
* - @ref hermite "hermite - Hermite polynomials" |
| 108 |
* - @ref laguerre "laguerre - Laguerre functions" |
| 109 |
* - @ref legendre "legendre - Legendre polynomials" |
| 110 |
* - @ref riemann_zeta "riemann_zeta - The Riemann zeta function" |
| 111 |
* - @ref sph_bessel "sph_bessel - Spherical Bessel functions" |
| 112 |
* - @ref sph_legendre "sph_legendre - Spherical Legendre functions" |
| 113 |
* - @ref sph_neumann "sph_neumann - Spherical Neumann functions" |
| 114 |
* |
| 115 |
* The hypergeometric functions were stricken from the TR29124 and C++17 |
| 116 |
* versions of this math library because of implementation concerns. |
| 117 |
* However, since they were in the TR1 version and since they are popular |
| 118 |
* we kept them as an extension in namespace @c __gnu_cxx: |
| 119 |
* - @ref __gnu_cxx::conf_hyperg "conf_hyperg - Confluent hypergeometric functions" |
| 120 |
* - @ref __gnu_cxx::hyperg "hyperg - Hypergeometric functions" |
| 121 |
* |
| 122 |
* <!-- @subsection mathsf_general General Features --> |
| 123 |
* |
| 124 |
* @subsection mathsf_promotion Argument Promotion |
| 125 |
* The arguments suppled to the non-suffixed functions will be promoted |
| 126 |
* according to the following rules: |
| 127 |
* 1. If any argument intended to be floating point is given an integral value |
| 128 |
* That integral value is promoted to double. |
| 129 |
* 2. All floating point arguments are promoted up to the largest floating |
| 130 |
* point precision among them. |
| 131 |
* |
| 132 |
* @subsection mathsf_NaN NaN Arguments |
| 133 |
* If any of the floating point arguments supplied to these functions is |
| 134 |
* invalid or NaN (std::numeric_limits<Tp>::quiet_NaN), |
| 135 |
* the value NaN is returned. |
| 136 |
* |
| 137 |
* @subsection mathsf_impl Implementation |
| 138 |
* |
| 139 |
* We strive to implement the underlying math with type generic algorithms |
| 140 |
* to the greatest extent possible. In practice, the functions are thin |
| 141 |
* wrappers that dispatch to function templates. Type dependence is |
| 142 |
* controlled with std::numeric_limits and functions thereof. |
| 143 |
* |
| 144 |
* We don't promote @c float to @c double or @c double to <tt>long double</tt> |
| 145 |
* reflexively. The goal is for @c float functions to operate more quickly, |
| 146 |
* at the cost of @c float accuracy and possibly a smaller domain of validity. |
| 147 |
* Similaryly, <tt>long double</tt> should give you more dynamic range |
| 148 |
* and slightly more pecision than @c double on many systems. |
| 149 |
* |
| 150 |
* @subsection mathsf_testing Testing |
| 151 |
* |
| 152 |
* These functions have been tested against equivalent implementations |
| 153 |
* from the <a href="http://www.gnu.org/software/gsl"> |
| 154 |
* Gnu Scientific Library, GSL</a> and |
| 155 |
* <a href="http://www.boost.org/doc/libs/1_60_0/libs/math/doc/html/index.html">Boost</a> |
| 156 |
* and the ratio |
| 157 |
* @f[ |
| 158 |
* \frac{|f - f_{test}|}{|f_{test}|} |
| 159 |
* @f] |
| 160 |
* is generally found to be within 10<sup>-15</sup> for 64-bit double on |
| 161 |
* linux-x86_64 systems over most of the ranges of validity. |
| 162 |
* |
| 163 |
* @todo Provide accuracy comparisons on a per-function basis for a small |
| 164 |
* number of targets. |
| 165 |
* |
| 166 |
* @subsection mathsf_bibliography General Bibliography |
| 167 |
* |
| 168 |
* @see Abramowitz and Stegun: Handbook of Mathematical Functions, |
| 169 |
* with Formulas, Graphs, and Mathematical Tables |
| 170 |
* Edited by Milton Abramowitz and Irene A. Stegun, |
| 171 |
* National Bureau of Standards Applied Mathematics Series - 55 |
| 172 |
* Issued June 1964, Tenth Printing, December 1972, with corrections |
| 173 |
* Electronic versions of A&S abound including both pdf and navigable html. |
| 174 |
* @see for example http://people.math.sfu.ca/~cbm/aands/ |
| 175 |
* |
| 176 |
* @see The old A&S has been redone as the |
| 177 |
* NIST Digital Library of Mathematical Functions: http://dlmf.nist.gov/ |
| 178 |
* This version is far more navigable and includes more recent work. |
| 179 |
* |
| 180 |
* @see An Atlas of Functions: with Equator, the Atlas Function Calculator |
| 181 |
* 2nd Edition, by Oldham, Keith B., Myland, Jan, Spanier, Jerome |
| 182 |
* |
| 183 |
* @see Asymptotics and Special Functions by Frank W. J. Olver, |
| 184 |
* Academic Press, 1974 |
| 185 |
* |
| 186 |
* @see Numerical Recipes in C, The Art of Scientific Computing, |
| 187 |
* by William H. Press, Second Ed., Saul A. Teukolsky, |
| 188 |
* William T. Vetterling, and Brian P. Flannery, |
| 189 |
* Cambridge University Press, 1992 |
| 190 |
* |
| 191 |
* @see The Special Functions and Their Approximations: Volumes 1 and 2, |
| 192 |
* by Yudell L. Luke, Academic Press, 1969 |
| 193 |
* |
| 194 |
* @{ |
| 195 |
*/ |
| 196 |
|
| 197 |
// Associated Laguerre polynomials |
| 198 |
|
| 199 |
/** |
| 200 |
* Return the associated Laguerre polynomial of order @c n, |
| 201 |
* degree @c m: @f$ L_n^m(x) @f$ for @c float argument. |
| 202 |
* |
| 203 |
* @see assoc_laguerre for more details. |
| 204 |
*/ |
| 205 |
inline float |
| 206 |
assoc_laguerref(unsigned int __n, unsigned int __m, float __x) |
| 207 |
{ return __detail::__assoc_laguerre<float>(__n, __m, __x); } |
| 208 |
|
| 209 |
/** |
| 210 |
* Return the associated Laguerre polynomial of order @c n, |
| 211 |
* degree @c m: @f$ L_n^m(x) @f$. |
| 212 |
* |
| 213 |
* @see assoc_laguerre for more details. |
| 214 |
*/ |
| 215 |
inline long double |
| 216 |
assoc_laguerrel(unsigned int __n, unsigned int __m, long double __x) |
| 217 |
{ return __detail::__assoc_laguerre<long double>(__n, __m, __x); } |
| 218 |
|
| 219 |
/** |
| 220 |
* Return the associated Laguerre polynomial of nonnegative order @c n, |
| 221 |
* nonnegative degree @c m and real argument @c x: @f$ L_n^m(x) @f$. |
| 222 |
* |
| 223 |
* The associated Laguerre function of real degree @f$ \alpha @f$, |
| 224 |
* @f$ L_n^\alpha(x) @f$, is defined by |
| 225 |
* @f[ |
| 226 |
* L_n^\alpha(x) = \frac{(\alpha + 1)_n}{n!} |
| 227 |
* {}_1F_1(-n; \alpha + 1; x) |
| 228 |
* @f] |
| 229 |
* where @f$ (\alpha)_n @f$ is the Pochhammer symbol and |
| 230 |
* @f$ {}_1F_1(a; c; x) @f$ is the confluent hypergeometric function. |
| 231 |
* |
| 232 |
* The associated Laguerre polynomial is defined for integral |
| 233 |
* degree @f$ \alpha = m @f$ by: |
| 234 |
* @f[ |
| 235 |
* L_n^m(x) = (-1)^m \frac{d^m}{dx^m} L_{n + m}(x) |
| 236 |
* @f] |
| 237 |
* where the Laguerre polynomial is defined by: |
| 238 |
* @f[ |
| 239 |
* L_n(x) = \frac{e^x}{n!} \frac{d^n}{dx^n} (x^ne^{-x}) |
| 240 |
* @f] |
| 241 |
* and @f$ x >= 0 @f$. |
| 242 |
* @see laguerre for details of the Laguerre function of degree @c n |
| 243 |
* |
| 244 |
* @tparam _Tp The floating-point type of the argument @c __x. |
| 245 |
* @param __n The order of the Laguerre function, <tt>__n >= 0</tt>. |
| 246 |
* @param __m The degree of the Laguerre function, <tt>__m >= 0</tt>. |
| 247 |
* @param __x The argument of the Laguerre function, <tt>__x >= 0</tt>. |
| 248 |
* @throw std::domain_error if <tt>__x < 0</tt>. |
| 249 |
*/ |
| 250 |
template<typename _Tp> |
| 251 |
inline typename __gnu_cxx::__promote<_Tp>::__type |
| 252 |
assoc_laguerre(unsigned int __n, unsigned int __m, _Tp __x) |
| 253 |
{ |
| 254 |
typedef typename __gnu_cxx::__promote<_Tp>::__type __type; |
| 255 |
return __detail::__assoc_laguerre<__type>(__n, __m, __x); |
| 256 |
} |
| 257 |
|
| 258 |
// Associated Legendre functions |
| 259 |
|
| 260 |
/** |
| 261 |
* Return the associated Legendre function of degree @c l and order @c m |
| 262 |
* for @c float argument. |
| 263 |
* |
| 264 |
* @see assoc_legendre for more details. |
| 265 |
*/ |
| 266 |
inline float |
| 267 |
assoc_legendref(unsigned int __l, unsigned int __m, float __x) |
| 268 |
{ return __detail::__assoc_legendre_p<float>(__l, __m, __x); } |
| 269 |
|
| 270 |
/** |
| 271 |
* Return the associated Legendre function of degree @c l and order @c m. |
| 272 |
* |
| 273 |
* @see assoc_legendre for more details. |
| 274 |
*/ |
| 275 |
inline long double |
| 276 |
assoc_legendrel(unsigned int __l, unsigned int __m, long double __x) |
| 277 |
{ return __detail::__assoc_legendre_p<long double>(__l, __m, __x); } |
| 278 |
|
| 279 |
|
| 280 |
/** |
| 281 |
* Return the associated Legendre function of degree @c l and order @c m. |
| 282 |
* |
| 283 |
* The associated Legendre function is derived from the Legendre function |
| 284 |
* @f$ P_l(x) @f$ by the Rodrigues formula: |
| 285 |
* @f[ |
| 286 |
* P_l^m(x) = (1 - x^2)^{m/2}\frac{d^m}{dx^m}P_l(x) |
| 287 |
* @f] |
| 288 |
* @see legendre for details of the Legendre function of degree @c l |
| 289 |
* |
| 290 |
* @tparam _Tp The floating-point type of the argument @c __x. |
| 291 |
* @param __l The degree <tt>__l >= 0</tt>. |
| 292 |
* @param __m The order <tt>__m <= l</tt>. |
| 293 |
* @param __x The argument, <tt>abs(__x) <= 1</tt>. |
| 294 |
* @throw std::domain_error if <tt>abs(__x) > 1</tt>. |
| 295 |
*/ |
| 296 |
template<typename _Tp> |
| 297 |
inline typename __gnu_cxx::__promote<_Tp>::__type |
| 298 |
assoc_legendre(unsigned int __l, unsigned int __m, _Tp __x) |
| 299 |
{ |
| 300 |
typedef typename __gnu_cxx::__promote<_Tp>::__type __type; |
| 301 |
return __detail::__assoc_legendre_p<__type>(__l, __m, __x); |
| 302 |
} |
| 303 |
|
| 304 |
// Beta functions |
| 305 |
|
| 306 |
/** |
| 307 |
* Return the beta function, @f$ B(a,b) @f$, for @c float parameters @c a, @c b. |
| 308 |
* |
| 309 |
* @see beta for more details. |
| 310 |
*/ |
| 311 |
inline float |
| 312 |
betaf(float __a, float __b) |
| 313 |
{ return __detail::__beta<float>(__a, __b); } |
| 314 |
|
| 315 |
/** |
| 316 |
* Return the beta function, @f$B(a,b)@f$, for long double |
| 317 |
* parameters @c a, @c b. |
| 318 |
* |
| 319 |
* @see beta for more details. |
| 320 |
*/ |
| 321 |
inline long double |
| 322 |
betal(long double __a, long double __b) |
| 323 |
{ return __detail::__beta<long double>(__a, __b); } |
| 324 |
|
| 325 |
/** |
| 326 |
* Return the beta function, @f$B(a,b)@f$, for real parameters @c a, @c b. |
| 327 |
* |
| 328 |
* The beta function is defined by |
| 329 |
* @f[ |
| 330 |
* B(a,b) = \int_0^1 t^{a - 1} (1 - t)^{b - 1} dt |
| 331 |
* = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)} |
| 332 |
* @f] |
| 333 |
* where @f$ a > 0 @f$ and @f$ b > 0 @f$ |
| 334 |
* |
| 335 |
* @tparam _Tpa The floating-point type of the parameter @c __a. |
| 336 |
* @tparam _Tpb The floating-point type of the parameter @c __b. |
| 337 |
* @param __a The first argument of the beta function, <tt> __a > 0 </tt>. |
| 338 |
* @param __b The second argument of the beta function, <tt> __b > 0 </tt>. |
| 339 |
* @throw std::domain_error if <tt> __a < 0 </tt> or <tt> __b < 0 </tt>. |
| 340 |
*/ |
| 341 |
template<typename _Tpa, typename _Tpb> |
| 342 |
inline typename __gnu_cxx::__promote_2<_Tpa, _Tpb>::__type |
| 343 |
beta(_Tpa __a, _Tpb __b) |
| 344 |
{ |
| 345 |
typedef typename __gnu_cxx::__promote_2<_Tpa, _Tpb>::__type __type; |
| 346 |
return __detail::__beta<__type>(__a, __b); |
| 347 |
} |
| 348 |
|
| 349 |
// Complete elliptic integrals of the first kind |
| 350 |
|
| 351 |
/** |
| 352 |
* Return the complete elliptic integral of the first kind @f$ E(k) @f$ |
| 353 |
* for @c float modulus @c k. |
| 354 |
* |
| 355 |
* @see comp_ellint_1 for details. |
| 356 |
*/ |
| 357 |
inline float |
| 358 |
comp_ellint_1f(float __k) |
| 359 |
{ return __detail::__comp_ellint_1<float>(__k); } |
| 360 |
|
| 361 |
/** |
| 362 |
* Return the complete elliptic integral of the first kind @f$ E(k) @f$ |
| 363 |
* for long double modulus @c k. |
| 364 |
* |
| 365 |
* @see comp_ellint_1 for details. |
| 366 |
*/ |
| 367 |
inline long double |
| 368 |
comp_ellint_1l(long double __k) |
| 369 |
{ return __detail::__comp_ellint_1<long double>(__k); } |
| 370 |
|
| 371 |
/** |
| 372 |
* Return the complete elliptic integral of the first kind |
| 373 |
* @f$ K(k) @f$ for real modulus @c k. |
| 374 |
* |
| 375 |
* The complete elliptic integral of the first kind is defined as |
| 376 |
* @f[ |
| 377 |
* K(k) = F(k,\pi/2) = \int_0^{\pi/2}\frac{d\theta} |
| 378 |
* {\sqrt{1 - k^2 sin^2\theta}} |
| 379 |
* @f] |
| 380 |
* where @f$ F(k,\phi) @f$ is the incomplete elliptic integral of the |
| 381 |
* first kind and the modulus @f$ |k| <= 1 @f$. |
| 382 |
* @see ellint_1 for details of the incomplete elliptic function |
| 383 |
* of the first kind. |
| 384 |
* |
| 385 |
* @tparam _Tp The floating-point type of the modulus @c __k. |
| 386 |
* @param __k The modulus, <tt> abs(__k) <= 1 </tt> |
| 387 |
* @throw std::domain_error if <tt> abs(__k) > 1 </tt>. |
| 388 |
*/ |
| 389 |
template<typename _Tp> |
| 390 |
inline typename __gnu_cxx::__promote<_Tp>::__type |
| 391 |
comp_ellint_1(_Tp __k) |
| 392 |
{ |
| 393 |
typedef typename __gnu_cxx::__promote<_Tp>::__type __type; |
| 394 |
return __detail::__comp_ellint_1<__type>(__k); |
| 395 |
} |
| 396 |
|
| 397 |
// Complete elliptic integrals of the second kind |
| 398 |
|
| 399 |
/** |
| 400 |
* Return the complete elliptic integral of the second kind @f$ E(k) @f$ |
| 401 |
* for @c float modulus @c k. |
| 402 |
* |
| 403 |
* @see comp_ellint_2 for details. |
| 404 |
*/ |
| 405 |
inline float |
| 406 |
comp_ellint_2f(float __k) |
| 407 |
{ return __detail::__comp_ellint_2<float>(__k); } |
| 408 |
|
| 409 |
/** |
| 410 |
* Return the complete elliptic integral of the second kind @f$ E(k) @f$ |
| 411 |
* for long double modulus @c k. |
| 412 |
* |
| 413 |
* @see comp_ellint_2 for details. |
| 414 |
*/ |
| 415 |
inline long double |
| 416 |
comp_ellint_2l(long double __k) |
| 417 |
{ return __detail::__comp_ellint_2<long double>(__k); } |
| 418 |
|
| 419 |
/** |
| 420 |
* Return the complete elliptic integral of the second kind @f$ E(k) @f$ |
| 421 |
* for real modulus @c k. |
| 422 |
* |
| 423 |
* The complete elliptic integral of the second kind is defined as |
| 424 |
* @f[ |
| 425 |
* E(k) = E(k,\pi/2) = \int_0^{\pi/2}\sqrt{1 - k^2 sin^2\theta} |
| 426 |
* @f] |
| 427 |
* where @f$ E(k,\phi) @f$ is the incomplete elliptic integral of the |
| 428 |
* second kind and the modulus @f$ |k| <= 1 @f$. |
| 429 |
* @see ellint_2 for details of the incomplete elliptic function |
| 430 |
* of the second kind. |
| 431 |
* |
| 432 |
* @tparam _Tp The floating-point type of the modulus @c __k. |
| 433 |
* @param __k The modulus, @c abs(__k) <= 1 |
| 434 |
* @throw std::domain_error if @c abs(__k) > 1. |
| 435 |
*/ |
| 436 |
template<typename _Tp> |
| 437 |
inline typename __gnu_cxx::__promote<_Tp>::__type |
| 438 |
comp_ellint_2(_Tp __k) |
| 439 |
{ |
| 440 |
typedef typename __gnu_cxx::__promote<_Tp>::__type __type; |
| 441 |
return __detail::__comp_ellint_2<__type>(__k); |
| 442 |
} |
| 443 |
|
| 444 |
// Complete elliptic integrals of the third kind |
| 445 |
|
| 446 |
/** |
| 447 |
* @brief Return the complete elliptic integral of the third kind |
| 448 |
* @f$ \Pi(k,\nu) @f$ for @c float modulus @c k. |
| 449 |
* |
| 450 |
* @see comp_ellint_3 for details. |
| 451 |
*/ |
| 452 |
inline float |
| 453 |
comp_ellint_3f(float __k, float __nu) |
| 454 |
{ return __detail::__comp_ellint_3<float>(__k, __nu); } |
| 455 |
|
| 456 |
/** |
| 457 |
* @brief Return the complete elliptic integral of the third kind |
| 458 |
* @f$ \Pi(k,\nu) @f$ for <tt>long double</tt> modulus @c k. |
| 459 |
* |
| 460 |
* @see comp_ellint_3 for details. |
| 461 |
*/ |
| 462 |
inline long double |
| 463 |
comp_ellint_3l(long double __k, long double __nu) |
| 464 |
{ return __detail::__comp_ellint_3<long double>(__k, __nu); } |
| 465 |
|
| 466 |
/** |
| 467 |
* Return the complete elliptic integral of the third kind |
| 468 |
* @f$ \Pi(k,\nu) = \Pi(k,\nu,\pi/2) @f$ for real modulus @c k. |
| 469 |
* |
| 470 |
* The complete elliptic integral of the third kind is defined as |
| 471 |
* @f[ |
| 472 |
* \Pi(k,\nu) = \Pi(k,\nu,\pi/2) = \int_0^{\pi/2} |
| 473 |
* \frac{d\theta} |
| 474 |
* {(1 - \nu \sin^2\theta)\sqrt{1 - k^2 \sin^2\theta}} |
| 475 |
* @f] |
| 476 |
* where @f$ \Pi(k,\nu,\phi) @f$ is the incomplete elliptic integral of the |
| 477 |
* second kind and the modulus @f$ |k| <= 1 @f$. |
| 478 |
* @see ellint_3 for details of the incomplete elliptic function |
| 479 |
* of the third kind. |
| 480 |
* |
| 481 |
* @tparam _Tp The floating-point type of the modulus @c __k. |
| 482 |
* @tparam _Tpn The floating-point type of the argument @c __nu. |
| 483 |
* @param __k The modulus, @c abs(__k) <= 1 |
| 484 |
* @param __nu The argument |
| 485 |
* @throw std::domain_error if @c abs(__k) > 1. |
| 486 |
*/ |
| 487 |
template<typename _Tp, typename _Tpn> |
| 488 |
inline typename __gnu_cxx::__promote_2<_Tp, _Tpn>::__type |
| 489 |
comp_ellint_3(_Tp __k, _Tpn __nu) |
| 490 |
{ |
| 491 |
typedef typename __gnu_cxx::__promote_2<_Tp, _Tpn>::__type __type; |
| 492 |
return __detail::__comp_ellint_3<__type>(__k, __nu); |
| 493 |
} |
| 494 |
|
| 495 |
// Regular modified cylindrical Bessel functions |
| 496 |
|
| 497 |
/** |
| 498 |
* Return the regular modified Bessel function @f$ I_{\nu}(x) @f$ |
| 499 |
* for @c float order @f$ \nu @f$ and argument @f$ x >= 0 @f$. |
| 500 |
* |
| 501 |
* @see cyl_bessel_i for setails. |
| 502 |
*/ |
| 503 |
inline float |
| 504 |
cyl_bessel_if(float __nu, float __x) |
| 505 |
{ return __detail::__cyl_bessel_i<float>(__nu, __x); } |
| 506 |
|
| 507 |
/** |
| 508 |
* Return the regular modified Bessel function @f$ I_{\nu}(x) @f$ |
| 509 |
* for <tt>long double</tt> order @f$ \nu @f$ and argument @f$ x >= 0 @f$. |
| 510 |
* |
| 511 |
* @see cyl_bessel_i for setails. |
| 512 |
*/ |
| 513 |
inline long double |
| 514 |
cyl_bessel_il(long double __nu, long double __x) |
| 515 |
{ return __detail::__cyl_bessel_i<long double>(__nu, __x); } |
| 516 |
|
| 517 |
/** |
| 518 |
* Return the regular modified Bessel function @f$ I_{\nu}(x) @f$ |
| 519 |
* for real order @f$ \nu @f$ and argument @f$ x >= 0 @f$. |
| 520 |
* |
| 521 |
* The regular modified cylindrical Bessel function is: |
| 522 |
* @f[ |
| 523 |
* I_{\nu}(x) = i^{-\nu}J_\nu(ix) = \sum_{k=0}^{\infty} |
| 524 |
* \frac{(x/2)^{\nu + 2k}}{k!\Gamma(\nu+k+1)} |
| 525 |
* @f] |
| 526 |
* |
| 527 |
* @tparam _Tpnu The floating-point type of the order @c __nu. |
| 528 |
* @tparam _Tp The floating-point type of the argument @c __x. |
| 529 |
* @param __nu The order |
| 530 |
* @param __x The argument, <tt> __x >= 0 </tt> |
| 531 |
* @throw std::domain_error if <tt> __x < 0 </tt>. |
| 532 |
*/ |
| 533 |
template<typename _Tpnu, typename _Tp> |
| 534 |
inline typename __gnu_cxx::__promote_2<_Tpnu, _Tp>::__type |
| 535 |
cyl_bessel_i(_Tpnu __nu, _Tp __x) |
| 536 |
{ |
| 537 |
typedef typename __gnu_cxx::__promote_2<_Tpnu, _Tp>::__type __type; |
| 538 |
return __detail::__cyl_bessel_i<__type>(__nu, __x); |
| 539 |
} |
| 540 |
|
| 541 |
// Cylindrical Bessel functions (of the first kind) |
| 542 |
|
| 543 |
/** |
| 544 |
* Return the Bessel function of the first kind @f$ J_{\nu}(x) @f$ |
| 545 |
* for @c float order @f$ \nu @f$ and argument @f$ x >= 0 @f$. |
| 546 |
* |
| 547 |
* @see cyl_bessel_j for setails. |
| 548 |
*/ |
| 549 |
inline float |
| 550 |
cyl_bessel_jf(float __nu, float __x) |
| 551 |
{ return __detail::__cyl_bessel_j<float>(__nu, __x); } |
| 552 |
|
| 553 |
/** |
| 554 |
* Return the Bessel function of the first kind @f$ J_{\nu}(x) @f$ |
| 555 |
* for <tt>long double</tt> order @f$ \nu @f$ and argument @f$ x >= 0 @f$. |
| 556 |
* |
| 557 |
* @see cyl_bessel_j for setails. |
| 558 |
*/ |
| 559 |
inline long double |
| 560 |
cyl_bessel_jl(long double __nu, long double __x) |
| 561 |
{ return __detail::__cyl_bessel_j<long double>(__nu, __x); } |
| 562 |
|
| 563 |
/** |
| 564 |
* Return the Bessel function @f$ J_{\nu}(x) @f$ of real order @f$ \nu @f$ |
| 565 |
* and argument @f$ x >= 0 @f$. |
| 566 |
* |
| 567 |
* The cylindrical Bessel function is: |
| 568 |
* @f[ |
| 569 |
* J_{\nu}(x) = \sum_{k=0}^{\infty} |
| 570 |
* \frac{(-1)^k (x/2)^{\nu + 2k}}{k!\Gamma(\nu+k+1)} |
| 571 |
* @f] |
| 572 |
* |
| 573 |
* @tparam _Tpnu The floating-point type of the order @c __nu. |
| 574 |
* @tparam _Tp The floating-point type of the argument @c __x. |
| 575 |
* @param __nu The order |
| 576 |
* @param __x The argument, <tt> __x >= 0 </tt> |
| 577 |
* @throw std::domain_error if <tt> __x < 0 </tt>. |
| 578 |
*/ |
| 579 |
template<typename _Tpnu, typename _Tp> |
| 580 |
inline typename __gnu_cxx::__promote_2<_Tpnu, _Tp>::__type |
| 581 |
cyl_bessel_j(_Tpnu __nu, _Tp __x) |
| 582 |
{ |
| 583 |
typedef typename __gnu_cxx::__promote_2<_Tpnu, _Tp>::__type __type; |
| 584 |
return __detail::__cyl_bessel_j<__type>(__nu, __x); |
| 585 |
} |
| 586 |
|
| 587 |
// Irregular modified cylindrical Bessel functions |
| 588 |
|
| 589 |
/** |
| 590 |
* Return the irregular modified Bessel function @f$ K_{\nu}(x) @f$ |
| 591 |
* for @c float order @f$ \nu @f$ and argument @f$ x >= 0 @f$. |
| 592 |
* |
| 593 |
* @see cyl_bessel_k for setails. |
| 594 |
*/ |
| 595 |
inline float |
| 596 |
cyl_bessel_kf(float __nu, float __x) |
| 597 |
{ return __detail::__cyl_bessel_k<float>(__nu, __x); } |
| 598 |
|
| 599 |
/** |
| 600 |
* Return the irregular modified Bessel function @f$ K_{\nu}(x) @f$ |
| 601 |
* for <tt>long double</tt> order @f$ \nu @f$ and argument @f$ x >= 0 @f$. |
| 602 |
* |
| 603 |
* @see cyl_bessel_k for setails. |
| 604 |
*/ |
| 605 |
inline long double |
| 606 |
cyl_bessel_kl(long double __nu, long double __x) |
| 607 |
{ return __detail::__cyl_bessel_k<long double>(__nu, __x); } |
| 608 |
|
| 609 |
/** |
| 610 |
* Return the irregular modified Bessel function @f$ K_{\nu}(x) @f$ |
| 611 |
* of real order @f$ \nu @f$ and argument @f$ x @f$. |
| 612 |
* |
| 613 |
* The irregular modified Bessel function is defined by: |
| 614 |
* @f[ |
| 615 |
* K_{\nu}(x) = \frac{\pi}{2} |
| 616 |
* \frac{I_{-\nu}(x) - I_{\nu}(x)}{\sin \nu\pi} |
| 617 |
* @f] |
| 618 |
* where for integral @f$ \nu = n @f$ a limit is taken: |
| 619 |
* @f$ lim_{\nu \to n} @f$. |
| 620 |
* For negative argument we have simply: |
| 621 |
* @f[ |
| 622 |
* K_{-\nu}(x) = K_{\nu}(x) |
| 623 |
* @f] |
| 624 |
* |
| 625 |
* @tparam _Tpnu The floating-point type of the order @c __nu. |
| 626 |
* @tparam _Tp The floating-point type of the argument @c __x. |
| 627 |
* @param __nu The order |
| 628 |
* @param __x The argument, <tt> __x >= 0 </tt> |
| 629 |
* @throw std::domain_error if <tt> __x < 0 </tt>. |
| 630 |
*/ |
| 631 |
template<typename _Tpnu, typename _Tp> |
| 632 |
inline typename __gnu_cxx::__promote_2<_Tpnu, _Tp>::__type |
| 633 |
cyl_bessel_k(_Tpnu __nu, _Tp __x) |
| 634 |
{ |
| 635 |
typedef typename __gnu_cxx::__promote_2<_Tpnu, _Tp>::__type __type; |
| 636 |
return __detail::__cyl_bessel_k<__type>(__nu, __x); |
| 637 |
} |
| 638 |
|
| 639 |
// Cylindrical Neumann functions |
| 640 |
|
| 641 |
/** |
| 642 |
* Return the Neumann function @f$ N_{\nu}(x) @f$ |
| 643 |
* of @c float order @f$ \nu @f$ and argument @f$ x @f$. |
| 644 |
* |
| 645 |
* @see cyl_neumann for setails. |
| 646 |
*/ |
| 647 |
inline float |
| 648 |
cyl_neumannf(float __nu, float __x) |
| 649 |
{ return __detail::__cyl_neumann_n<float>(__nu, __x); } |
| 650 |
|
| 651 |
/** |
| 652 |
* Return the Neumann function @f$ N_{\nu}(x) @f$ |
| 653 |
* of <tt>long double</tt> order @f$ \nu @f$ and argument @f$ x @f$. |
| 654 |
* |
| 655 |
* @see cyl_neumann for setails. |
| 656 |
*/ |
| 657 |
inline long double |
| 658 |
cyl_neumannl(long double __nu, long double __x) |
| 659 |
{ return __detail::__cyl_neumann_n<long double>(__nu, __x); } |
| 660 |
|
| 661 |
/** |
| 662 |
* Return the Neumann function @f$ N_{\nu}(x) @f$ |
| 663 |
* of real order @f$ \nu @f$ and argument @f$ x >= 0 @f$. |
| 664 |
* |
| 665 |
* The Neumann function is defined by: |
| 666 |
* @f[ |
| 667 |
* N_{\nu}(x) = \frac{J_{\nu}(x) \cos \nu\pi - J_{-\nu}(x)} |
| 668 |
* {\sin \nu\pi} |
| 669 |
* @f] |
| 670 |
* where @f$ x >= 0 @f$ and for integral order @f$ \nu = n @f$ |
| 671 |
* a limit is taken: @f$ lim_{\nu \to n} @f$. |
| 672 |
* |
| 673 |
* @tparam _Tpnu The floating-point type of the order @c __nu. |
| 674 |
* @tparam _Tp The floating-point type of the argument @c __x. |
| 675 |
* @param __nu The order |
| 676 |
* @param __x The argument, <tt> __x >= 0 </tt> |
| 677 |
* @throw std::domain_error if <tt> __x < 0 </tt>. |
| 678 |
*/ |
| 679 |
template<typename _Tpnu, typename _Tp> |
| 680 |
inline typename __gnu_cxx::__promote_2<_Tpnu, _Tp>::__type |
| 681 |
cyl_neumann(_Tpnu __nu, _Tp __x) |
| 682 |
{ |
| 683 |
typedef typename __gnu_cxx::__promote_2<_Tpnu, _Tp>::__type __type; |
| 684 |
return __detail::__cyl_neumann_n<__type>(__nu, __x); |
| 685 |
} |
| 686 |
|
| 687 |
// Incomplete elliptic integrals of the first kind |
| 688 |
|
| 689 |
/** |
| 690 |
* Return the incomplete elliptic integral of the first kind @f$ E(k,\phi) @f$ |
| 691 |
* for @c float modulus @f$ k @f$ and angle @f$ \phi @f$. |
| 692 |
* |
| 693 |
* @see ellint_1 for details. |
| 694 |
*/ |
| 695 |
inline float |
| 696 |
ellint_1f(float __k, float __phi) |
| 697 |
{ return __detail::__ellint_1<float>(__k, __phi); } |
| 698 |
|
| 699 |
/** |
| 700 |
* Return the incomplete elliptic integral of the first kind @f$ E(k,\phi) @f$ |
| 701 |
* for <tt>long double</tt> modulus @f$ k @f$ and angle @f$ \phi @f$. |
| 702 |
* |
| 703 |
* @see ellint_1 for details. |
| 704 |
*/ |
| 705 |
inline long double |
| 706 |
ellint_1l(long double __k, long double __phi) |
| 707 |
{ return __detail::__ellint_1<long double>(__k, __phi); } |
| 708 |
|
| 709 |
/** |
| 710 |
* Return the incomplete elliptic integral of the first kind @f$ F(k,\phi) @f$ |
| 711 |
* for @c real modulus @f$ k @f$ and angle @f$ \phi @f$. |
| 712 |
* |
| 713 |
* The incomplete elliptic integral of the first kind is defined as |
| 714 |
* @f[ |
| 715 |
* F(k,\phi) = \int_0^{\phi}\frac{d\theta} |
| 716 |
* {\sqrt{1 - k^2 sin^2\theta}} |
| 717 |
* @f] |
| 718 |
* For @f$ \phi= \pi/2 @f$ this becomes the complete elliptic integral of |
| 719 |
* the first kind, @f$ K(k) @f$. @see comp_ellint_1. |
| 720 |
* |
| 721 |
* @tparam _Tp The floating-point type of the modulus @c __k. |
| 722 |
* @tparam _Tpp The floating-point type of the angle @c __phi. |
| 723 |
* @param __k The modulus, <tt> abs(__k) <= 1 </tt> |
| 724 |
* @param __phi The integral limit argument in radians |
| 725 |
* @throw std::domain_error if <tt> abs(__k) > 1 </tt>. |
| 726 |
*/ |
| 727 |
template<typename _Tp, typename _Tpp> |
| 728 |
inline typename __gnu_cxx::__promote_2<_Tp, _Tpp>::__type |
| 729 |
ellint_1(_Tp __k, _Tpp __phi) |
| 730 |
{ |
| 731 |
typedef typename __gnu_cxx::__promote_2<_Tp, _Tpp>::__type __type; |
| 732 |
return __detail::__ellint_1<__type>(__k, __phi); |
| 733 |
} |
| 734 |
|
| 735 |
// Incomplete elliptic integrals of the second kind |
| 736 |
|
| 737 |
/** |
| 738 |
* @brief Return the incomplete elliptic integral of the second kind |
| 739 |
* @f$ E(k,\phi) @f$ for @c float argument. |
| 740 |
* |
| 741 |
* @see ellint_2 for details. |
| 742 |
*/ |
| 743 |
inline float |
| 744 |
ellint_2f(float __k, float __phi) |
| 745 |
{ return __detail::__ellint_2<float>(__k, __phi); } |
| 746 |
|
| 747 |
/** |
| 748 |
* @brief Return the incomplete elliptic integral of the second kind |
| 749 |
* @f$ E(k,\phi) @f$. |
| 750 |
* |
| 751 |
* @see ellint_2 for details. |
| 752 |
*/ |
| 753 |
inline long double |
| 754 |
ellint_2l(long double __k, long double __phi) |
| 755 |
{ return __detail::__ellint_2<long double>(__k, __phi); } |
| 756 |
|
| 757 |
/** |
| 758 |
* Return the incomplete elliptic integral of the second kind |
| 759 |
* @f$ E(k,\phi) @f$. |
| 760 |
* |
| 761 |
* The incomplete elliptic integral of the second kind is defined as |
| 762 |
* @f[ |
| 763 |
* E(k,\phi) = \int_0^{\phi} \sqrt{1 - k^2 sin^2\theta} |
| 764 |
* @f] |
| 765 |
* For @f$ \phi= \pi/2 @f$ this becomes the complete elliptic integral of |
| 766 |
* the second kind, @f$ E(k) @f$. @see comp_ellint_2. |
| 767 |
* |
| 768 |
* @tparam _Tp The floating-point type of the modulus @c __k. |
| 769 |
* @tparam _Tpp The floating-point type of the angle @c __phi. |
| 770 |
* @param __k The modulus, <tt> abs(__k) <= 1 </tt> |
| 771 |
* @param __phi The integral limit argument in radians |
| 772 |
* @return The elliptic function of the second kind. |
| 773 |
* @throw std::domain_error if <tt> abs(__k) > 1 </tt>. |
| 774 |
*/ |
| 775 |
template<typename _Tp, typename _Tpp> |
| 776 |
inline typename __gnu_cxx::__promote_2<_Tp, _Tpp>::__type |
| 777 |
ellint_2(_Tp __k, _Tpp __phi) |
| 778 |
{ |
| 779 |
typedef typename __gnu_cxx::__promote_2<_Tp, _Tpp>::__type __type; |
| 780 |
return __detail::__ellint_2<__type>(__k, __phi); |
| 781 |
} |
| 782 |
|
| 783 |
// Incomplete elliptic integrals of the third kind |
| 784 |
|
| 785 |
/** |
| 786 |
* @brief Return the incomplete elliptic integral of the third kind |
| 787 |
* @f$ \Pi(k,\nu,\phi) @f$ for @c float argument. |
| 788 |
* |
| 789 |
* @see ellint_3 for details. |
| 790 |
*/ |
| 791 |
inline float |
| 792 |
ellint_3f(float __k, float __nu, float __phi) |
| 793 |
{ return __detail::__ellint_3<float>(__k, __nu, __phi); } |
| 794 |
|
| 795 |
/** |
| 796 |
* @brief Return the incomplete elliptic integral of the third kind |
| 797 |
* @f$ \Pi(k,\nu,\phi) @f$. |
| 798 |
* |
| 799 |
* @see ellint_3 for details. |
| 800 |
*/ |
| 801 |
inline long double |
| 802 |
ellint_3l(long double __k, long double __nu, long double __phi) |
| 803 |
{ return __detail::__ellint_3<long double>(__k, __nu, __phi); } |
| 804 |
|
| 805 |
/** |
| 806 |
* @brief Return the incomplete elliptic integral of the third kind |
| 807 |
* @f$ \Pi(k,\nu,\phi) @f$. |
| 808 |
* |
| 809 |
* The incomplete elliptic integral of the third kind is defined by: |
| 810 |
* @f[ |
| 811 |
* \Pi(k,\nu,\phi) = \int_0^{\phi} |
| 812 |
* \frac{d\theta} |
| 813 |
* {(1 - \nu \sin^2\theta) |
| 814 |
* \sqrt{1 - k^2 \sin^2\theta}} |
| 815 |
* @f] |
| 816 |
* For @f$ \phi= \pi/2 @f$ this becomes the complete elliptic integral of |
| 817 |
* the third kind, @f$ \Pi(k,\nu) @f$. @see comp_ellint_3. |
| 818 |
* |
| 819 |
* @tparam _Tp The floating-point type of the modulus @c __k. |
| 820 |
* @tparam _Tpn The floating-point type of the argument @c __nu. |
| 821 |
* @tparam _Tpp The floating-point type of the angle @c __phi. |
| 822 |
* @param __k The modulus, <tt> abs(__k) <= 1 </tt> |
| 823 |
* @param __nu The second argument |
| 824 |
* @param __phi The integral limit argument in radians |
| 825 |
* @return The elliptic function of the third kind. |
| 826 |
* @throw std::domain_error if <tt> abs(__k) > 1 </tt>. |
| 827 |
*/ |
| 828 |
template<typename _Tp, typename _Tpn, typename _Tpp> |
| 829 |
inline typename __gnu_cxx::__promote_3<_Tp, _Tpn, _Tpp>::__type |
| 830 |
ellint_3(_Tp __k, _Tpn __nu, _Tpp __phi) |
| 831 |
{ |
| 832 |
typedef typename __gnu_cxx::__promote_3<_Tp, _Tpn, _Tpp>::__type __type; |
| 833 |
return __detail::__ellint_3<__type>(__k, __nu, __phi); |
| 834 |
} |
| 835 |
|
| 836 |
// Exponential integrals |
| 837 |
|
| 838 |
/** |
| 839 |
* Return the exponential integral @f$ Ei(x) @f$ for @c float argument @c x. |
| 840 |
* |
| 841 |
* @see expint for details. |
| 842 |
*/ |
| 843 |
inline float |
| 844 |
expintf(float __x) |
| 845 |
{ return __detail::__expint<float>(__x); } |
| 846 |
|
| 847 |
/** |
| 848 |
* Return the exponential integral @f$ Ei(x) @f$ |
| 849 |
* for <tt>long double</tt> argument @c x. |
| 850 |
* |
| 851 |
* @see expint for details. |
| 852 |
*/ |
| 853 |
inline long double |
| 854 |
expintl(long double __x) |
| 855 |
{ return __detail::__expint<long double>(__x); } |
| 856 |
|
| 857 |
/** |
| 858 |
* Return the exponential integral @f$ Ei(x) @f$ for @c real argument @c x. |
| 859 |
* |
| 860 |
* The exponential integral is given by |
| 861 |
* \f[ |
| 862 |
* Ei(x) = -\int_{-x}^\infty \frac{e^t}{t} dt |
| 863 |
* \f] |
| 864 |
* |
| 865 |
* @tparam _Tp The floating-point type of the argument @c __x. |
| 866 |
* @param __x The argument of the exponential integral function. |
| 867 |
*/ |
| 868 |
template<typename _Tp> |
| 869 |
inline typename __gnu_cxx::__promote<_Tp>::__type |
| 870 |
expint(_Tp __x) |
| 871 |
{ |
| 872 |
typedef typename __gnu_cxx::__promote<_Tp>::__type __type; |
| 873 |
return __detail::__expint<__type>(__x); |
| 874 |
} |
| 875 |
|
| 876 |
// Hermite polynomials |
| 877 |
|
| 878 |
/** |
| 879 |
* Return the Hermite polynomial @f$ H_n(x) @f$ of nonnegative order n |
| 880 |
* and float argument @c x. |
| 881 |
* |
| 882 |
* @see hermite for details. |
| 883 |
*/ |
| 884 |
inline float |
| 885 |
hermitef(unsigned int __n, float __x) |
| 886 |
{ return __detail::__poly_hermite<float>(__n, __x); } |
| 887 |
|
| 888 |
/** |
| 889 |
* Return the Hermite polynomial @f$ H_n(x) @f$ of nonnegative order n |
| 890 |
* and <tt>long double</tt> argument @c x. |
| 891 |
* |
| 892 |
* @see hermite for details. |
| 893 |
*/ |
| 894 |
inline long double |
| 895 |
hermitel(unsigned int __n, long double __x) |
| 896 |
{ return __detail::__poly_hermite<long double>(__n, __x); } |
| 897 |
|
| 898 |
/** |
| 899 |
* Return the Hermite polynomial @f$ H_n(x) @f$ of order n |
| 900 |
* and @c real argument @c x. |
| 901 |
* |
| 902 |
* The Hermite polynomial is defined by: |
| 903 |
* @f[ |
| 904 |
* H_n(x) = (-1)^n e^{x^2} \frac{d^n}{dx^n} e^{-x^2} |
| 905 |
* @f] |
| 906 |
* |
| 907 |
* The Hermite polynomial obeys a reflection formula: |
| 908 |
* @f[ |
| 909 |
* H_n(-x) = (-1)^n H_n(x) |
| 910 |
* @f] |
| 911 |
* |
| 912 |
* @tparam _Tp The floating-point type of the argument @c __x. |
| 913 |
* @param __n The order |
| 914 |
* @param __x The argument |
| 915 |
*/ |
| 916 |
template<typename _Tp> |
| 917 |
inline typename __gnu_cxx::__promote<_Tp>::__type |
| 918 |
hermite(unsigned int __n, _Tp __x) |
| 919 |
{ |
| 920 |
typedef typename __gnu_cxx::__promote<_Tp>::__type __type; |
| 921 |
return __detail::__poly_hermite<__type>(__n, __x); |
| 922 |
} |
| 923 |
|
| 924 |
// Laguerre polynomials |
| 925 |
|
| 926 |
/** |
| 927 |
* Returns the Laguerre polynomial @f$ L_n(x) @f$ of nonnegative degree @c n |
| 928 |
* and @c float argument @f$ x >= 0 @f$. |
| 929 |
* |
| 930 |
* @see laguerre for more details. |
| 931 |
*/ |
| 932 |
inline float |
| 933 |
laguerref(unsigned int __n, float __x) |
| 934 |
{ return __detail::__laguerre<float>(__n, __x); } |
| 935 |
|
| 936 |
/** |
| 937 |
* Returns the Laguerre polynomial @f$ L_n(x) @f$ of nonnegative degree @c n |
| 938 |
* and <tt>long double</tt> argument @f$ x >= 0 @f$. |
| 939 |
* |
| 940 |
* @see laguerre for more details. |
| 941 |
*/ |
| 942 |
inline long double |
| 943 |
laguerrel(unsigned int __n, long double __x) |
| 944 |
{ return __detail::__laguerre<long double>(__n, __x); } |
| 945 |
|
| 946 |
/** |
| 947 |
* Returns the Laguerre polynomial @f$ L_n(x) @f$ |
| 948 |
* of nonnegative degree @c n and real argument @f$ x >= 0 @f$. |
| 949 |
* |
| 950 |
* The Laguerre polynomial is defined by: |
| 951 |
* @f[ |
| 952 |
* L_n(x) = \frac{e^x}{n!} \frac{d^n}{dx^n} (x^ne^{-x}) |
| 953 |
* @f] |
| 954 |
* |
| 955 |
* @tparam _Tp The floating-point type of the argument @c __x. |
| 956 |
* @param __n The nonnegative order |
| 957 |
* @param __x The argument <tt> __x >= 0 </tt> |
| 958 |
* @throw std::domain_error if <tt> __x < 0 </tt>. |
| 959 |
*/ |
| 960 |
template<typename _Tp> |
| 961 |
inline typename __gnu_cxx::__promote<_Tp>::__type |
| 962 |
laguerre(unsigned int __n, _Tp __x) |
| 963 |
{ |
| 964 |
typedef typename __gnu_cxx::__promote<_Tp>::__type __type; |
| 965 |
return __detail::__laguerre<__type>(__n, __x); |
| 966 |
} |
| 967 |
|
| 968 |
// Legendre polynomials |
| 969 |
|
| 970 |
/** |
| 971 |
* Return the Legendre polynomial @f$ P_l(x) @f$ of nonnegative |
| 972 |
* degree @f$ l @f$ and @c float argument @f$ |x| <= 0 @f$. |
| 973 |
* |
| 974 |
* @see legendre for more details. |
| 975 |
*/ |
| 976 |
inline float |
| 977 |
legendref(unsigned int __l, float __x) |
| 978 |
{ return __detail::__poly_legendre_p<float>(__l, __x); } |
| 979 |
|
| 980 |
/** |
| 981 |
* Return the Legendre polynomial @f$ P_l(x) @f$ of nonnegative |
| 982 |
* degree @f$ l @f$ and <tt>long double</tt> argument @f$ |x| <= 0 @f$. |
| 983 |
* |
| 984 |
* @see legendre for more details. |
| 985 |
*/ |
| 986 |
inline long double |
| 987 |
legendrel(unsigned int __l, long double __x) |
| 988 |
{ return __detail::__poly_legendre_p<long double>(__l, __x); } |
| 989 |
|
| 990 |
/** |
| 991 |
* Return the Legendre polynomial @f$ P_l(x) @f$ of nonnegative |
| 992 |
* degree @f$ l @f$ and real argument @f$ |x| <= 0 @f$. |
| 993 |
* |
| 994 |
* The Legendre function of order @f$ l @f$ and argument @f$ x @f$, |
| 995 |
* @f$ P_l(x) @f$, is defined by: |
| 996 |
* @f[ |
| 997 |
* P_l(x) = \frac{1}{2^l l!}\frac{d^l}{dx^l}(x^2 - 1)^{l} |
| 998 |
* @f] |
| 999 |
* |
| 1000 |
* @tparam _Tp The floating-point type of the argument @c __x. |
| 1001 |
* @param __l The degree @f$ l >= 0 @f$ |
| 1002 |
* @param __x The argument @c abs(__x) <= 1 |
| 1003 |
* @throw std::domain_error if @c abs(__x) > 1 |
| 1004 |
*/ |
| 1005 |
template<typename _Tp> |
| 1006 |
inline typename __gnu_cxx::__promote<_Tp>::__type |
| 1007 |
legendre(unsigned int __l, _Tp __x) |
| 1008 |
{ |
| 1009 |
typedef typename __gnu_cxx::__promote<_Tp>::__type __type; |
| 1010 |
return __detail::__poly_legendre_p<__type>(__l, __x); |
| 1011 |
} |
| 1012 |
|
| 1013 |
// Riemann zeta functions |
| 1014 |
|
| 1015 |
/** |
| 1016 |
* Return the Riemann zeta function @f$ \zeta(s) @f$ |
| 1017 |
* for @c float argument @f$ s @f$. |
| 1018 |
* |
| 1019 |
* @see riemann_zeta for more details. |
| 1020 |
*/ |
| 1021 |
inline float |
| 1022 |
riemann_zetaf(float __s) |
| 1023 |
{ return __detail::__riemann_zeta<float>(__s); } |
| 1024 |
|
| 1025 |
/** |
| 1026 |
* Return the Riemann zeta function @f$ \zeta(s) @f$ |
| 1027 |
* for <tt>long double</tt> argument @f$ s @f$. |
| 1028 |
* |
| 1029 |
* @see riemann_zeta for more details. |
| 1030 |
*/ |
| 1031 |
inline long double |
| 1032 |
riemann_zetal(long double __s) |
| 1033 |
{ return __detail::__riemann_zeta<long double>(__s); } |
| 1034 |
|
| 1035 |
/** |
| 1036 |
* Return the Riemann zeta function @f$ \zeta(s) @f$ |
| 1037 |
* for real argument @f$ s @f$. |
| 1038 |
* |
| 1039 |
* The Riemann zeta function is defined by: |
| 1040 |
* @f[ |
| 1041 |
* \zeta(s) = \sum_{k=1}^{\infty} k^{-s} \hbox{ for } s > 1 |
| 1042 |
* @f] |
| 1043 |
* and |
| 1044 |
* @f[ |
| 1045 |
* \zeta(s) = \frac{1}{1-2^{1-s}}\sum_{k=1}^{\infty}(-1)^{k-1}k^{-s} |
| 1046 |
* \hbox{ for } 0 <= s <= 1 |
| 1047 |
* @f] |
| 1048 |
* For s < 1 use the reflection formula: |
| 1049 |
* @f[ |
| 1050 |
* \zeta(s) = 2^s \pi^{s-1} \sin(\frac{\pi s}{2}) \Gamma(1-s) \zeta(1-s) |
| 1051 |
* @f] |
| 1052 |
* |
| 1053 |
* @tparam _Tp The floating-point type of the argument @c __s. |
| 1054 |
* @param __s The argument <tt> s != 1 </tt> |
| 1055 |
*/ |
| 1056 |
template<typename _Tp> |
| 1057 |
inline typename __gnu_cxx::__promote<_Tp>::__type |
| 1058 |
riemann_zeta(_Tp __s) |
| 1059 |
{ |
| 1060 |
typedef typename __gnu_cxx::__promote<_Tp>::__type __type; |
| 1061 |
return __detail::__riemann_zeta<__type>(__s); |
| 1062 |
} |
| 1063 |
|
| 1064 |
// Spherical Bessel functions |
| 1065 |
|
| 1066 |
/** |
| 1067 |
* Return the spherical Bessel function @f$ j_n(x) @f$ of nonnegative order n |
| 1068 |
* and @c float argument @f$ x >= 0 @f$. |
| 1069 |
* |
| 1070 |
* @see sph_bessel for more details. |
| 1071 |
*/ |
| 1072 |
inline float |
| 1073 |
sph_besself(unsigned int __n, float __x) |
| 1074 |
{ return __detail::__sph_bessel<float>(__n, __x); } |
| 1075 |
|
| 1076 |
/** |
| 1077 |
* Return the spherical Bessel function @f$ j_n(x) @f$ of nonnegative order n |
| 1078 |
* and <tt>long double</tt> argument @f$ x >= 0 @f$. |
| 1079 |
* |
| 1080 |
* @see sph_bessel for more details. |
| 1081 |
*/ |
| 1082 |
inline long double |
| 1083 |
sph_bessell(unsigned int __n, long double __x) |
| 1084 |
{ return __detail::__sph_bessel<long double>(__n, __x); } |
| 1085 |
|
| 1086 |
/** |
| 1087 |
* Return the spherical Bessel function @f$ j_n(x) @f$ of nonnegative order n |
| 1088 |
* and real argument @f$ x >= 0 @f$. |
| 1089 |
* |
| 1090 |
* The spherical Bessel function is defined by: |
| 1091 |
* @f[ |
| 1092 |
* j_n(x) = \left(\frac{\pi}{2x} \right) ^{1/2} J_{n+1/2}(x) |
| 1093 |
* @f] |
| 1094 |
* |
| 1095 |
* @tparam _Tp The floating-point type of the argument @c __x. |
| 1096 |
* @param __n The integral order <tt> n >= 0 </tt> |
| 1097 |
* @param __x The real argument <tt> x >= 0 </tt> |
| 1098 |
* @throw std::domain_error if <tt> __x < 0 </tt>. |
| 1099 |
*/ |
| 1100 |
template<typename _Tp> |
| 1101 |
inline typename __gnu_cxx::__promote<_Tp>::__type |
| 1102 |
sph_bessel(unsigned int __n, _Tp __x) |
| 1103 |
{ |
| 1104 |
typedef typename __gnu_cxx::__promote<_Tp>::__type __type; |
| 1105 |
return __detail::__sph_bessel<__type>(__n, __x); |
| 1106 |
} |
| 1107 |
|
| 1108 |
// Spherical associated Legendre functions |
| 1109 |
|
| 1110 |
/** |
| 1111 |
* Return the spherical Legendre function of nonnegative integral |
| 1112 |
* degree @c l and order @c m and float angle @f$ \theta @f$ in radians. |
| 1113 |
* |
| 1114 |
* @see sph_legendre for details. |
| 1115 |
*/ |
| 1116 |
inline float |
| 1117 |
sph_legendref(unsigned int __l, unsigned int __m, float __theta) |
| 1118 |
{ return __detail::__sph_legendre<float>(__l, __m, __theta); } |
| 1119 |
|
| 1120 |
/** |
| 1121 |
* Return the spherical Legendre function of nonnegative integral |
| 1122 |
* degree @c l and order @c m and <tt>long double</tt> angle @f$ \theta @f$ |
| 1123 |
* in radians. |
| 1124 |
* |
| 1125 |
* @see sph_legendre for details. |
| 1126 |
*/ |
| 1127 |
inline long double |
| 1128 |
sph_legendrel(unsigned int __l, unsigned int __m, long double __theta) |
| 1129 |
{ return __detail::__sph_legendre<long double>(__l, __m, __theta); } |
| 1130 |
|
| 1131 |
/** |
| 1132 |
* Return the spherical Legendre function of nonnegative integral |
| 1133 |
* degree @c l and order @c m and real angle @f$ \theta @f$ in radians. |
| 1134 |
* |
| 1135 |
* The spherical Legendre function is defined by |
| 1136 |
* @f[ |
| 1137 |
* Y_l^m(\theta,\phi) = (-1)^m[\frac{(2l+1)}{4\pi} |
| 1138 |
* \frac{(l-m)!}{(l+m)!}] |
| 1139 |
* P_l^m(\cos\theta) \exp^{im\phi} |
| 1140 |
* @f] |
| 1141 |
* |
| 1142 |
* @tparam _Tp The floating-point type of the angle @c __theta. |
| 1143 |
* @param __l The order <tt> __l >= 0 </tt> |
| 1144 |
* @param __m The degree <tt> __m >= 0 </tt> and <tt> __m <= __l </tt> |
| 1145 |
* @param __theta The radian polar angle argument |
| 1146 |
*/ |
| 1147 |
template<typename _Tp> |
| 1148 |
inline typename __gnu_cxx::__promote<_Tp>::__type |
| 1149 |
sph_legendre(unsigned int __l, unsigned int __m, _Tp __theta) |
| 1150 |
{ |
| 1151 |
typedef typename __gnu_cxx::__promote<_Tp>::__type __type; |
| 1152 |
return __detail::__sph_legendre<__type>(__l, __m, __theta); |
| 1153 |
} |
| 1154 |
|
| 1155 |
// Spherical Neumann functions |
| 1156 |
|
| 1157 |
/** |
| 1158 |
* Return the spherical Neumann function of integral order @f$ n >= 0 @f$ |
| 1159 |
* and @c float argument @f$ x >= 0 @f$. |
| 1160 |
* |
| 1161 |
* @see sph_neumann for details. |
| 1162 |
*/ |
| 1163 |
inline float |
| 1164 |
sph_neumannf(unsigned int __n, float __x) |
| 1165 |
{ return __detail::__sph_neumann<float>(__n, __x); } |
| 1166 |
|
| 1167 |
/** |
| 1168 |
* Return the spherical Neumann function of integral order @f$ n >= 0 @f$ |
| 1169 |
* and <tt>long double</tt> @f$ x >= 0 @f$. |
| 1170 |
* |
| 1171 |
* @see sph_neumann for details. |
| 1172 |
*/ |
| 1173 |
inline long double |
| 1174 |
sph_neumannl(unsigned int __n, long double __x) |
| 1175 |
{ return __detail::__sph_neumann<long double>(__n, __x); } |
| 1176 |
|
| 1177 |
/** |
| 1178 |
* Return the spherical Neumann function of integral order @f$ n >= 0 @f$ |
| 1179 |
* and real argument @f$ x >= 0 @f$. |
| 1180 |
* |
| 1181 |
* The spherical Neumann function is defined by |
| 1182 |
* @f[ |
| 1183 |
* n_n(x) = \left(\frac{\pi}{2x} \right) ^{1/2} N_{n+1/2}(x) |
| 1184 |
* @f] |
| 1185 |
* |
| 1186 |
* @tparam _Tp The floating-point type of the argument @c __x. |
| 1187 |
* @param __n The integral order <tt> n >= 0 </tt> |
| 1188 |
* @param __x The real argument <tt> __x >= 0 </tt> |
| 1189 |
* @throw std::domain_error if <tt> __x < 0 </tt>. |
| 1190 |
*/ |
| 1191 |
template<typename _Tp> |
| 1192 |
inline typename __gnu_cxx::__promote<_Tp>::__type |
| 1193 |
sph_neumann(unsigned int __n, _Tp __x) |
| 1194 |
{ |
| 1195 |
typedef typename __gnu_cxx::__promote<_Tp>::__type __type; |
| 1196 |
return __detail::__sph_neumann<__type>(__n, __x); |
| 1197 |
} |
| 1198 |
|
| 1199 |
/// @} group mathsf |
| 1200 |
|
| 1201 |
_GLIBCXX_END_NAMESPACE_VERSION |
| 1202 |
} // namespace std |
| 1203 |
|
| 1204 |
#ifndef __STRICT_ANSI__ |
| 1205 |
namespace __gnu_cxx _GLIBCXX_VISIBILITY(default) |
| 1206 |
{ |
| 1207 |
_GLIBCXX_BEGIN_NAMESPACE_VERSION |
| 1208 |
|
| 1209 |
/** @addtogroup mathsf |
| 1210 |
* @{ |
| 1211 |
*/ |
| 1212 |
|
| 1213 |
// Airy functions |
| 1214 |
|
| 1215 |
/** |
| 1216 |
* Return the Airy function @f$ Ai(x) @f$ of @c float argument x. |
| 1217 |
*/ |
| 1218 |
inline float |
| 1219 |
airy_aif(float __x) |
| 1220 |
{ |
| 1221 |
float __Ai, __Bi, __Aip, __Bip; |
| 1222 |
std::__detail::__airy<float>(__x, __Ai, __Bi, __Aip, __Bip); |
| 1223 |
return __Ai; |
| 1224 |
} |
| 1225 |
|
| 1226 |
/** |
| 1227 |
* Return the Airy function @f$ Ai(x) @f$ of <tt>long double</tt> argument x. |
| 1228 |
*/ |
| 1229 |
inline long double |
| 1230 |
airy_ail(long double __x) |
| 1231 |
{ |
| 1232 |
long double __Ai, __Bi, __Aip, __Bip; |
| 1233 |
std::__detail::__airy<long double>(__x, __Ai, __Bi, __Aip, __Bip); |
| 1234 |
return __Ai; |
| 1235 |
} |
| 1236 |
|
| 1237 |
/** |
| 1238 |
* Return the Airy function @f$ Ai(x) @f$ of real argument x. |
| 1239 |
*/ |
| 1240 |
template<typename _Tp> |
| 1241 |
inline typename __gnu_cxx::__promote<_Tp>::__type |
| 1242 |
airy_ai(_Tp __x) |
| 1243 |
{ |
| 1244 |
typedef typename __gnu_cxx::__promote<_Tp>::__type __type; |
| 1245 |
__type __Ai, __Bi, __Aip, __Bip; |
| 1246 |
std::__detail::__airy<__type>(__x, __Ai, __Bi, __Aip, __Bip); |
| 1247 |
return __Ai; |
| 1248 |
} |
| 1249 |
|
| 1250 |
/** |
| 1251 |
* Return the Airy function @f$ Bi(x) @f$ of @c float argument x. |
| 1252 |
*/ |
| 1253 |
inline float |
| 1254 |
airy_bif(float __x) |
| 1255 |
{ |
| 1256 |
float __Ai, __Bi, __Aip, __Bip; |
| 1257 |
std::__detail::__airy<float>(__x, __Ai, __Bi, __Aip, __Bip); |
| 1258 |
return __Bi; |
| 1259 |
} |
| 1260 |
|
| 1261 |
/** |
| 1262 |
* Return the Airy function @f$ Bi(x) @f$ of <tt>long double</tt> argument x. |
| 1263 |
*/ |
| 1264 |
inline long double |
| 1265 |
airy_bil(long double __x) |
| 1266 |
{ |
| 1267 |
long double __Ai, __Bi, __Aip, __Bip; |
| 1268 |
std::__detail::__airy<long double>(__x, __Ai, __Bi, __Aip, __Bip); |
| 1269 |
return __Bi; |
| 1270 |
} |
| 1271 |
|
| 1272 |
/** |
| 1273 |
* Return the Airy function @f$ Bi(x) @f$ of real argument x. |
| 1274 |
*/ |
| 1275 |
template<typename _Tp> |
| 1276 |
inline typename __gnu_cxx::__promote<_Tp>::__type |
| 1277 |
airy_bi(_Tp __x) |
| 1278 |
{ |
| 1279 |
typedef typename __gnu_cxx::__promote<_Tp>::__type __type; |
| 1280 |
__type __Ai, __Bi, __Aip, __Bip; |
| 1281 |
std::__detail::__airy<__type>(__x, __Ai, __Bi, __Aip, __Bip); |
| 1282 |
return __Bi; |
| 1283 |
} |
| 1284 |
|
| 1285 |
// Confluent hypergeometric functions |
| 1286 |
|
| 1287 |
/** |
| 1288 |
* Return the confluent hypergeometric function @f$ {}_1F_1(a;c;x) @f$ |
| 1289 |
* of @c float numeratorial parameter @c a, denominatorial parameter @c c, |
| 1290 |
* and argument @c x. |
| 1291 |
* |
| 1292 |
* @see conf_hyperg for details. |
| 1293 |
*/ |
| 1294 |
inline float |
| 1295 |
conf_hypergf(float __a, float __c, float __x) |
| 1296 |
{ return std::__detail::__conf_hyperg<float>(__a, __c, __x); } |
| 1297 |
|
| 1298 |
/** |
| 1299 |
* Return the confluent hypergeometric function @f$ {}_1F_1(a;c;x) @f$ |
| 1300 |
* of <tt>long double</tt> numeratorial parameter @c a, |
| 1301 |
* denominatorial parameter @c c, and argument @c x. |
| 1302 |
* |
| 1303 |
* @see conf_hyperg for details. |
| 1304 |
*/ |
| 1305 |
inline long double |
| 1306 |
conf_hypergl(long double __a, long double __c, long double __x) |
| 1307 |
{ return std::__detail::__conf_hyperg<long double>(__a, __c, __x); } |
| 1308 |
|
| 1309 |
/** |
| 1310 |
* Return the confluent hypergeometric function @f$ {}_1F_1(a;c;x) @f$ |
| 1311 |
* of real numeratorial parameter @c a, denominatorial parameter @c c, |
| 1312 |
* and argument @c x. |
| 1313 |
* |
| 1314 |
* The confluent hypergeometric function is defined by |
| 1315 |
* @f[ |
| 1316 |
* {}_1F_1(a;c;x) = \sum_{n=0}^{\infty} \frac{(a)_n x^n}{(c)_n n!} |
| 1317 |
* @f] |
| 1318 |
* where the Pochhammer symbol is @f$ (x)_k = (x)(x+1)...(x+k-1) @f$, |
| 1319 |
* @f$ (x)_0 = 1 @f$ |
| 1320 |
* |
| 1321 |
* @param __a The numeratorial parameter |
| 1322 |
* @param __c The denominatorial parameter |
| 1323 |
* @param __x The argument |
| 1324 |
*/ |
| 1325 |
template<typename _Tpa, typename _Tpc, typename _Tp> |
| 1326 |
inline typename __gnu_cxx::__promote_3<_Tpa, _Tpc, _Tp>::__type |
| 1327 |
conf_hyperg(_Tpa __a, _Tpc __c, _Tp __x) |
| 1328 |
{ |
| 1329 |
typedef typename __gnu_cxx::__promote_3<_Tpa, _Tpc, _Tp>::__type __type; |
| 1330 |
return std::__detail::__conf_hyperg<__type>(__a, __c, __x); |
| 1331 |
} |
| 1332 |
|
| 1333 |
// Hypergeometric functions |
| 1334 |
|
| 1335 |
/** |
| 1336 |
* Return the hypergeometric function @f$ {}_2F_1(a,b;c;x) @f$ |
| 1337 |
* of @ float numeratorial parameters @c a and @c b, |
| 1338 |
* denominatorial parameter @c c, and argument @c x. |
| 1339 |
* |
| 1340 |
* @see hyperg for details. |
| 1341 |
*/ |
| 1342 |
inline float |
| 1343 |
hypergf(float __a, float __b, float __c, float __x) |
| 1344 |
{ return std::__detail::__hyperg<float>(__a, __b, __c, __x); } |
| 1345 |
|
| 1346 |
/** |
| 1347 |
* Return the hypergeometric function @f$ {}_2F_1(a,b;c;x) @f$ |
| 1348 |
* of <tt>long double</tt> numeratorial parameters @c a and @c b, |
| 1349 |
* denominatorial parameter @c c, and argument @c x. |
| 1350 |
* |
| 1351 |
* @see hyperg for details. |
| 1352 |
*/ |
| 1353 |
inline long double |
| 1354 |
hypergl(long double __a, long double __b, long double __c, long double __x) |
| 1355 |
{ return std::__detail::__hyperg<long double>(__a, __b, __c, __x); } |
| 1356 |
|
| 1357 |
/** |
| 1358 |
* Return the hypergeometric function @f$ {}_2F_1(a,b;c;x) @f$ |
| 1359 |
* of real numeratorial parameters @c a and @c b, |
| 1360 |
* denominatorial parameter @c c, and argument @c x. |
| 1361 |
* |
| 1362 |
* The hypergeometric function is defined by |
| 1363 |
* @f[ |
| 1364 |
* {}_2F_1(a;c;x) = \sum_{n=0}^{\infty} \frac{(a)_n (b)_n x^n}{(c)_n n!} |
| 1365 |
* @f] |
| 1366 |
* where the Pochhammer symbol is @f$ (x)_k = (x)(x+1)...(x+k-1) @f$, |
| 1367 |
* @f$ (x)_0 = 1 @f$ |
| 1368 |
* |
| 1369 |
* @param __a The first numeratorial parameter |
| 1370 |
* @param __b The second numeratorial parameter |
| 1371 |
* @param __c The denominatorial parameter |
| 1372 |
* @param __x The argument |
| 1373 |
*/ |
| 1374 |
template<typename _Tpa, typename _Tpb, typename _Tpc, typename _Tp> |
| 1375 |
inline typename __gnu_cxx::__promote_4<_Tpa, _Tpb, _Tpc, _Tp>::__type |
| 1376 |
hyperg(_Tpa __a, _Tpb __b, _Tpc __c, _Tp __x) |
| 1377 |
{ |
| 1378 |
typedef typename __gnu_cxx::__promote_4<_Tpa, _Tpb, _Tpc, _Tp> |
| 1379 |
::__type __type; |
| 1380 |
return std::__detail::__hyperg<__type>(__a, __b, __c, __x); |
| 1381 |
} |
| 1382 |
|
| 1383 |
/// @} |
| 1384 |
_GLIBCXX_END_NAMESPACE_VERSION |
| 1385 |
} // namespace __gnu_cxx |
| 1386 |
#endif // __STRICT_ANSI__ |
| 1387 |
|
| 1388 |
#pragma GCC visibility pop |
| 1389 |
|
| 1390 |
#endif // _GLIBCXX_BITS_SPECFUN_H |