| 1 | 
 // Mathematical Special Functions for -*- C++ -*- | 
 
 
 
 
 
 | 2 | 
  | 
 
 
 
 
 
 | 3 | 
 // Copyright (C) 2006-2021 Free Software Foundation, Inc. | 
 
 
 
 
 
 | 4 | 
 // | 
 
 
 
 
 
 | 5 | 
 // This file is part of the GNU ISO C++ Library.  This library is free | 
 
 
 
 
 
 | 6 | 
 // software; you can redistribute it and/or modify it under the | 
 
 
 
 
 
 | 7 | 
 // terms of the GNU General Public License as published by the | 
 
 
 
 
 
 | 8 | 
 // Free Software Foundation; either version 3, or (at your option) | 
 
 
 
 
 
 | 9 | 
 // any later version. | 
 
 
 
 
 
 | 10 | 
  | 
 
 
 
 
 
 | 11 | 
 // This library is distributed in the hope that it will be useful, | 
 
 
 
 
 
 | 12 | 
 // but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 
 
 
 
 
 | 13 | 
 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
 
 
 
 
 
 | 14 | 
 // GNU General Public License for more details. | 
 
 
 
 
 
 | 15 | 
  | 
 
 
 
 
 
 | 16 | 
 // Under Section 7 of GPL version 3, you are granted additional | 
 
 
 
 
 
 | 17 | 
 // permissions described in the GCC Runtime Library Exception, version | 
 
 
 
 
 
 | 18 | 
 // 3.1, as published by the Free Software Foundation. | 
 
 
 
 
 
 | 19 | 
  | 
 
 
 
 
 
 | 20 | 
 // You should have received a copy of the GNU General Public License and | 
 
 
 
 
 
 | 21 | 
 // a copy of the GCC Runtime Library Exception along with this program; | 
 
 
 
 
 
 | 22 | 
 // see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see | 
 
 
 
 
 
 | 23 | 
 // <http://www.gnu.org/licenses/>. | 
 
 
 
 
 
 | 24 | 
  | 
 
 
 
 
 
 | 25 | 
 /** @file bits/specfun.h | 
 
 
 
 
 
 | 26 | 
  *  This is an internal header file, included by other library headers. | 
 
 
 
 
 
 | 27 | 
  *  Do not attempt to use it directly. @headername{cmath} | 
 
 
 
 
 
 | 28 | 
  */ | 
 
 
 
 
 
 | 29 | 
  | 
 
 
 
 
 
 | 30 | 
 #ifndef _GLIBCXX_BITS_SPECFUN_H | 
 
 
 
 
 
 | 31 | 
 #define _GLIBCXX_BITS_SPECFUN_H 1 | 
 
 
 
 
 
 | 32 | 
  | 
 
 
 
 
 
 | 33 | 
 #pragma GCC visibility push(default) | 
 
 
 
 
 
 | 34 | 
  | 
 
 
 
 
 
 | 35 | 
 #include <bits/c++config.h> | 
 
 
 
 
 
 | 36 | 
  | 
 
 
 
 
 
 | 37 | 
 #define __STDCPP_MATH_SPEC_FUNCS__ 201003L | 
 
 
 
 
 
 | 38 | 
  | 
 
 
 
 
 
 | 39 | 
 #define __cpp_lib_math_special_functions 201603L | 
 
 
 
 
 
 | 40 | 
  | 
 
 
 
 
 
 | 41 | 
 #if __cplusplus <= 201403L && __STDCPP_WANT_MATH_SPEC_FUNCS__ == 0 | 
 
 
 
 
 
 | 42 | 
 # error include <cmath> and define __STDCPP_WANT_MATH_SPEC_FUNCS__ | 
 
 
 
 
 
 | 43 | 
 #endif | 
 
 
 
 
 
 | 44 | 
  | 
 
 
 
 
 
 | 45 | 
 #include <bits/stl_algobase.h> | 
 
 
 
 
 
 | 46 | 
 #include <limits> | 
 
 
 
 
 
 | 47 | 
 #include <type_traits> | 
 
 
 
 
 
 | 48 | 
  | 
 
 
 
 
 
 | 49 | 
 #include <tr1/gamma.tcc> | 
 
 
 
 
 
 | 50 | 
 #include <tr1/bessel_function.tcc> | 
 
 
 
 
 
 | 51 | 
 #include <tr1/beta_function.tcc> | 
 
 
 
 
 
 | 52 | 
 #include <tr1/ell_integral.tcc> | 
 
 
 
 
 
 | 53 | 
 #include <tr1/exp_integral.tcc> | 
 
 
 
 
 
 | 54 | 
 #include <tr1/hypergeometric.tcc> | 
 
 
 
 
 
 | 55 | 
 #include <tr1/legendre_function.tcc> | 
 
 
 
 
 
 | 56 | 
 #include <tr1/modified_bessel_func.tcc> | 
 
 
 
 
 
 | 57 | 
 #include <tr1/poly_hermite.tcc> | 
 
 
 
 
 
 | 58 | 
 #include <tr1/poly_laguerre.tcc> | 
 
 
 
 
 
 | 59 | 
 #include <tr1/riemann_zeta.tcc> | 
 
 
 
 
 
 | 60 | 
  | 
 
 
 
 
 
 | 61 | 
 namespace std _GLIBCXX_VISIBILITY(default) | 
 
 
 
 
 
 | 62 | 
 { | 
 
 
 
 
 
 | 63 | 
 _GLIBCXX_BEGIN_NAMESPACE_VERSION | 
 
 
 
 
 
 | 64 | 
  | 
 
 
 
 
 
 | 65 | 
   /** | 
 
 
 
 
 
 | 66 | 
    * @defgroup mathsf Mathematical Special Functions | 
 
 
 
 
 
 | 67 | 
    * @ingroup numerics | 
 
 
 
 
 
 | 68 | 
    * | 
 
 
 
 
 
 | 69 | 
    * @section mathsf_desc Mathematical Special Functions | 
 
 
 
 
 
 | 70 | 
    * | 
 
 
 
 
 
 | 71 | 
    * A collection of advanced mathematical special functions, | 
 
 
 
 
 
 | 72 | 
    * defined by ISO/IEC IS 29124 and then added to ISO C++ 2017. | 
 
 
 
 
 
 | 73 | 
    * | 
 
 
 
 
 
 | 74 | 
    * | 
 
 
 
 
 
 | 75 | 
    * @subsection mathsf_intro Introduction and History | 
 
 
 
 
 
 | 76 | 
    * The first significant library upgrade on the road to C++2011, | 
 
 
 
 
 
 | 77 | 
    * <a href="http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2005/n1836.pdf"> | 
 
 
 
 
 
 | 78 | 
    * TR1</a>, included a set of 23 mathematical functions that significantly | 
 
 
 
 
 
 | 79 | 
    * extended the standard transcendental functions inherited from C and declared | 
 
 
 
 
 
 | 80 | 
    * in @<cmath@>. | 
 
 
 
 
 
 | 81 | 
    * | 
 
 
 
 
 
 | 82 | 
    * Although most components from TR1 were eventually adopted for C++11 these | 
 
 
 
 
 
 | 83 | 
    * math functions were left behind out of concern for implementability. | 
 
 
 
 
 
 | 84 | 
    * The math functions were published as a separate international standard | 
 
 
 
 
 
 | 85 | 
    * <a href="http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2010/n3060.pdf"> | 
 
 
 
 
 
 | 86 | 
    * IS 29124 - Extensions to the C++ Library to Support Mathematical Special | 
 
 
 
 
 
 | 87 | 
    * Functions</a>. | 
 
 
 
 
 
 | 88 | 
    * | 
 
 
 
 
 
 | 89 | 
    * For C++17 these functions were incorporated into the main standard. | 
 
 
 
 
 
 | 90 | 
    * | 
 
 
 
 
 
 | 91 | 
    * @subsection mathsf_contents Contents | 
 
 
 
 
 
 | 92 | 
    * The following functions are implemented in namespace @c std: | 
 
 
 
 
 
 | 93 | 
    * - @ref assoc_laguerre "assoc_laguerre - Associated Laguerre functions" | 
 
 
 
 
 
 | 94 | 
    * - @ref assoc_legendre "assoc_legendre - Associated Legendre functions" | 
 
 
 
 
 
 | 95 | 
    * - @ref beta "beta - Beta functions" | 
 
 
 
 
 
 | 96 | 
    * - @ref comp_ellint_1 "comp_ellint_1 - Complete elliptic functions of the first kind" | 
 
 
 
 
 
 | 97 | 
    * - @ref comp_ellint_2 "comp_ellint_2 - Complete elliptic functions of the second kind" | 
 
 
 
 
 
 | 98 | 
    * - @ref comp_ellint_3 "comp_ellint_3 - Complete elliptic functions of the third kind" | 
 
 
 
 
 
 | 99 | 
    * - @ref cyl_bessel_i "cyl_bessel_i - Regular modified cylindrical Bessel functions" | 
 
 
 
 
 
 | 100 | 
    * - @ref cyl_bessel_j "cyl_bessel_j - Cylindrical Bessel functions of the first kind" | 
 
 
 
 
 
 | 101 | 
    * - @ref cyl_bessel_k "cyl_bessel_k - Irregular modified cylindrical Bessel functions" | 
 
 
 
 
 
 | 102 | 
    * - @ref cyl_neumann "cyl_neumann - Cylindrical Neumann functions or Cylindrical Bessel functions of the second kind" | 
 
 
 
 
 
 | 103 | 
    * - @ref ellint_1 "ellint_1 - Incomplete elliptic functions of the first kind" | 
 
 
 
 
 
 | 104 | 
    * - @ref ellint_2 "ellint_2 - Incomplete elliptic functions of the second kind" | 
 
 
 
 
 
 | 105 | 
    * - @ref ellint_3 "ellint_3 - Incomplete elliptic functions of the third kind" | 
 
 
 
 
 
 | 106 | 
    * - @ref expint "expint - The exponential integral" | 
 
 
 
 
 
 | 107 | 
    * - @ref hermite "hermite - Hermite polynomials" | 
 
 
 
 
 
 | 108 | 
    * - @ref laguerre "laguerre - Laguerre functions" | 
 
 
 
 
 
 | 109 | 
    * - @ref legendre "legendre - Legendre polynomials" | 
 
 
 
 
 
 | 110 | 
    * - @ref riemann_zeta "riemann_zeta - The Riemann zeta function" | 
 
 
 
 
 
 | 111 | 
    * - @ref sph_bessel "sph_bessel - Spherical Bessel functions" | 
 
 
 
 
 
 | 112 | 
    * - @ref sph_legendre "sph_legendre - Spherical Legendre functions" | 
 
 
 
 
 
 | 113 | 
    * - @ref sph_neumann "sph_neumann - Spherical Neumann functions" | 
 
 
 
 
 
 | 114 | 
    * | 
 
 
 
 
 
 | 115 | 
    * The hypergeometric functions were stricken from the TR29124 and C++17 | 
 
 
 
 
 
 | 116 | 
    * versions of this math library because of implementation concerns. | 
 
 
 
 
 
 | 117 | 
    * However, since they were in the TR1 version and since they are popular | 
 
 
 
 
 
 | 118 | 
    * we kept them as an extension in namespace @c __gnu_cxx: | 
 
 
 
 
 
 | 119 | 
    * - @ref __gnu_cxx::conf_hyperg "conf_hyperg - Confluent hypergeometric functions" | 
 
 
 
 
 
 | 120 | 
    * - @ref __gnu_cxx::hyperg "hyperg - Hypergeometric functions" | 
 
 
 
 
 
 | 121 | 
    * | 
 
 
 
 
 
 | 122 | 
    * <!-- @subsection mathsf_general General Features --> | 
 
 
 
 
 
 | 123 | 
    * | 
 
 
 
 
 
 | 124 | 
    * @subsection mathsf_promotion Argument Promotion | 
 
 
 
 
 
 | 125 | 
    * The arguments suppled to the non-suffixed functions will be promoted | 
 
 
 
 
 
 | 126 | 
    * according to the following rules: | 
 
 
 
 
 
 | 127 | 
    * 1. If any argument intended to be floating point is given an integral value | 
 
 
 
 
 
 | 128 | 
    * That integral value is promoted to double. | 
 
 
 
 
 
 | 129 | 
    * 2. All floating point arguments are promoted up to the largest floating | 
 
 
 
 
 
 | 130 | 
    *    point precision among them. | 
 
 
 
 
 
 | 131 | 
    * | 
 
 
 
 
 
 | 132 | 
    * @subsection mathsf_NaN NaN Arguments | 
 
 
 
 
 
 | 133 | 
    * If any of the floating point arguments supplied to these functions is | 
 
 
 
 
 
 | 134 | 
    * invalid or NaN (std::numeric_limits<Tp>::quiet_NaN), | 
 
 
 
 
 
 | 135 | 
    * the value NaN is returned. | 
 
 
 
 
 
 | 136 | 
    * | 
 
 
 
 
 
 | 137 | 
    * @subsection mathsf_impl Implementation | 
 
 
 
 
 
 | 138 | 
    * | 
 
 
 
 
 
 | 139 | 
    * We strive to implement the underlying math with type generic algorithms | 
 
 
 
 
 
 | 140 | 
    * to the greatest extent possible.  In practice, the functions are thin | 
 
 
 
 
 
 | 141 | 
    * wrappers that dispatch to function templates. Type dependence is | 
 
 
 
 
 
 | 142 | 
    * controlled with std::numeric_limits and functions thereof. | 
 
 
 
 
 
 | 143 | 
    * | 
 
 
 
 
 
 | 144 | 
    * We don't promote @c float to @c double or @c double to <tt>long double</tt> | 
 
 
 
 
 
 | 145 | 
    * reflexively.  The goal is for @c float functions to operate more quickly, | 
 
 
 
 
 
 | 146 | 
    * at the cost of @c float accuracy and possibly a smaller domain of validity. | 
 
 
 
 
 
 | 147 | 
    * Similaryly, <tt>long double</tt> should give you more dynamic range | 
 
 
 
 
 
 | 148 | 
    * and slightly more pecision than @c double on many systems. | 
 
 
 
 
 
 | 149 | 
    * | 
 
 
 
 
 
 | 150 | 
    * @subsection mathsf_testing Testing | 
 
 
 
 
 
 | 151 | 
    * | 
 
 
 
 
 
 | 152 | 
    * These functions have been tested against equivalent implementations | 
 
 
 
 
 
 | 153 | 
    * from the <a href="http://www.gnu.org/software/gsl"> | 
 
 
 
 
 
 | 154 | 
    * Gnu Scientific Library, GSL</a> and | 
 
 
 
 
 
 | 155 | 
    * <a href="http://www.boost.org/doc/libs/1_60_0/libs/math/doc/html/index.html">Boost</a> | 
 
 
 
 
 
 | 156 | 
    * and the ratio | 
 
 
 
 
 
 | 157 | 
    * @f[ | 
 
 
 
 
 
 | 158 | 
    *   \frac{|f - f_{test}|}{|f_{test}|} | 
 
 
 
 
 
 | 159 | 
    * @f] | 
 
 
 
 
 
 | 160 | 
    * is generally found to be within 10<sup>-15</sup> for 64-bit double on | 
 
 
 
 
 
 | 161 | 
    * linux-x86_64 systems over most of the ranges of validity. | 
 
 
 
 
 
 | 162 | 
    *  | 
 
 
 
 
 
 | 163 | 
    * @todo Provide accuracy comparisons on a per-function basis for a small | 
 
 
 
 
 
 | 164 | 
    *       number of targets. | 
 
 
 
 
 
 | 165 | 
    * | 
 
 
 
 
 
 | 166 | 
    * @subsection mathsf_bibliography General Bibliography | 
 
 
 
 
 
 | 167 | 
    * | 
 
 
 
 
 
 | 168 | 
    * @see Abramowitz and Stegun: Handbook of Mathematical Functions, | 
 
 
 
 
 
 | 169 | 
    * with Formulas, Graphs, and Mathematical Tables | 
 
 
 
 
 
 | 170 | 
    * Edited by Milton Abramowitz and Irene A. Stegun, | 
 
 
 
 
 
 | 171 | 
    * National Bureau of Standards  Applied Mathematics Series - 55 | 
 
 
 
 
 
 | 172 | 
    * Issued June 1964, Tenth Printing, December 1972, with corrections | 
 
 
 
 
 
 | 173 | 
    * Electronic versions of A&S abound including both pdf and navigable html. | 
 
 
 
 
 
 | 174 | 
    * @see for example  http://people.math.sfu.ca/~cbm/aands/ | 
 
 
 
 
 
 | 175 | 
    * | 
 
 
 
 
 
 | 176 | 
    * @see The old A&S has been redone as the | 
 
 
 
 
 
 | 177 | 
    * NIST Digital Library of Mathematical Functions: http://dlmf.nist.gov/ | 
 
 
 
 
 
 | 178 | 
    * This version is far more navigable and includes more recent work. | 
 
 
 
 
 
 | 179 | 
    * | 
 
 
 
 
 
 | 180 | 
    * @see An Atlas of Functions: with Equator, the Atlas Function Calculator | 
 
 
 
 
 
 | 181 | 
    * 2nd Edition, by Oldham, Keith B., Myland, Jan, Spanier, Jerome | 
 
 
 
 
 
 | 182 | 
    * | 
 
 
 
 
 
 | 183 | 
    * @see Asymptotics and Special Functions by Frank W. J. Olver, | 
 
 
 
 
 
 | 184 | 
    * Academic Press, 1974 | 
 
 
 
 
 
 | 185 | 
    * | 
 
 
 
 
 
 | 186 | 
    * @see Numerical Recipes in C, The Art of Scientific Computing, | 
 
 
 
 
 
 | 187 | 
    * by William H. Press, Second Ed., Saul A. Teukolsky, | 
 
 
 
 
 
 | 188 | 
    * William T. Vetterling, and Brian P. Flannery, | 
 
 
 
 
 
 | 189 | 
    * Cambridge University Press, 1992 | 
 
 
 
 
 
 | 190 | 
    * | 
 
 
 
 
 
 | 191 | 
    * @see The Special Functions and Their Approximations: Volumes 1 and 2, | 
 
 
 
 
 
 | 192 | 
    * by Yudell L. Luke, Academic Press, 1969 | 
 
 
 
 
 
 | 193 | 
    * | 
 
 
 
 
 
 | 194 | 
    * @{ | 
 
 
 
 
 
 | 195 | 
    */ | 
 
 
 
 
 
 | 196 | 
  | 
 
 
 
 
 
 | 197 | 
   // Associated Laguerre polynomials | 
 
 
 
 
 
 | 198 | 
  | 
 
 
 
 
 
 | 199 | 
   /** | 
 
 
 
 
 
 | 200 | 
    * Return the associated Laguerre polynomial of order @c n, | 
 
 
 
 
 
 | 201 | 
    * degree @c m: @f$ L_n^m(x) @f$ for @c float argument. | 
 
 
 
 
 
 | 202 | 
    * | 
 
 
 
 
 
 | 203 | 
    * @see assoc_laguerre for more details. | 
 
 
 
 
 
 | 204 | 
    */ | 
 
 
 
 
 
 | 205 | 
   inline float | 
 
 
 
 
 
 | 206 | 
   assoc_laguerref(unsigned int __n, unsigned int __m, float __x) | 
 
 
 
 
 
 | 207 | 
   { return __detail::__assoc_laguerre<float>(__n, __m, __x); } | 
 
 
 
 
 
 | 208 | 
  | 
 
 
 
 
 
 | 209 | 
   /** | 
 
 
 
 
 
 | 210 | 
    * Return the associated Laguerre polynomial of order @c n, | 
 
 
 
 
 
 | 211 | 
    * degree @c m: @f$ L_n^m(x) @f$. | 
 
 
 
 
 
 | 212 | 
    * | 
 
 
 
 
 
 | 213 | 
    * @see assoc_laguerre for more details. | 
 
 
 
 
 
 | 214 | 
    */ | 
 
 
 
 
 
 | 215 | 
   inline long double | 
 
 
 
 
 
 | 216 | 
   assoc_laguerrel(unsigned int __n, unsigned int __m, long double __x) | 
 
 
 
 
 
 | 217 | 
   { return __detail::__assoc_laguerre<long double>(__n, __m, __x); } | 
 
 
 
 
 
 | 218 | 
  | 
 
 
 
 
 
 | 219 | 
   /** | 
 
 
 
 
 
 | 220 | 
    * Return the associated Laguerre polynomial of nonnegative order @c n, | 
 
 
 
 
 
 | 221 | 
    * nonnegative degree @c m and real argument @c x: @f$ L_n^m(x) @f$. | 
 
 
 
 
 
 | 222 | 
    * | 
 
 
 
 
 
 | 223 | 
    * The associated Laguerre function of real degree @f$ \alpha @f$, | 
 
 
 
 
 
 | 224 | 
    * @f$ L_n^\alpha(x) @f$, is defined by | 
 
 
 
 
 
 | 225 | 
    * @f[ | 
 
 
 
 
 
 | 226 | 
    *     L_n^\alpha(x) = \frac{(\alpha + 1)_n}{n!} | 
 
 
 
 
 
 | 227 | 
    *                     {}_1F_1(-n; \alpha + 1; x) | 
 
 
 
 
 
 | 228 | 
    * @f] | 
 
 
 
 
 
 | 229 | 
    * where @f$ (\alpha)_n @f$ is the Pochhammer symbol and | 
 
 
 
 
 
 | 230 | 
    * @f$ {}_1F_1(a; c; x) @f$ is the confluent hypergeometric function. | 
 
 
 
 
 
 | 231 | 
    * | 
 
 
 
 
 
 | 232 | 
    * The associated Laguerre polynomial is defined for integral | 
 
 
 
 
 
 | 233 | 
    * degree @f$ \alpha = m @f$ by: | 
 
 
 
 
 
 | 234 | 
    * @f[ | 
 
 
 
 
 
 | 235 | 
    *     L_n^m(x) = (-1)^m \frac{d^m}{dx^m} L_{n + m}(x) | 
 
 
 
 
 
 | 236 | 
    * @f] | 
 
 
 
 
 
 | 237 | 
    * where the Laguerre polynomial is defined by: | 
 
 
 
 
 
 | 238 | 
    * @f[ | 
 
 
 
 
 
 | 239 | 
    *     L_n(x) = \frac{e^x}{n!} \frac{d^n}{dx^n} (x^ne^{-x}) | 
 
 
 
 
 
 | 240 | 
    * @f] | 
 
 
 
 
 
 | 241 | 
    * and @f$ x >= 0 @f$. | 
 
 
 
 
 
 | 242 | 
    * @see laguerre for details of the Laguerre function of degree @c n | 
 
 
 
 
 
 | 243 | 
    * | 
 
 
 
 
 
 | 244 | 
    * @tparam _Tp The floating-point type of the argument @c __x. | 
 
 
 
 
 
 | 245 | 
    * @param __n The order of the Laguerre function, <tt>__n >= 0</tt>. | 
 
 
 
 
 
 | 246 | 
    * @param __m The degree of the Laguerre function, <tt>__m >= 0</tt>. | 
 
 
 
 
 
 | 247 | 
    * @param __x The argument of the Laguerre function, <tt>__x >= 0</tt>. | 
 
 
 
 
 
 | 248 | 
    * @throw std::domain_error if <tt>__x < 0</tt>. | 
 
 
 
 
 
 | 249 | 
    */ | 
 
 
 
 
 
 | 250 | 
   template<typename _Tp> | 
 
 
 
 
 
 | 251 | 
     inline typename __gnu_cxx::__promote<_Tp>::__type | 
 
 
 
 
 
 | 252 | 
     assoc_laguerre(unsigned int __n, unsigned int __m, _Tp __x) | 
 
 
 
 
 
 | 253 | 
     { | 
 
 
 
 
 
 | 254 | 
       typedef typename __gnu_cxx::__promote<_Tp>::__type __type; | 
 
 
 
 
 
 | 255 | 
       return __detail::__assoc_laguerre<__type>(__n, __m, __x); | 
 
 
 
 
 
 | 256 | 
     } | 
 
 
 
 
 
 | 257 | 
  | 
 
 
 
 
 
 | 258 | 
   // Associated Legendre functions | 
 
 
 
 
 
 | 259 | 
  | 
 
 
 
 
 
 | 260 | 
   /** | 
 
 
 
 
 
 | 261 | 
    * Return the associated Legendre function of degree @c l and order @c m | 
 
 
 
 
 
 | 262 | 
    * for @c float argument. | 
 
 
 
 
 
 | 263 | 
    * | 
 
 
 
 
 
 | 264 | 
    * @see assoc_legendre for more details. | 
 
 
 
 
 
 | 265 | 
    */ | 
 
 
 
 
 
 | 266 | 
   inline float | 
 
 
 
 
 
 | 267 | 
   assoc_legendref(unsigned int __l, unsigned int __m, float __x) | 
 
 
 
 
 
 | 268 | 
   { return __detail::__assoc_legendre_p<float>(__l, __m, __x); } | 
 
 
 
 
 
 | 269 | 
  | 
 
 
 
 
 
 | 270 | 
   /** | 
 
 
 
 
 
 | 271 | 
    * Return the associated Legendre function of degree @c l and order @c m. | 
 
 
 
 
 
 | 272 | 
    * | 
 
 
 
 
 
 | 273 | 
    * @see assoc_legendre for more details. | 
 
 
 
 
 
 | 274 | 
    */ | 
 
 
 
 
 
 | 275 | 
   inline long double | 
 
 
 
 
 
 | 276 | 
   assoc_legendrel(unsigned int __l, unsigned int __m, long double __x) | 
 
 
 
 
 
 | 277 | 
   { return __detail::__assoc_legendre_p<long double>(__l, __m, __x); } | 
 
 
 
 
 
 | 278 | 
  | 
 
 
 
 
 
 | 279 | 
  | 
 
 
 
 
 
 | 280 | 
   /** | 
 
 
 
 
 
 | 281 | 
    * Return the associated Legendre function of degree @c l and order @c m. | 
 
 
 
 
 
 | 282 | 
    * | 
 
 
 
 
 
 | 283 | 
    * The associated Legendre function is derived from the Legendre function | 
 
 
 
 
 
 | 284 | 
    * @f$ P_l(x) @f$ by the Rodrigues formula: | 
 
 
 
 
 
 | 285 | 
    * @f[ | 
 
 
 
 
 
 | 286 | 
    *   P_l^m(x) = (1 - x^2)^{m/2}\frac{d^m}{dx^m}P_l(x) | 
 
 
 
 
 
 | 287 | 
    * @f] | 
 
 
 
 
 
 | 288 | 
    * @see legendre for details of the Legendre function of degree @c l | 
 
 
 
 
 
 | 289 | 
    * | 
 
 
 
 
 
 | 290 | 
    * @tparam _Tp The floating-point type of the argument @c __x. | 
 
 
 
 
 
 | 291 | 
    * @param  __l  The degree <tt>__l >= 0</tt>. | 
 
 
 
 
 
 | 292 | 
    * @param  __m  The order <tt>__m <= l</tt>. | 
 
 
 
 
 
 | 293 | 
    * @param  __x  The argument, <tt>abs(__x) <= 1</tt>. | 
 
 
 
 
 
 | 294 | 
    * @throw std::domain_error if <tt>abs(__x) > 1</tt>. | 
 
 
 
 
 
 | 295 | 
    */ | 
 
 
 
 
 
 | 296 | 
   template<typename _Tp> | 
 
 
 
 
 
 | 297 | 
     inline typename __gnu_cxx::__promote<_Tp>::__type | 
 
 
 
 
 
 | 298 | 
     assoc_legendre(unsigned int __l, unsigned int __m, _Tp __x) | 
 
 
 
 
 
 | 299 | 
     { | 
 
 
 
 
 
 | 300 | 
       typedef typename __gnu_cxx::__promote<_Tp>::__type __type; | 
 
 
 
 
 
 | 301 | 
       return __detail::__assoc_legendre_p<__type>(__l, __m, __x); | 
 
 
 
 
 
 | 302 | 
     } | 
 
 
 
 
 
 | 303 | 
  | 
 
 
 
 
 
 | 304 | 
   // Beta functions | 
 
 
 
 
 
 | 305 | 
  | 
 
 
 
 
 
 | 306 | 
   /** | 
 
 
 
 
 
 | 307 | 
    * Return the beta function, @f$ B(a,b) @f$, for @c float parameters @c a, @c b. | 
 
 
 
 
 
 | 308 | 
    * | 
 
 
 
 
 
 | 309 | 
    * @see beta for more details. | 
 
 
 
 
 
 | 310 | 
    */ | 
 
 
 
 
 
 | 311 | 
   inline float | 
 
 
 
 
 
 | 312 | 
   betaf(float __a, float __b) | 
 
 
 
 
 
 | 313 | 
   { return __detail::__beta<float>(__a, __b); } | 
 
 
 
 
 
 | 314 | 
  | 
 
 
 
 
 
 | 315 | 
   /** | 
 
 
 
 
 
 | 316 | 
    * Return the beta function, @f$B(a,b)@f$, for long double | 
 
 
 
 
 
 | 317 | 
    * parameters @c a, @c b. | 
 
 
 
 
 
 | 318 | 
    * | 
 
 
 
 
 
 | 319 | 
    * @see beta for more details. | 
 
 
 
 
 
 | 320 | 
    */ | 
 
 
 
 
 
 | 321 | 
   inline long double | 
 
 
 
 
 
 | 322 | 
   betal(long double __a, long double __b) | 
 
 
 
 
 
 | 323 | 
   { return __detail::__beta<long double>(__a, __b); } | 
 
 
 
 
 
 | 324 | 
  | 
 
 
 
 
 
 | 325 | 
   /** | 
 
 
 
 
 
 | 326 | 
    * Return the beta function, @f$B(a,b)@f$, for real parameters @c a, @c b. | 
 
 
 
 
 
 | 327 | 
    * | 
 
 
 
 
 
 | 328 | 
    * The beta function is defined by | 
 
 
 
 
 
 | 329 | 
    * @f[ | 
 
 
 
 
 
 | 330 | 
    *   B(a,b) = \int_0^1 t^{a - 1} (1 - t)^{b - 1} dt | 
 
 
 
 
 
 | 331 | 
    *          = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)} | 
 
 
 
 
 
 | 332 | 
    * @f] | 
 
 
 
 
 
 | 333 | 
    * where @f$ a > 0 @f$ and @f$ b > 0 @f$ | 
 
 
 
 
 
 | 334 | 
    * | 
 
 
 
 
 
 | 335 | 
    * @tparam _Tpa The floating-point type of the parameter @c __a. | 
 
 
 
 
 
 | 336 | 
    * @tparam _Tpb The floating-point type of the parameter @c __b. | 
 
 
 
 
 
 | 337 | 
    * @param __a The first argument of the beta function, <tt> __a > 0 </tt>. | 
 
 
 
 
 
 | 338 | 
    * @param __b The second argument of the beta function, <tt> __b > 0 </tt>. | 
 
 
 
 
 
 | 339 | 
    * @throw std::domain_error if <tt> __a < 0 </tt> or <tt> __b < 0 </tt>. | 
 
 
 
 
 
 | 340 | 
    */ | 
 
 
 
 
 
 | 341 | 
   template<typename _Tpa, typename _Tpb> | 
 
 
 
 
 
 | 342 | 
     inline typename __gnu_cxx::__promote_2<_Tpa, _Tpb>::__type | 
 
 
 
 
 
 | 343 | 
     beta(_Tpa __a, _Tpb __b) | 
 
 
 
 
 
 | 344 | 
     { | 
 
 
 
 
 
 | 345 | 
       typedef typename __gnu_cxx::__promote_2<_Tpa, _Tpb>::__type __type; | 
 
 
 
 
 
 | 346 | 
       return __detail::__beta<__type>(__a, __b); | 
 
 
 
 
 
 | 347 | 
     } | 
 
 
 
 
 
 | 348 | 
  | 
 
 
 
 
 
 | 349 | 
   // Complete elliptic integrals of the first kind | 
 
 
 
 
 
 | 350 | 
  | 
 
 
 
 
 
 | 351 | 
   /** | 
 
 
 
 
 
 | 352 | 
    * Return the complete elliptic integral of the first kind @f$ E(k) @f$ | 
 
 
 
 
 
 | 353 | 
    * for @c float modulus @c k. | 
 
 
 
 
 
 | 354 | 
    * | 
 
 
 
 
 
 | 355 | 
    * @see comp_ellint_1 for details. | 
 
 
 
 
 
 | 356 | 
    */ | 
 
 
 
 
 
 | 357 | 
   inline float | 
 
 
 
 
 
 | 358 | 
   comp_ellint_1f(float __k) | 
 
 
 
 
 
 | 359 | 
   { return __detail::__comp_ellint_1<float>(__k); } | 
 
 
 
 
 
 | 360 | 
  | 
 
 
 
 
 
 | 361 | 
   /** | 
 
 
 
 
 
 | 362 | 
    * Return the complete elliptic integral of the first kind @f$ E(k) @f$ | 
 
 
 
 
 
 | 363 | 
    * for long double modulus @c k. | 
 
 
 
 
 
 | 364 | 
    * | 
 
 
 
 
 
 | 365 | 
    * @see comp_ellint_1 for details. | 
 
 
 
 
 
 | 366 | 
    */ | 
 
 
 
 
 
 | 367 | 
   inline long double | 
 
 
 
 
 
 | 368 | 
   comp_ellint_1l(long double __k) | 
 
 
 
 
 
 | 369 | 
   { return __detail::__comp_ellint_1<long double>(__k); } | 
 
 
 
 
 
 | 370 | 
  | 
 
 
 
 
 
 | 371 | 
   /** | 
 
 
 
 
 
 | 372 | 
    * Return the complete elliptic integral of the first kind | 
 
 
 
 
 
 | 373 | 
    * @f$ K(k) @f$ for real modulus @c k. | 
 
 
 
 
 
 | 374 | 
    * | 
 
 
 
 
 
 | 375 | 
    * The complete elliptic integral of the first kind is defined as | 
 
 
 
 
 
 | 376 | 
    * @f[ | 
 
 
 
 
 
 | 377 | 
    *   K(k) = F(k,\pi/2) = \int_0^{\pi/2}\frac{d\theta} | 
 
 
 
 
 
 | 378 | 
    *                                         {\sqrt{1 - k^2 sin^2\theta}} | 
 
 
 
 
 
 | 379 | 
    * @f] | 
 
 
 
 
 
 | 380 | 
    * where @f$ F(k,\phi) @f$ is the incomplete elliptic integral of the | 
 
 
 
 
 
 | 381 | 
    * first kind and the modulus @f$ |k| <= 1 @f$. | 
 
 
 
 
 
 | 382 | 
    * @see ellint_1 for details of the incomplete elliptic function | 
 
 
 
 
 
 | 383 | 
    * of the first kind. | 
 
 
 
 
 
 | 384 | 
    * | 
 
 
 
 
 
 | 385 | 
    * @tparam _Tp The floating-point type of the modulus @c __k. | 
 
 
 
 
 
 | 386 | 
    * @param  __k  The modulus, <tt> abs(__k) <= 1 </tt> | 
 
 
 
 
 
 | 387 | 
    * @throw std::domain_error if <tt> abs(__k) > 1 </tt>. | 
 
 
 
 
 
 | 388 | 
    */ | 
 
 
 
 
 
 | 389 | 
   template<typename _Tp> | 
 
 
 
 
 
 | 390 | 
     inline typename __gnu_cxx::__promote<_Tp>::__type | 
 
 
 
 
 
 | 391 | 
     comp_ellint_1(_Tp __k) | 
 
 
 
 
 
 | 392 | 
     { | 
 
 
 
 
 
 | 393 | 
       typedef typename __gnu_cxx::__promote<_Tp>::__type __type; | 
 
 
 
 
 
 | 394 | 
       return __detail::__comp_ellint_1<__type>(__k); | 
 
 
 
 
 
 | 395 | 
     } | 
 
 
 
 
 
 | 396 | 
  | 
 
 
 
 
 
 | 397 | 
   // Complete elliptic integrals of the second kind | 
 
 
 
 
 
 | 398 | 
  | 
 
 
 
 
 
 | 399 | 
   /** | 
 
 
 
 
 
 | 400 | 
    * Return the complete elliptic integral of the second kind @f$ E(k) @f$ | 
 
 
 
 
 
 | 401 | 
    * for @c float modulus @c k. | 
 
 
 
 
 
 | 402 | 
    * | 
 
 
 
 
 
 | 403 | 
    * @see comp_ellint_2 for details. | 
 
 
 
 
 
 | 404 | 
    */ | 
 
 
 
 
 
 | 405 | 
   inline float | 
 
 
 
 
 
 | 406 | 
   comp_ellint_2f(float __k) | 
 
 
 
 
 
 | 407 | 
   { return __detail::__comp_ellint_2<float>(__k); } | 
 
 
 
 
 
 | 408 | 
  | 
 
 
 
 
 
 | 409 | 
   /** | 
 
 
 
 
 
 | 410 | 
    * Return the complete elliptic integral of the second kind @f$ E(k) @f$ | 
 
 
 
 
 
 | 411 | 
    * for long double modulus @c k. | 
 
 
 
 
 
 | 412 | 
    * | 
 
 
 
 
 
 | 413 | 
    * @see comp_ellint_2 for details. | 
 
 
 
 
 
 | 414 | 
    */ | 
 
 
 
 
 
 | 415 | 
   inline long double | 
 
 
 
 
 
 | 416 | 
   comp_ellint_2l(long double __k) | 
 
 
 
 
 
 | 417 | 
   { return __detail::__comp_ellint_2<long double>(__k); } | 
 
 
 
 
 
 | 418 | 
  | 
 
 
 
 
 
 | 419 | 
   /** | 
 
 
 
 
 
 | 420 | 
    * Return the complete elliptic integral of the second kind @f$ E(k) @f$ | 
 
 
 
 
 
 | 421 | 
    * for real modulus @c k. | 
 
 
 
 
 
 | 422 | 
    * | 
 
 
 
 
 
 | 423 | 
    * The complete elliptic integral of the second kind is defined as | 
 
 
 
 
 
 | 424 | 
    * @f[ | 
 
 
 
 
 
 | 425 | 
    *   E(k) = E(k,\pi/2) = \int_0^{\pi/2}\sqrt{1 - k^2 sin^2\theta} | 
 
 
 
 
 
 | 426 | 
    * @f] | 
 
 
 
 
 
 | 427 | 
    * where @f$ E(k,\phi) @f$ is the incomplete elliptic integral of the | 
 
 
 
 
 
 | 428 | 
    * second kind and the modulus @f$ |k| <= 1 @f$. | 
 
 
 
 
 
 | 429 | 
    * @see ellint_2 for details of the incomplete elliptic function | 
 
 
 
 
 
 | 430 | 
    * of the second kind. | 
 
 
 
 
 
 | 431 | 
    * | 
 
 
 
 
 
 | 432 | 
    * @tparam _Tp The floating-point type of the modulus @c __k. | 
 
 
 
 
 
 | 433 | 
    * @param  __k  The modulus, @c abs(__k) <= 1 | 
 
 
 
 
 
 | 434 | 
    * @throw std::domain_error if @c abs(__k) > 1. | 
 
 
 
 
 
 | 435 | 
    */ | 
 
 
 
 
 
 | 436 | 
   template<typename _Tp> | 
 
 
 
 
 
 | 437 | 
     inline typename __gnu_cxx::__promote<_Tp>::__type | 
 
 
 
 
 
 | 438 | 
     comp_ellint_2(_Tp __k) | 
 
 
 
 
 
 | 439 | 
     { | 
 
 
 
 
 
 | 440 | 
       typedef typename __gnu_cxx::__promote<_Tp>::__type __type; | 
 
 
 
 
 
 | 441 | 
       return __detail::__comp_ellint_2<__type>(__k); | 
 
 
 
 
 
 | 442 | 
     } | 
 
 
 
 
 
 | 443 | 
  | 
 
 
 
 
 
 | 444 | 
   // Complete elliptic integrals of the third kind | 
 
 
 
 
 
 | 445 | 
  | 
 
 
 
 
 
 | 446 | 
   /** | 
 
 
 
 
 
 | 447 | 
    * @brief Return the complete elliptic integral of the third kind | 
 
 
 
 
 
 | 448 | 
    * @f$ \Pi(k,\nu) @f$ for @c float modulus @c k. | 
 
 
 
 
 
 | 449 | 
    * | 
 
 
 
 
 
 | 450 | 
    * @see comp_ellint_3 for details. | 
 
 
 
 
 
 | 451 | 
    */ | 
 
 
 
 
 
 | 452 | 
   inline float | 
 
 
 
 
 
 | 453 | 
   comp_ellint_3f(float __k, float __nu) | 
 
 
 
 
 
 | 454 | 
   { return __detail::__comp_ellint_3<float>(__k, __nu); } | 
 
 
 
 
 
 | 455 | 
  | 
 
 
 
 
 
 | 456 | 
   /** | 
 
 
 
 
 
 | 457 | 
    * @brief Return the complete elliptic integral of the third kind | 
 
 
 
 
 
 | 458 | 
    * @f$ \Pi(k,\nu) @f$ for <tt>long double</tt> modulus @c k. | 
 
 
 
 
 
 | 459 | 
    * | 
 
 
 
 
 
 | 460 | 
    * @see comp_ellint_3 for details. | 
 
 
 
 
 
 | 461 | 
    */ | 
 
 
 
 
 
 | 462 | 
   inline long double | 
 
 
 
 
 
 | 463 | 
   comp_ellint_3l(long double __k, long double __nu) | 
 
 
 
 
 
 | 464 | 
   { return __detail::__comp_ellint_3<long double>(__k, __nu); } | 
 
 
 
 
 
 | 465 | 
  | 
 
 
 
 
 
 | 466 | 
   /** | 
 
 
 
 
 
 | 467 | 
    * Return the complete elliptic integral of the third kind | 
 
 
 
 
 
 | 468 | 
    * @f$ \Pi(k,\nu) = \Pi(k,\nu,\pi/2) @f$ for real modulus @c k. | 
 
 
 
 
 
 | 469 | 
    * | 
 
 
 
 
 
 | 470 | 
    * The complete elliptic integral of the third kind is defined as | 
 
 
 
 
 
 | 471 | 
    * @f[ | 
 
 
 
 
 
 | 472 | 
    *   \Pi(k,\nu) = \Pi(k,\nu,\pi/2) = \int_0^{\pi/2} | 
 
 
 
 
 
 | 473 | 
    *                 \frac{d\theta} | 
 
 
 
 
 
 | 474 | 
    *               {(1 - \nu \sin^2\theta)\sqrt{1 - k^2 \sin^2\theta}} | 
 
 
 
 
 
 | 475 | 
    * @f] | 
 
 
 
 
 
 | 476 | 
    * where @f$ \Pi(k,\nu,\phi) @f$ is the incomplete elliptic integral of the | 
 
 
 
 
 
 | 477 | 
    * second kind and the modulus @f$ |k| <= 1 @f$. | 
 
 
 
 
 
 | 478 | 
    * @see ellint_3 for details of the incomplete elliptic function | 
 
 
 
 
 
 | 479 | 
    * of the third kind. | 
 
 
 
 
 
 | 480 | 
    * | 
 
 
 
 
 
 | 481 | 
    * @tparam _Tp The floating-point type of the modulus @c __k. | 
 
 
 
 
 
 | 482 | 
    * @tparam _Tpn The floating-point type of the argument @c __nu. | 
 
 
 
 
 
 | 483 | 
    * @param  __k  The modulus, @c abs(__k) <= 1 | 
 
 
 
 
 
 | 484 | 
    * @param  __nu  The argument | 
 
 
 
 
 
 | 485 | 
    * @throw std::domain_error if @c abs(__k) > 1. | 
 
 
 
 
 
 | 486 | 
    */ | 
 
 
 
 
 
 | 487 | 
   template<typename _Tp, typename _Tpn> | 
 
 
 
 
 
 | 488 | 
     inline typename __gnu_cxx::__promote_2<_Tp, _Tpn>::__type | 
 
 
 
 
 
 | 489 | 
     comp_ellint_3(_Tp __k, _Tpn __nu) | 
 
 
 
 
 
 | 490 | 
     { | 
 
 
 
 
 
 | 491 | 
       typedef typename __gnu_cxx::__promote_2<_Tp, _Tpn>::__type __type; | 
 
 
 
 
 
 | 492 | 
       return __detail::__comp_ellint_3<__type>(__k, __nu); | 
 
 
 
 
 
 | 493 | 
     } | 
 
 
 
 
 
 | 494 | 
  | 
 
 
 
 
 
 | 495 | 
   // Regular modified cylindrical Bessel functions | 
 
 
 
 
 
 | 496 | 
  | 
 
 
 
 
 
 | 497 | 
   /** | 
 
 
 
 
 
 | 498 | 
    * Return the regular modified Bessel function @f$ I_{\nu}(x) @f$ | 
 
 
 
 
 
 | 499 | 
    * for @c float order @f$ \nu @f$ and argument @f$ x >= 0 @f$. | 
 
 
 
 
 
 | 500 | 
    * | 
 
 
 
 
 
 | 501 | 
    * @see cyl_bessel_i for setails. | 
 
 
 
 
 
 | 502 | 
    */ | 
 
 
 
 
 
 | 503 | 
   inline float | 
 
 
 
 
 
 | 504 | 
   cyl_bessel_if(float __nu, float __x) | 
 
 
 
 
 
 | 505 | 
   { return __detail::__cyl_bessel_i<float>(__nu, __x); } | 
 
 
 
 
 
 | 506 | 
  | 
 
 
 
 
 
 | 507 | 
   /** | 
 
 
 
 
 
 | 508 | 
    * Return the regular modified Bessel function @f$ I_{\nu}(x) @f$ | 
 
 
 
 
 
 | 509 | 
    * for <tt>long double</tt> order @f$ \nu @f$ and argument @f$ x >= 0 @f$. | 
 
 
 
 
 
 | 510 | 
    * | 
 
 
 
 
 
 | 511 | 
    * @see cyl_bessel_i for setails. | 
 
 
 
 
 
 | 512 | 
    */ | 
 
 
 
 
 
 | 513 | 
   inline long double | 
 
 
 
 
 
 | 514 | 
   cyl_bessel_il(long double __nu, long double __x) | 
 
 
 
 
 
 | 515 | 
   { return __detail::__cyl_bessel_i<long double>(__nu, __x); } | 
 
 
 
 
 
 | 516 | 
  | 
 
 
 
 
 
 | 517 | 
   /** | 
 
 
 
 
 
 | 518 | 
    * Return the regular modified Bessel function @f$ I_{\nu}(x) @f$ | 
 
 
 
 
 
 | 519 | 
    * for real order @f$ \nu @f$ and argument @f$ x >= 0 @f$. | 
 
 
 
 
 
 | 520 | 
    * | 
 
 
 
 
 
 | 521 | 
    * The regular modified cylindrical Bessel function is: | 
 
 
 
 
 
 | 522 | 
    * @f[ | 
 
 
 
 
 
 | 523 | 
    *  I_{\nu}(x) = i^{-\nu}J_\nu(ix) = \sum_{k=0}^{\infty} | 
 
 
 
 
 
 | 524 | 
    *            \frac{(x/2)^{\nu + 2k}}{k!\Gamma(\nu+k+1)} | 
 
 
 
 
 
 | 525 | 
    * @f] | 
 
 
 
 
 
 | 526 | 
    * | 
 
 
 
 
 
 | 527 | 
    * @tparam _Tpnu The floating-point type of the order @c __nu. | 
 
 
 
 
 
 | 528 | 
    * @tparam _Tp The floating-point type of the argument @c __x. | 
 
 
 
 
 
 | 529 | 
    * @param  __nu  The order | 
 
 
 
 
 
 | 530 | 
    * @param  __x   The argument, <tt> __x >= 0 </tt> | 
 
 
 
 
 
 | 531 | 
    * @throw std::domain_error if <tt> __x < 0 </tt>. | 
 
 
 
 
 
 | 532 | 
    */ | 
 
 
 
 
 
 | 533 | 
   template<typename _Tpnu, typename _Tp> | 
 
 
 
 
 
 | 534 | 
     inline typename __gnu_cxx::__promote_2<_Tpnu, _Tp>::__type | 
 
 
 
 
 
 | 535 | 
     cyl_bessel_i(_Tpnu __nu, _Tp __x) | 
 
 
 
 
 
 | 536 | 
     { | 
 
 
 
 
 
 | 537 | 
       typedef typename __gnu_cxx::__promote_2<_Tpnu, _Tp>::__type __type; | 
 
 
 
 
 
 | 538 | 
       return __detail::__cyl_bessel_i<__type>(__nu, __x); | 
 
 
 
 
 
 | 539 | 
     } | 
 
 
 
 
 
 | 540 | 
  | 
 
 
 
 
 
 | 541 | 
   // Cylindrical Bessel functions (of the first kind) | 
 
 
 
 
 
 | 542 | 
  | 
 
 
 
 
 
 | 543 | 
   /** | 
 
 
 
 
 
 | 544 | 
    * Return the Bessel function of the first kind @f$ J_{\nu}(x) @f$ | 
 
 
 
 
 
 | 545 | 
    * for @c float order @f$ \nu @f$ and argument @f$ x >= 0 @f$. | 
 
 
 
 
 
 | 546 | 
    * | 
 
 
 
 
 
 | 547 | 
    * @see cyl_bessel_j for setails. | 
 
 
 
 
 
 | 548 | 
    */ | 
 
 
 
 
 
 | 549 | 
   inline float | 
 
 
 
 
 
 | 550 | 
   cyl_bessel_jf(float __nu, float __x) | 
 
 
 
 
 
 | 551 | 
   { return __detail::__cyl_bessel_j<float>(__nu, __x); } | 
 
 
 
 
 
 | 552 | 
  | 
 
 
 
 
 
 | 553 | 
   /** | 
 
 
 
 
 
 | 554 | 
    * Return the Bessel function of the first kind @f$ J_{\nu}(x) @f$ | 
 
 
 
 
 
 | 555 | 
    * for <tt>long double</tt> order @f$ \nu @f$ and argument @f$ x >= 0 @f$. | 
 
 
 
 
 
 | 556 | 
    * | 
 
 
 
 
 
 | 557 | 
    * @see cyl_bessel_j for setails. | 
 
 
 
 
 
 | 558 | 
    */ | 
 
 
 
 
 
 | 559 | 
   inline long double | 
 
 
 
 
 
 | 560 | 
   cyl_bessel_jl(long double __nu, long double __x) | 
 
 
 
 
 
 | 561 | 
   { return __detail::__cyl_bessel_j<long double>(__nu, __x); } | 
 
 
 
 
 
 | 562 | 
  | 
 
 
 
 
 
 | 563 | 
   /** | 
 
 
 
 
 
 | 564 | 
    * Return the Bessel function @f$ J_{\nu}(x) @f$ of real order @f$ \nu @f$ | 
 
 
 
 
 
 | 565 | 
    * and argument @f$ x >= 0 @f$. | 
 
 
 
 
 
 | 566 | 
    * | 
 
 
 
 
 
 | 567 | 
    * The cylindrical Bessel function is: | 
 
 
 
 
 
 | 568 | 
    * @f[ | 
 
 
 
 
 
 | 569 | 
    *    J_{\nu}(x) = \sum_{k=0}^{\infty} | 
 
 
 
 
 
 | 570 | 
    *              \frac{(-1)^k (x/2)^{\nu + 2k}}{k!\Gamma(\nu+k+1)} | 
 
 
 
 
 
 | 571 | 
    * @f] | 
 
 
 
 
 
 | 572 | 
    * | 
 
 
 
 
 
 | 573 | 
    * @tparam _Tpnu The floating-point type of the order @c __nu. | 
 
 
 
 
 
 | 574 | 
    * @tparam _Tp The floating-point type of the argument @c __x. | 
 
 
 
 
 
 | 575 | 
    * @param  __nu  The order | 
 
 
 
 
 
 | 576 | 
    * @param  __x   The argument, <tt> __x >= 0 </tt> | 
 
 
 
 
 
 | 577 | 
    * @throw std::domain_error if <tt> __x < 0 </tt>. | 
 
 
 
 
 
 | 578 | 
    */ | 
 
 
 
 
 
 | 579 | 
   template<typename _Tpnu, typename _Tp> | 
 
 
 
 
 
 | 580 | 
     inline typename __gnu_cxx::__promote_2<_Tpnu, _Tp>::__type | 
 
 
 
 
 
 | 581 | 
     cyl_bessel_j(_Tpnu __nu, _Tp __x) | 
 
 
 
 
 
 | 582 | 
     { | 
 
 
 
 
 
 | 583 | 
       typedef typename __gnu_cxx::__promote_2<_Tpnu, _Tp>::__type __type; | 
 
 
 
 
 
 | 584 | 
       return __detail::__cyl_bessel_j<__type>(__nu, __x); | 
 
 
 
 
 
 | 585 | 
     } | 
 
 
 
 
 
 | 586 | 
  | 
 
 
 
 
 
 | 587 | 
   // Irregular modified cylindrical Bessel functions | 
 
 
 
 
 
 | 588 | 
  | 
 
 
 
 
 
 | 589 | 
   /** | 
 
 
 
 
 
 | 590 | 
    * Return the irregular modified Bessel function @f$ K_{\nu}(x) @f$ | 
 
 
 
 
 
 | 591 | 
    * for @c float order @f$ \nu @f$ and argument @f$ x >= 0 @f$. | 
 
 
 
 
 
 | 592 | 
    * | 
 
 
 
 
 
 | 593 | 
    * @see cyl_bessel_k for setails. | 
 
 
 
 
 
 | 594 | 
    */ | 
 
 
 
 
 
 | 595 | 
   inline float | 
 
 
 
 
 
 | 596 | 
   cyl_bessel_kf(float __nu, float __x) | 
 
 
 
 
 
 | 597 | 
   { return __detail::__cyl_bessel_k<float>(__nu, __x); } | 
 
 
 
 
 
 | 598 | 
  | 
 
 
 
 
 
 | 599 | 
   /** | 
 
 
 
 
 
 | 600 | 
    * Return the irregular modified Bessel function @f$ K_{\nu}(x) @f$ | 
 
 
 
 
 
 | 601 | 
    * for <tt>long double</tt> order @f$ \nu @f$ and argument @f$ x >= 0 @f$. | 
 
 
 
 
 
 | 602 | 
    * | 
 
 
 
 
 
 | 603 | 
    * @see cyl_bessel_k for setails. | 
 
 
 
 
 
 | 604 | 
    */ | 
 
 
 
 
 
 | 605 | 
   inline long double | 
 
 
 
 
 
 | 606 | 
   cyl_bessel_kl(long double __nu, long double __x) | 
 
 
 
 
 
 | 607 | 
   { return __detail::__cyl_bessel_k<long double>(__nu, __x); } | 
 
 
 
 
 
 | 608 | 
  | 
 
 
 
 
 
 | 609 | 
   /** | 
 
 
 
 
 
 | 610 | 
    * Return the irregular modified Bessel function @f$ K_{\nu}(x) @f$ | 
 
 
 
 
 
 | 611 | 
    * of real order @f$ \nu @f$ and argument @f$ x @f$. | 
 
 
 
 
 
 | 612 | 
    * | 
 
 
 
 
 
 | 613 | 
    * The irregular modified Bessel function is defined by: | 
 
 
 
 
 
 | 614 | 
    * @f[ | 
 
 
 
 
 
 | 615 | 
    *    K_{\nu}(x) = \frac{\pi}{2} | 
 
 
 
 
 
 | 616 | 
    *                 \frac{I_{-\nu}(x) - I_{\nu}(x)}{\sin \nu\pi} | 
 
 
 
 
 
 | 617 | 
    * @f] | 
 
 
 
 
 
 | 618 | 
    * where for integral @f$ \nu = n @f$ a limit is taken: | 
 
 
 
 
 
 | 619 | 
    * @f$ lim_{\nu \to n} @f$. | 
 
 
 
 
 
 | 620 | 
    * For negative argument we have simply: | 
 
 
 
 
 
 | 621 | 
    * @f[ | 
 
 
 
 
 
 | 622 | 
    *    K_{-\nu}(x) = K_{\nu}(x) | 
 
 
 
 
 
 | 623 | 
    * @f] | 
 
 
 
 
 
 | 624 | 
    * | 
 
 
 
 
 
 | 625 | 
    * @tparam _Tpnu The floating-point type of the order @c __nu. | 
 
 
 
 
 
 | 626 | 
    * @tparam _Tp The floating-point type of the argument @c __x. | 
 
 
 
 
 
 | 627 | 
    * @param  __nu  The order | 
 
 
 
 
 
 | 628 | 
    * @param  __x   The argument, <tt> __x >= 0 </tt> | 
 
 
 
 
 
 | 629 | 
    * @throw std::domain_error if <tt> __x < 0 </tt>. | 
 
 
 
 
 
 | 630 | 
    */ | 
 
 
 
 
 
 | 631 | 
   template<typename _Tpnu, typename _Tp> | 
 
 
 
 
 
 | 632 | 
     inline typename __gnu_cxx::__promote_2<_Tpnu, _Tp>::__type | 
 
 
 
 
 
 | 633 | 
     cyl_bessel_k(_Tpnu __nu, _Tp __x) | 
 
 
 
 
 
 | 634 | 
     { | 
 
 
 
 
 
 | 635 | 
       typedef typename __gnu_cxx::__promote_2<_Tpnu, _Tp>::__type __type; | 
 
 
 
 
 
 | 636 | 
       return __detail::__cyl_bessel_k<__type>(__nu, __x); | 
 
 
 
 
 
 | 637 | 
     } | 
 
 
 
 
 
 | 638 | 
  | 
 
 
 
 
 
 | 639 | 
   // Cylindrical Neumann functions | 
 
 
 
 
 
 | 640 | 
  | 
 
 
 
 
 
 | 641 | 
   /** | 
 
 
 
 
 
 | 642 | 
    * Return the Neumann function @f$ N_{\nu}(x) @f$ | 
 
 
 
 
 
 | 643 | 
    * of @c float order @f$ \nu @f$ and argument @f$ x @f$. | 
 
 
 
 
 
 | 644 | 
    * | 
 
 
 
 
 
 | 645 | 
    * @see cyl_neumann for setails. | 
 
 
 
 
 
 | 646 | 
    */ | 
 
 
 
 
 
 | 647 | 
   inline float | 
 
 
 
 
 
 | 648 | 
   cyl_neumannf(float __nu, float __x) | 
 
 
 
 
 
 | 649 | 
   { return __detail::__cyl_neumann_n<float>(__nu, __x); } | 
 
 
 
 
 
 | 650 | 
  | 
 
 
 
 
 
 | 651 | 
   /** | 
 
 
 
 
 
 | 652 | 
    * Return the Neumann function @f$ N_{\nu}(x) @f$ | 
 
 
 
 
 
 | 653 | 
    * of <tt>long double</tt> order @f$ \nu @f$ and argument @f$ x @f$. | 
 
 
 
 
 
 | 654 | 
    * | 
 
 
 
 
 
 | 655 | 
    * @see cyl_neumann for setails. | 
 
 
 
 
 
 | 656 | 
    */ | 
 
 
 
 
 
 | 657 | 
   inline long double | 
 
 
 
 
 
 | 658 | 
   cyl_neumannl(long double __nu, long double __x) | 
 
 
 
 
 
 | 659 | 
   { return __detail::__cyl_neumann_n<long double>(__nu, __x); } | 
 
 
 
 
 
 | 660 | 
  | 
 
 
 
 
 
 | 661 | 
   /** | 
 
 
 
 
 
 | 662 | 
    * Return the Neumann function @f$ N_{\nu}(x) @f$ | 
 
 
 
 
 
 | 663 | 
    * of real order @f$ \nu @f$ and argument @f$ x >= 0 @f$. | 
 
 
 
 
 
 | 664 | 
    * | 
 
 
 
 
 
 | 665 | 
    * The Neumann function is defined by: | 
 
 
 
 
 
 | 666 | 
    * @f[ | 
 
 
 
 
 
 | 667 | 
    *    N_{\nu}(x) = \frac{J_{\nu}(x) \cos \nu\pi - J_{-\nu}(x)} | 
 
 
 
 
 
 | 668 | 
    *                      {\sin \nu\pi} | 
 
 
 
 
 
 | 669 | 
    * @f] | 
 
 
 
 
 
 | 670 | 
    * where @f$ x >= 0 @f$ and for integral order @f$ \nu = n @f$ | 
 
 
 
 
 
 | 671 | 
    * a limit is taken: @f$ lim_{\nu \to n} @f$. | 
 
 
 
 
 
 | 672 | 
    * | 
 
 
 
 
 
 | 673 | 
    * @tparam _Tpnu The floating-point type of the order @c __nu. | 
 
 
 
 
 
 | 674 | 
    * @tparam _Tp The floating-point type of the argument @c __x. | 
 
 
 
 
 
 | 675 | 
    * @param  __nu  The order | 
 
 
 
 
 
 | 676 | 
    * @param  __x   The argument, <tt> __x >= 0 </tt> | 
 
 
 
 
 
 | 677 | 
    * @throw std::domain_error if <tt> __x < 0 </tt>. | 
 
 
 
 
 
 | 678 | 
    */ | 
 
 
 
 
 
 | 679 | 
   template<typename _Tpnu, typename _Tp> | 
 
 
 
 
 
 | 680 | 
     inline typename __gnu_cxx::__promote_2<_Tpnu, _Tp>::__type | 
 
 
 
 
 
 | 681 | 
     cyl_neumann(_Tpnu __nu, _Tp __x) | 
 
 
 
 
 
 | 682 | 
     { | 
 
 
 
 
 
 | 683 | 
       typedef typename __gnu_cxx::__promote_2<_Tpnu, _Tp>::__type __type; | 
 
 
 
 
 
 | 684 | 
       return __detail::__cyl_neumann_n<__type>(__nu, __x); | 
 
 
 
 
 
 | 685 | 
     } | 
 
 
 
 
 
 | 686 | 
  | 
 
 
 
 
 
 | 687 | 
   // Incomplete elliptic integrals of the first kind | 
 
 
 
 
 
 | 688 | 
  | 
 
 
 
 
 
 | 689 | 
   /** | 
 
 
 
 
 
 | 690 | 
    * Return the incomplete elliptic integral of the first kind @f$ E(k,\phi) @f$ | 
 
 
 
 
 
 | 691 | 
    * for @c float modulus @f$ k @f$ and angle @f$ \phi @f$. | 
 
 
 
 
 
 | 692 | 
    * | 
 
 
 
 
 
 | 693 | 
    * @see ellint_1 for details. | 
 
 
 
 
 
 | 694 | 
    */ | 
 
 
 
 
 
 | 695 | 
   inline float | 
 
 
 
 
 
 | 696 | 
   ellint_1f(float __k, float __phi) | 
 
 
 
 
 
 | 697 | 
   { return __detail::__ellint_1<float>(__k, __phi); } | 
 
 
 
 
 
 | 698 | 
  | 
 
 
 
 
 
 | 699 | 
   /** | 
 
 
 
 
 
 | 700 | 
    * Return the incomplete elliptic integral of the first kind @f$ E(k,\phi) @f$ | 
 
 
 
 
 
 | 701 | 
    * for <tt>long double</tt> modulus @f$ k @f$ and angle @f$ \phi @f$. | 
 
 
 
 
 
 | 702 | 
    * | 
 
 
 
 
 
 | 703 | 
    * @see ellint_1 for details. | 
 
 
 
 
 
 | 704 | 
    */ | 
 
 
 
 
 
 | 705 | 
   inline long double | 
 
 
 
 
 
 | 706 | 
   ellint_1l(long double __k, long double __phi) | 
 
 
 
 
 
 | 707 | 
   { return __detail::__ellint_1<long double>(__k, __phi); } | 
 
 
 
 
 
 | 708 | 
  | 
 
 
 
 
 
 | 709 | 
   /** | 
 
 
 
 
 
 | 710 | 
    * Return the incomplete elliptic integral of the first kind @f$ F(k,\phi) @f$ | 
 
 
 
 
 
 | 711 | 
    * for @c real modulus @f$ k @f$ and angle @f$ \phi @f$. | 
 
 
 
 
 
 | 712 | 
    * | 
 
 
 
 
 
 | 713 | 
    * The incomplete elliptic integral of the first kind is defined as | 
 
 
 
 
 
 | 714 | 
    * @f[ | 
 
 
 
 
 
 | 715 | 
    *   F(k,\phi) = \int_0^{\phi}\frac{d\theta} | 
 
 
 
 
 
 | 716 | 
    *                                 {\sqrt{1 - k^2 sin^2\theta}} | 
 
 
 
 
 
 | 717 | 
    * @f] | 
 
 
 
 
 
 | 718 | 
    * For  @f$ \phi= \pi/2 @f$ this becomes the complete elliptic integral of | 
 
 
 
 
 
 | 719 | 
    * the first kind, @f$ K(k) @f$.  @see comp_ellint_1. | 
 
 
 
 
 
 | 720 | 
    * | 
 
 
 
 
 
 | 721 | 
    * @tparam _Tp The floating-point type of the modulus @c __k. | 
 
 
 
 
 
 | 722 | 
    * @tparam _Tpp The floating-point type of the angle @c __phi. | 
 
 
 
 
 
 | 723 | 
    * @param  __k  The modulus, <tt> abs(__k) <= 1 </tt> | 
 
 
 
 
 
 | 724 | 
    * @param  __phi  The integral limit argument in radians | 
 
 
 
 
 
 | 725 | 
    * @throw std::domain_error if <tt> abs(__k) > 1 </tt>. | 
 
 
 
 
 
 | 726 | 
    */ | 
 
 
 
 
 
 | 727 | 
   template<typename _Tp, typename _Tpp> | 
 
 
 
 
 
 | 728 | 
     inline typename __gnu_cxx::__promote_2<_Tp, _Tpp>::__type | 
 
 
 
 
 
 | 729 | 
     ellint_1(_Tp __k, _Tpp __phi) | 
 
 
 
 
 
 | 730 | 
     { | 
 
 
 
 
 
 | 731 | 
       typedef typename __gnu_cxx::__promote_2<_Tp, _Tpp>::__type __type; | 
 
 
 
 
 
 | 732 | 
       return __detail::__ellint_1<__type>(__k, __phi); | 
 
 
 
 
 
 | 733 | 
     } | 
 
 
 
 
 
 | 734 | 
  | 
 
 
 
 
 
 | 735 | 
   // Incomplete elliptic integrals of the second kind | 
 
 
 
 
 
 | 736 | 
  | 
 
 
 
 
 
 | 737 | 
   /** | 
 
 
 
 
 
 | 738 | 
    * @brief Return the incomplete elliptic integral of the second kind | 
 
 
 
 
 
 | 739 | 
    * @f$ E(k,\phi) @f$ for @c float argument. | 
 
 
 
 
 
 | 740 | 
    * | 
 
 
 
 
 
 | 741 | 
    * @see ellint_2 for details. | 
 
 
 
 
 
 | 742 | 
    */ | 
 
 
 
 
 
 | 743 | 
   inline float | 
 
 
 
 
 
 | 744 | 
   ellint_2f(float __k, float __phi) | 
 
 
 
 
 
 | 745 | 
   { return __detail::__ellint_2<float>(__k, __phi); } | 
 
 
 
 
 
 | 746 | 
  | 
 
 
 
 
 
 | 747 | 
   /** | 
 
 
 
 
 
 | 748 | 
    * @brief Return the incomplete elliptic integral of the second kind | 
 
 
 
 
 
 | 749 | 
    * @f$ E(k,\phi) @f$. | 
 
 
 
 
 
 | 750 | 
    * | 
 
 
 
 
 
 | 751 | 
    * @see ellint_2 for details. | 
 
 
 
 
 
 | 752 | 
    */ | 
 
 
 
 
 
 | 753 | 
   inline long double | 
 
 
 
 
 
 | 754 | 
   ellint_2l(long double __k, long double __phi) | 
 
 
 
 
 
 | 755 | 
   { return __detail::__ellint_2<long double>(__k, __phi); } | 
 
 
 
 
 
 | 756 | 
  | 
 
 
 
 
 
 | 757 | 
   /** | 
 
 
 
 
 
 | 758 | 
    * Return the incomplete elliptic integral of the second kind | 
 
 
 
 
 
 | 759 | 
    * @f$ E(k,\phi) @f$. | 
 
 
 
 
 
 | 760 | 
    * | 
 
 
 
 
 
 | 761 | 
    * The incomplete elliptic integral of the second kind is defined as | 
 
 
 
 
 
 | 762 | 
    * @f[ | 
 
 
 
 
 
 | 763 | 
    *   E(k,\phi) = \int_0^{\phi} \sqrt{1 - k^2 sin^2\theta} | 
 
 
 
 
 
 | 764 | 
    * @f] | 
 
 
 
 
 
 | 765 | 
    * For  @f$ \phi= \pi/2 @f$ this becomes the complete elliptic integral of | 
 
 
 
 
 
 | 766 | 
    * the second kind, @f$ E(k) @f$.  @see comp_ellint_2. | 
 
 
 
 
 
 | 767 | 
    * | 
 
 
 
 
 
 | 768 | 
    * @tparam _Tp The floating-point type of the modulus @c __k. | 
 
 
 
 
 
 | 769 | 
    * @tparam _Tpp The floating-point type of the angle @c __phi. | 
 
 
 
 
 
 | 770 | 
    * @param  __k  The modulus, <tt> abs(__k) <= 1 </tt> | 
 
 
 
 
 
 | 771 | 
    * @param  __phi  The integral limit argument in radians | 
 
 
 
 
 
 | 772 | 
    * @return  The elliptic function of the second kind. | 
 
 
 
 
 
 | 773 | 
    * @throw std::domain_error if <tt> abs(__k) > 1 </tt>. | 
 
 
 
 
 
 | 774 | 
    */ | 
 
 
 
 
 
 | 775 | 
   template<typename _Tp, typename _Tpp> | 
 
 
 
 
 
 | 776 | 
     inline typename __gnu_cxx::__promote_2<_Tp, _Tpp>::__type | 
 
 
 
 
 
 | 777 | 
     ellint_2(_Tp __k, _Tpp __phi) | 
 
 
 
 
 
 | 778 | 
     { | 
 
 
 
 
 
 | 779 | 
       typedef typename __gnu_cxx::__promote_2<_Tp, _Tpp>::__type __type; | 
 
 
 
 
 
 | 780 | 
       return __detail::__ellint_2<__type>(__k, __phi); | 
 
 
 
 
 
 | 781 | 
     } | 
 
 
 
 
 
 | 782 | 
  | 
 
 
 
 
 
 | 783 | 
   // Incomplete elliptic integrals of the third kind | 
 
 
 
 
 
 | 784 | 
  | 
 
 
 
 
 
 | 785 | 
   /** | 
 
 
 
 
 
 | 786 | 
    * @brief Return the incomplete elliptic integral of the third kind | 
 
 
 
 
 
 | 787 | 
    * @f$ \Pi(k,\nu,\phi) @f$ for @c float argument. | 
 
 
 
 
 
 | 788 | 
    * | 
 
 
 
 
 
 | 789 | 
    * @see ellint_3 for details. | 
 
 
 
 
 
 | 790 | 
    */ | 
 
 
 
 
 
 | 791 | 
   inline float | 
 
 
 
 
 
 | 792 | 
   ellint_3f(float __k, float __nu, float __phi) | 
 
 
 
 
 
 | 793 | 
   { return __detail::__ellint_3<float>(__k, __nu, __phi); } | 
 
 
 
 
 
 | 794 | 
  | 
 
 
 
 
 
 | 795 | 
   /** | 
 
 
 
 
 
 | 796 | 
    * @brief Return the incomplete elliptic integral of the third kind | 
 
 
 
 
 
 | 797 | 
    * @f$ \Pi(k,\nu,\phi) @f$. | 
 
 
 
 
 
 | 798 | 
    * | 
 
 
 
 
 
 | 799 | 
    * @see ellint_3 for details. | 
 
 
 
 
 
 | 800 | 
    */ | 
 
 
 
 
 
 | 801 | 
   inline long double | 
 
 
 
 
 
 | 802 | 
   ellint_3l(long double __k, long double __nu, long double __phi) | 
 
 
 
 
 
 | 803 | 
   { return __detail::__ellint_3<long double>(__k, __nu, __phi); } | 
 
 
 
 
 
 | 804 | 
  | 
 
 
 
 
 
 | 805 | 
   /** | 
 
 
 
 
 
 | 806 | 
    * @brief Return the incomplete elliptic integral of the third kind | 
 
 
 
 
 
 | 807 | 
    * @f$ \Pi(k,\nu,\phi) @f$. | 
 
 
 
 
 
 | 808 | 
    * | 
 
 
 
 
 
 | 809 | 
    * The incomplete elliptic integral of the third kind is defined by: | 
 
 
 
 
 
 | 810 | 
    * @f[ | 
 
 
 
 
 
 | 811 | 
    *   \Pi(k,\nu,\phi) = \int_0^{\phi} | 
 
 
 
 
 
 | 812 | 
    *                     \frac{d\theta} | 
 
 
 
 
 
 | 813 | 
    *                     {(1 - \nu \sin^2\theta) | 
 
 
 
 
 
 | 814 | 
    *                      \sqrt{1 - k^2 \sin^2\theta}} | 
 
 
 
 
 
 | 815 | 
    * @f] | 
 
 
 
 
 
 | 816 | 
    * For  @f$ \phi= \pi/2 @f$ this becomes the complete elliptic integral of | 
 
 
 
 
 
 | 817 | 
    * the third kind, @f$ \Pi(k,\nu) @f$.  @see comp_ellint_3. | 
 
 
 
 
 
 | 818 | 
    * | 
 
 
 
 
 
 | 819 | 
    * @tparam _Tp The floating-point type of the modulus @c __k. | 
 
 
 
 
 
 | 820 | 
    * @tparam _Tpn The floating-point type of the argument @c __nu. | 
 
 
 
 
 
 | 821 | 
    * @tparam _Tpp The floating-point type of the angle @c __phi. | 
 
 
 
 
 
 | 822 | 
    * @param  __k  The modulus, <tt> abs(__k) <= 1 </tt> | 
 
 
 
 
 
 | 823 | 
    * @param  __nu  The second argument | 
 
 
 
 
 
 | 824 | 
    * @param  __phi  The integral limit argument in radians | 
 
 
 
 
 
 | 825 | 
    * @return  The elliptic function of the third kind. | 
 
 
 
 
 
 | 826 | 
    * @throw std::domain_error if <tt> abs(__k) > 1 </tt>. | 
 
 
 
 
 
 | 827 | 
    */ | 
 
 
 
 
 
 | 828 | 
   template<typename _Tp, typename _Tpn, typename _Tpp> | 
 
 
 
 
 
 | 829 | 
     inline typename __gnu_cxx::__promote_3<_Tp, _Tpn, _Tpp>::__type | 
 
 
 
 
 
 | 830 | 
     ellint_3(_Tp __k, _Tpn __nu, _Tpp __phi) | 
 
 
 
 
 
 | 831 | 
     { | 
 
 
 
 
 
 | 832 | 
       typedef typename __gnu_cxx::__promote_3<_Tp, _Tpn, _Tpp>::__type __type; | 
 
 
 
 
 
 | 833 | 
       return __detail::__ellint_3<__type>(__k, __nu, __phi); | 
 
 
 
 
 
 | 834 | 
     } | 
 
 
 
 
 
 | 835 | 
  | 
 
 
 
 
 
 | 836 | 
   // Exponential integrals | 
 
 
 
 
 
 | 837 | 
  | 
 
 
 
 
 
 | 838 | 
   /** | 
 
 
 
 
 
 | 839 | 
    * Return the exponential integral @f$ Ei(x) @f$ for @c float argument @c x. | 
 
 
 
 
 
 | 840 | 
    * | 
 
 
 
 
 
 | 841 | 
    * @see expint for details. | 
 
 
 
 
 
 | 842 | 
    */ | 
 
 
 
 
 
 | 843 | 
   inline float | 
 
 
 
 
 
 | 844 | 
   expintf(float __x) | 
 
 
 
 
 
 | 845 | 
   { return __detail::__expint<float>(__x); } | 
 
 
 
 
 
 | 846 | 
  | 
 
 
 
 
 
 | 847 | 
   /** | 
 
 
 
 
 
 | 848 | 
    * Return the exponential integral @f$ Ei(x) @f$ | 
 
 
 
 
 
 | 849 | 
    * for <tt>long double</tt> argument @c x. | 
 
 
 
 
 
 | 850 | 
    * | 
 
 
 
 
 
 | 851 | 
    * @see expint for details. | 
 
 
 
 
 
 | 852 | 
    */ | 
 
 
 
 
 
 | 853 | 
   inline long double | 
 
 
 
 
 
 | 854 | 
   expintl(long double __x) | 
 
 
 
 
 
 | 855 | 
   { return __detail::__expint<long double>(__x); } | 
 
 
 
 
 
 | 856 | 
  | 
 
 
 
 
 
 | 857 | 
   /** | 
 
 
 
 
 
 | 858 | 
    * Return the exponential integral @f$ Ei(x) @f$ for @c real argument @c x. | 
 
 
 
 
 
 | 859 | 
    * | 
 
 
 
 
 
 | 860 | 
    * The exponential integral is given by | 
 
 
 
 
 
 | 861 | 
    * \f[ | 
 
 
 
 
 
 | 862 | 
    *   Ei(x) = -\int_{-x}^\infty \frac{e^t}{t} dt | 
 
 
 
 
 
 | 863 | 
    * \f] | 
 
 
 
 
 
 | 864 | 
    * | 
 
 
 
 
 
 | 865 | 
    * @tparam _Tp The floating-point type of the argument @c __x. | 
 
 
 
 
 
 | 866 | 
    * @param  __x  The argument of the exponential integral function. | 
 
 
 
 
 
 | 867 | 
    */ | 
 
 
 
 
 
 | 868 | 
   template<typename _Tp> | 
 
 
 
 
 
 | 869 | 
     inline typename __gnu_cxx::__promote<_Tp>::__type | 
 
 
 
 
 
 | 870 | 
     expint(_Tp __x) | 
 
 
 
 
 
 | 871 | 
     { | 
 
 
 
 
 
 | 872 | 
       typedef typename __gnu_cxx::__promote<_Tp>::__type __type; | 
 
 
 
 
 
 | 873 | 
       return __detail::__expint<__type>(__x); | 
 
 
 
 
 
 | 874 | 
     } | 
 
 
 
 
 
 | 875 | 
  | 
 
 
 
 
 
 | 876 | 
   // Hermite polynomials | 
 
 
 
 
 
 | 877 | 
  | 
 
 
 
 
 
 | 878 | 
   /** | 
 
 
 
 
 
 | 879 | 
    * Return the Hermite polynomial @f$ H_n(x) @f$ of nonnegative order n | 
 
 
 
 
 
 | 880 | 
    * and float argument @c x. | 
 
 
 
 
 
 | 881 | 
    * | 
 
 
 
 
 
 | 882 | 
    * @see hermite for details. | 
 
 
 
 
 
 | 883 | 
    */ | 
 
 
 
 
 
 | 884 | 
   inline float | 
 
 
 
 
 
 | 885 | 
   hermitef(unsigned int __n, float __x) | 
 
 
 
 
 
 | 886 | 
   { return __detail::__poly_hermite<float>(__n, __x); } | 
 
 
 
 
 
 | 887 | 
  | 
 
 
 
 
 
 | 888 | 
   /** | 
 
 
 
 
 
 | 889 | 
    * Return the Hermite polynomial @f$ H_n(x) @f$ of nonnegative order n | 
 
 
 
 
 
 | 890 | 
    * and <tt>long double</tt> argument @c x. | 
 
 
 
 
 
 | 891 | 
    * | 
 
 
 
 
 
 | 892 | 
    * @see hermite for details. | 
 
 
 
 
 
 | 893 | 
    */ | 
 
 
 
 
 
 | 894 | 
   inline long double | 
 
 
 
 
 
 | 895 | 
   hermitel(unsigned int __n, long double __x) | 
 
 
 
 
 
 | 896 | 
   { return __detail::__poly_hermite<long double>(__n, __x); } | 
 
 
 
 
 
 | 897 | 
  | 
 
 
 
 
 
 | 898 | 
   /** | 
 
 
 
 
 
 | 899 | 
    * Return the Hermite polynomial @f$ H_n(x) @f$ of order n | 
 
 
 
 
 
 | 900 | 
    * and @c real argument @c x. | 
 
 
 
 
 
 | 901 | 
    * | 
 
 
 
 
 
 | 902 | 
    * The Hermite polynomial is defined by: | 
 
 
 
 
 
 | 903 | 
    * @f[ | 
 
 
 
 
 
 | 904 | 
    *   H_n(x) = (-1)^n e^{x^2} \frac{d^n}{dx^n} e^{-x^2} | 
 
 
 
 
 
 | 905 | 
    * @f] | 
 
 
 
 
 
 | 906 | 
    * | 
 
 
 
 
 
 | 907 | 
    * The Hermite polynomial obeys a reflection formula: | 
 
 
 
 
 
 | 908 | 
    * @f[ | 
 
 
 
 
 
 | 909 | 
    *   H_n(-x) = (-1)^n H_n(x) | 
 
 
 
 
 
 | 910 | 
    * @f] | 
 
 
 
 
 
 | 911 | 
    * | 
 
 
 
 
 
 | 912 | 
    * @tparam _Tp The floating-point type of the argument @c __x. | 
 
 
 
 
 
 | 913 | 
    * @param __n The order | 
 
 
 
 
 
 | 914 | 
    * @param __x The argument | 
 
 
 
 
 
 | 915 | 
    */ | 
 
 
 
 
 
 | 916 | 
   template<typename _Tp> | 
 
 
 
 
 
 | 917 | 
     inline typename __gnu_cxx::__promote<_Tp>::__type | 
 
 
 
 
 
 | 918 | 
     hermite(unsigned int __n, _Tp __x) | 
 
 
 
 
 
 | 919 | 
     { | 
 
 
 
 
 
 | 920 | 
       typedef typename __gnu_cxx::__promote<_Tp>::__type __type; | 
 
 
 
 
 
 | 921 | 
       return __detail::__poly_hermite<__type>(__n, __x); | 
 
 
 
 
 
 | 922 | 
     } | 
 
 
 
 
 
 | 923 | 
  | 
 
 
 
 
 
 | 924 | 
   // Laguerre polynomials | 
 
 
 
 
 
 | 925 | 
  | 
 
 
 
 
 
 | 926 | 
   /** | 
 
 
 
 
 
 | 927 | 
    * Returns the Laguerre polynomial @f$ L_n(x) @f$ of nonnegative degree @c n | 
 
 
 
 
 
 | 928 | 
    * and @c float argument  @f$ x >= 0 @f$. | 
 
 
 
 
 
 | 929 | 
    * | 
 
 
 
 
 
 | 930 | 
    * @see laguerre for more details. | 
 
 
 
 
 
 | 931 | 
    */ | 
 
 
 
 
 
 | 932 | 
   inline float | 
 
 
 
 
 
 | 933 | 
   laguerref(unsigned int __n, float __x) | 
 
 
 
 
 
 | 934 | 
   { return __detail::__laguerre<float>(__n, __x); } | 
 
 
 
 
 
 | 935 | 
  | 
 
 
 
 
 
 | 936 | 
   /** | 
 
 
 
 
 
 | 937 | 
    * Returns the Laguerre polynomial @f$ L_n(x) @f$ of nonnegative degree @c n | 
 
 
 
 
 
 | 938 | 
    * and <tt>long double</tt> argument @f$ x >= 0 @f$. | 
 
 
 
 
 
 | 939 | 
    * | 
 
 
 
 
 
 | 940 | 
    * @see laguerre for more details. | 
 
 
 
 
 
 | 941 | 
    */ | 
 
 
 
 
 
 | 942 | 
   inline long double | 
 
 
 
 
 
 | 943 | 
   laguerrel(unsigned int __n, long double __x) | 
 
 
 
 
 
 | 944 | 
   { return __detail::__laguerre<long double>(__n, __x); } | 
 
 
 
 
 
 | 945 | 
  | 
 
 
 
 
 
 | 946 | 
   /** | 
 
 
 
 
 
 | 947 | 
    * Returns the Laguerre polynomial @f$ L_n(x) @f$ | 
 
 
 
 
 
 | 948 | 
    * of nonnegative degree @c n and real argument @f$ x >= 0 @f$. | 
 
 
 
 
 
 | 949 | 
    * | 
 
 
 
 
 
 | 950 | 
    * The Laguerre polynomial is defined by: | 
 
 
 
 
 
 | 951 | 
    * @f[ | 
 
 
 
 
 
 | 952 | 
    *     L_n(x) = \frac{e^x}{n!} \frac{d^n}{dx^n} (x^ne^{-x}) | 
 
 
 
 
 
 | 953 | 
    * @f] | 
 
 
 
 
 
 | 954 | 
    * | 
 
 
 
 
 
 | 955 | 
    * @tparam _Tp The floating-point type of the argument @c __x. | 
 
 
 
 
 
 | 956 | 
    * @param __n The nonnegative order | 
 
 
 
 
 
 | 957 | 
    * @param __x The argument <tt> __x >= 0 </tt> | 
 
 
 
 
 
 | 958 | 
    * @throw std::domain_error if <tt> __x < 0 </tt>. | 
 
 
 
 
 
 | 959 | 
    */ | 
 
 
 
 
 
 | 960 | 
   template<typename _Tp> | 
 
 
 
 
 
 | 961 | 
     inline typename __gnu_cxx::__promote<_Tp>::__type | 
 
 
 
 
 
 | 962 | 
     laguerre(unsigned int __n, _Tp __x) | 
 
 
 
 
 
 | 963 | 
     { | 
 
 
 
 
 
 | 964 | 
       typedef typename __gnu_cxx::__promote<_Tp>::__type __type; | 
 
 
 
 
 
 | 965 | 
       return __detail::__laguerre<__type>(__n, __x); | 
 
 
 
 
 
 | 966 | 
     } | 
 
 
 
 
 
 | 967 | 
  | 
 
 
 
 
 
 | 968 | 
   // Legendre polynomials | 
 
 
 
 
 
 | 969 | 
  | 
 
 
 
 
 
 | 970 | 
   /** | 
 
 
 
 
 
 | 971 | 
    * Return the Legendre polynomial @f$ P_l(x) @f$ of nonnegative | 
 
 
 
 
 
 | 972 | 
    * degree @f$ l @f$ and @c float argument @f$ |x| <= 0 @f$. | 
 
 
 
 
 
 | 973 | 
    * | 
 
 
 
 
 
 | 974 | 
    * @see legendre for more details. | 
 
 
 
 
 
 | 975 | 
    */ | 
 
 
 
 
 
 | 976 | 
   inline float | 
 
 
 
 
 
 | 977 | 
   legendref(unsigned int __l, float __x) | 
 
 
 
 
 
 | 978 | 
   { return __detail::__poly_legendre_p<float>(__l, __x); } | 
 
 
 
 
 
 | 979 | 
  | 
 
 
 
 
 
 | 980 | 
   /** | 
 
 
 
 
 
 | 981 | 
    * Return the Legendre polynomial @f$ P_l(x) @f$ of nonnegative | 
 
 
 
 
 
 | 982 | 
    * degree @f$ l @f$ and <tt>long double</tt> argument @f$ |x| <= 0 @f$. | 
 
 
 
 
 
 | 983 | 
    * | 
 
 
 
 
 
 | 984 | 
    * @see legendre for more details. | 
 
 
 
 
 
 | 985 | 
    */ | 
 
 
 
 
 
 | 986 | 
   inline long double | 
 
 
 
 
 
 | 987 | 
   legendrel(unsigned int __l, long double __x) | 
 
 
 
 
 
 | 988 | 
   { return __detail::__poly_legendre_p<long double>(__l, __x); } | 
 
 
 
 
 
 | 989 | 
  | 
 
 
 
 
 
 | 990 | 
   /** | 
 
 
 
 
 
 | 991 | 
    * Return the Legendre polynomial @f$ P_l(x) @f$ of nonnegative | 
 
 
 
 
 
 | 992 | 
    * degree @f$ l @f$ and real argument @f$ |x| <= 0 @f$. | 
 
 
 
 
 
 | 993 | 
    * | 
 
 
 
 
 
 | 994 | 
    * The Legendre function of order @f$ l @f$ and argument @f$ x @f$, | 
 
 
 
 
 
 | 995 | 
    * @f$ P_l(x) @f$, is defined by: | 
 
 
 
 
 
 | 996 | 
    * @f[ | 
 
 
 
 
 
 | 997 | 
    *   P_l(x) = \frac{1}{2^l l!}\frac{d^l}{dx^l}(x^2 - 1)^{l} | 
 
 
 
 
 
 | 998 | 
    * @f] | 
 
 
 
 
 
 | 999 | 
    * | 
 
 
 
 
 
 | 1000 | 
    * @tparam _Tp The floating-point type of the argument @c __x. | 
 
 
 
 
 
 | 1001 | 
    * @param __l The degree @f$ l >= 0 @f$ | 
 
 
 
 
 
 | 1002 | 
    * @param __x The argument @c abs(__x) <= 1 | 
 
 
 
 
 
 | 1003 | 
    * @throw std::domain_error if @c abs(__x) > 1 | 
 
 
 
 
 
 | 1004 | 
    */ | 
 
 
 
 
 
 | 1005 | 
   template<typename _Tp> | 
 
 
 
 
 
 | 1006 | 
     inline typename __gnu_cxx::__promote<_Tp>::__type | 
 
 
 
 
 
 | 1007 | 
     legendre(unsigned int __l, _Tp __x) | 
 
 
 
 
 
 | 1008 | 
     { | 
 
 
 
 
 
 | 1009 | 
       typedef typename __gnu_cxx::__promote<_Tp>::__type __type; | 
 
 
 
 
 
 | 1010 | 
       return __detail::__poly_legendre_p<__type>(__l, __x); | 
 
 
 
 
 
 | 1011 | 
     } | 
 
 
 
 
 
 | 1012 | 
  | 
 
 
 
 
 
 | 1013 | 
   // Riemann zeta functions | 
 
 
 
 
 
 | 1014 | 
  | 
 
 
 
 
 
 | 1015 | 
   /** | 
 
 
 
 
 
 | 1016 | 
    * Return the Riemann zeta function @f$ \zeta(s) @f$ | 
 
 
 
 
 
 | 1017 | 
    * for @c float argument @f$ s @f$. | 
 
 
 
 
 
 | 1018 | 
    * | 
 
 
 
 
 
 | 1019 | 
    * @see riemann_zeta for more details. | 
 
 
 
 
 
 | 1020 | 
    */ | 
 
 
 
 
 
 | 1021 | 
   inline float | 
 
 
 
 
 
 | 1022 | 
   riemann_zetaf(float __s) | 
 
 
 
 
 
 | 1023 | 
   { return __detail::__riemann_zeta<float>(__s); } | 
 
 
 
 
 
 | 1024 | 
  | 
 
 
 
 
 
 | 1025 | 
   /** | 
 
 
 
 
 
 | 1026 | 
    * Return the Riemann zeta function @f$ \zeta(s) @f$ | 
 
 
 
 
 
 | 1027 | 
    * for <tt>long double</tt> argument @f$ s @f$. | 
 
 
 
 
 
 | 1028 | 
    * | 
 
 
 
 
 
 | 1029 | 
    * @see riemann_zeta for more details. | 
 
 
 
 
 
 | 1030 | 
    */ | 
 
 
 
 
 
 | 1031 | 
   inline long double | 
 
 
 
 
 
 | 1032 | 
   riemann_zetal(long double __s) | 
 
 
 
 
 
 | 1033 | 
   { return __detail::__riemann_zeta<long double>(__s); } | 
 
 
 
 
 
 | 1034 | 
  | 
 
 
 
 
 
 | 1035 | 
   /** | 
 
 
 
 
 
 | 1036 | 
    * Return the Riemann zeta function @f$ \zeta(s) @f$ | 
 
 
 
 
 
 | 1037 | 
    * for real argument @f$ s @f$. | 
 
 
 
 
 
 | 1038 | 
    * | 
 
 
 
 
 
 | 1039 | 
    * The Riemann zeta function is defined by: | 
 
 
 
 
 
 | 1040 | 
    * @f[ | 
 
 
 
 
 
 | 1041 | 
    *    \zeta(s) = \sum_{k=1}^{\infty} k^{-s} \hbox{ for } s > 1 | 
 
 
 
 
 
 | 1042 | 
    * @f] | 
 
 
 
 
 
 | 1043 | 
    * and | 
 
 
 
 
 
 | 1044 | 
    * @f[ | 
 
 
 
 
 
 | 1045 | 
    *    \zeta(s) = \frac{1}{1-2^{1-s}}\sum_{k=1}^{\infty}(-1)^{k-1}k^{-s} | 
 
 
 
 
 
 | 1046 | 
    *              \hbox{ for } 0 <= s <= 1 | 
 
 
 
 
 
 | 1047 | 
    * @f] | 
 
 
 
 
 
 | 1048 | 
    * For s < 1 use the reflection formula: | 
 
 
 
 
 
 | 1049 | 
    * @f[ | 
 
 
 
 
 
 | 1050 | 
    *    \zeta(s) = 2^s \pi^{s-1} \sin(\frac{\pi s}{2}) \Gamma(1-s) \zeta(1-s) | 
 
 
 
 
 
 | 1051 | 
    * @f] | 
 
 
 
 
 
 | 1052 | 
    * | 
 
 
 
 
 
 | 1053 | 
    * @tparam _Tp The floating-point type of the argument @c __s. | 
 
 
 
 
 
 | 1054 | 
    * @param __s The argument <tt> s != 1 </tt> | 
 
 
 
 
 
 | 1055 | 
    */ | 
 
 
 
 
 
 | 1056 | 
   template<typename _Tp> | 
 
 
 
 
 
 | 1057 | 
     inline typename __gnu_cxx::__promote<_Tp>::__type | 
 
 
 
 
 
 | 1058 | 
     riemann_zeta(_Tp __s) | 
 
 
 
 
 
 | 1059 | 
     { | 
 
 
 
 
 
 | 1060 | 
       typedef typename __gnu_cxx::__promote<_Tp>::__type __type; | 
 
 
 
 
 
 | 1061 | 
       return __detail::__riemann_zeta<__type>(__s); | 
 
 
 
 
 
 | 1062 | 
     } | 
 
 
 
 
 
 | 1063 | 
  | 
 
 
 
 
 
 | 1064 | 
   // Spherical Bessel functions | 
 
 
 
 
 
 | 1065 | 
  | 
 
 
 
 
 
 | 1066 | 
   /** | 
 
 
 
 
 
 | 1067 | 
    * Return the spherical Bessel function @f$ j_n(x) @f$ of nonnegative order n | 
 
 
 
 
 
 | 1068 | 
    * and @c float argument @f$ x >= 0 @f$. | 
 
 
 
 
 
 | 1069 | 
    * | 
 
 
 
 
 
 | 1070 | 
    * @see sph_bessel for more details. | 
 
 
 
 
 
 | 1071 | 
    */ | 
 
 
 
 
 
 | 1072 | 
   inline float | 
 
 
 
 
 
 | 1073 | 
   sph_besself(unsigned int __n, float __x) | 
 
 
 
 
 
 | 1074 | 
   { return __detail::__sph_bessel<float>(__n, __x); } | 
 
 
 
 
 
 | 1075 | 
  | 
 
 
 
 
 
 | 1076 | 
   /** | 
 
 
 
 
 
 | 1077 | 
    * Return the spherical Bessel function @f$ j_n(x) @f$ of nonnegative order n | 
 
 
 
 
 
 | 1078 | 
    * and <tt>long double</tt> argument @f$ x >= 0 @f$. | 
 
 
 
 
 
 | 1079 | 
    * | 
 
 
 
 
 
 | 1080 | 
    * @see sph_bessel for more details. | 
 
 
 
 
 
 | 1081 | 
    */ | 
 
 
 
 
 
 | 1082 | 
   inline long double | 
 
 
 
 
 
 | 1083 | 
   sph_bessell(unsigned int __n, long double __x) | 
 
 
 
 
 
 | 1084 | 
   { return __detail::__sph_bessel<long double>(__n, __x); } | 
 
 
 
 
 
 | 1085 | 
  | 
 
 
 
 
 
 | 1086 | 
   /** | 
 
 
 
 
 
 | 1087 | 
    * Return the spherical Bessel function @f$ j_n(x) @f$ of nonnegative order n | 
 
 
 
 
 
 | 1088 | 
    * and real argument @f$ x >= 0 @f$. | 
 
 
 
 
 
 | 1089 | 
    * | 
 
 
 
 
 
 | 1090 | 
    * The spherical Bessel function is defined by: | 
 
 
 
 
 
 | 1091 | 
    * @f[ | 
 
 
 
 
 
 | 1092 | 
    *  j_n(x) = \left(\frac{\pi}{2x} \right) ^{1/2} J_{n+1/2}(x) | 
 
 
 
 
 
 | 1093 | 
    * @f] | 
 
 
 
 
 
 | 1094 | 
    * | 
 
 
 
 
 
 | 1095 | 
    * @tparam _Tp The floating-point type of the argument @c __x. | 
 
 
 
 
 
 | 1096 | 
    * @param  __n  The integral order <tt> n >= 0 </tt> | 
 
 
 
 
 
 | 1097 | 
    * @param  __x  The real argument <tt> x >= 0 </tt> | 
 
 
 
 
 
 | 1098 | 
    * @throw std::domain_error if <tt> __x < 0 </tt>. | 
 
 
 
 
 
 | 1099 | 
    */ | 
 
 
 
 
 
 | 1100 | 
   template<typename _Tp> | 
 
 
 
 
 
 | 1101 | 
     inline typename __gnu_cxx::__promote<_Tp>::__type | 
 
 
 
 
 
 | 1102 | 
     sph_bessel(unsigned int __n, _Tp __x) | 
 
 
 
 
 
 | 1103 | 
     { | 
 
 
 
 
 
 | 1104 | 
       typedef typename __gnu_cxx::__promote<_Tp>::__type __type; | 
 
 
 
 
 
 | 1105 | 
       return __detail::__sph_bessel<__type>(__n, __x); | 
 
 
 
 
 
 | 1106 | 
     } | 
 
 
 
 
 
 | 1107 | 
  | 
 
 
 
 
 
 | 1108 | 
   // Spherical associated Legendre functions | 
 
 
 
 
 
 | 1109 | 
  | 
 
 
 
 
 
 | 1110 | 
   /** | 
 
 
 
 
 
 | 1111 | 
    * Return the spherical Legendre function of nonnegative integral | 
 
 
 
 
 
 | 1112 | 
    * degree @c l and order @c m and float angle @f$ \theta @f$ in radians. | 
 
 
 
 
 
 | 1113 | 
    * | 
 
 
 
 
 
 | 1114 | 
    * @see sph_legendre for details. | 
 
 
 
 
 
 | 1115 | 
    */ | 
 
 
 
 
 
 | 1116 | 
   inline float | 
 
 
 
 
 
 | 1117 | 
   sph_legendref(unsigned int __l, unsigned int __m, float __theta) | 
 
 
 
 
 
 | 1118 | 
   { return __detail::__sph_legendre<float>(__l, __m, __theta); } | 
 
 
 
 
 
 | 1119 | 
  | 
 
 
 
 
 
 | 1120 | 
   /** | 
 
 
 
 
 
 | 1121 | 
    * Return the spherical Legendre function of nonnegative integral | 
 
 
 
 
 
 | 1122 | 
    * degree @c l and order @c m and <tt>long double</tt> angle @f$ \theta @f$ | 
 
 
 
 
 
 | 1123 | 
    * in radians. | 
 
 
 
 
 
 | 1124 | 
    * | 
 
 
 
 
 
 | 1125 | 
    * @see sph_legendre for details. | 
 
 
 
 
 
 | 1126 | 
    */ | 
 
 
 
 
 
 | 1127 | 
   inline long double | 
 
 
 
 
 
 | 1128 | 
   sph_legendrel(unsigned int __l, unsigned int __m, long double __theta) | 
 
 
 
 
 
 | 1129 | 
   { return __detail::__sph_legendre<long double>(__l, __m, __theta); } | 
 
 
 
 
 
 | 1130 | 
  | 
 
 
 
 
 
 | 1131 | 
   /** | 
 
 
 
 
 
 | 1132 | 
    * Return the spherical Legendre function of nonnegative integral | 
 
 
 
 
 
 | 1133 | 
    * degree @c l and order @c m and real angle @f$ \theta @f$ in radians. | 
 
 
 
 
 
 | 1134 | 
    * | 
 
 
 
 
 
 | 1135 | 
    * The spherical Legendre function is defined by | 
 
 
 
 
 
 | 1136 | 
    * @f[ | 
 
 
 
 
 
 | 1137 | 
    *  Y_l^m(\theta,\phi) = (-1)^m[\frac{(2l+1)}{4\pi} | 
 
 
 
 
 
 | 1138 | 
    *                              \frac{(l-m)!}{(l+m)!}] | 
 
 
 
 
 
 | 1139 | 
    *                   P_l^m(\cos\theta) \exp^{im\phi} | 
 
 
 
 
 
 | 1140 | 
    * @f] | 
 
 
 
 
 
 | 1141 | 
    * | 
 
 
 
 
 
 | 1142 | 
    * @tparam _Tp The floating-point type of the angle @c __theta. | 
 
 
 
 
 
 | 1143 | 
    * @param __l The order <tt> __l >= 0 </tt> | 
 
 
 
 
 
 | 1144 | 
    * @param __m The degree <tt> __m >= 0 </tt> and <tt> __m <= __l </tt> | 
 
 
 
 
 
 | 1145 | 
    * @param __theta The radian polar angle argument | 
 
 
 
 
 
 | 1146 | 
    */ | 
 
 
 
 
 
 | 1147 | 
   template<typename _Tp> | 
 
 
 
 
 
 | 1148 | 
     inline typename __gnu_cxx::__promote<_Tp>::__type | 
 
 
 
 
 
 | 1149 | 
     sph_legendre(unsigned int __l, unsigned int __m, _Tp __theta) | 
 
 
 
 
 
 | 1150 | 
     { | 
 
 
 
 
 
 | 1151 | 
       typedef typename __gnu_cxx::__promote<_Tp>::__type __type; | 
 
 
 
 
 
 | 1152 | 
       return __detail::__sph_legendre<__type>(__l, __m, __theta); | 
 
 
 
 
 
 | 1153 | 
     } | 
 
 
 
 
 
 | 1154 | 
  | 
 
 
 
 
 
 | 1155 | 
   // Spherical Neumann functions | 
 
 
 
 
 
 | 1156 | 
  | 
 
 
 
 
 
 | 1157 | 
   /** | 
 
 
 
 
 
 | 1158 | 
    * Return the spherical Neumann function of integral order @f$ n >= 0 @f$ | 
 
 
 
 
 
 | 1159 | 
    * and @c float argument @f$ x >= 0 @f$. | 
 
 
 
 
 
 | 1160 | 
    * | 
 
 
 
 
 
 | 1161 | 
    * @see sph_neumann for details. | 
 
 
 
 
 
 | 1162 | 
    */ | 
 
 
 
 
 
 | 1163 | 
   inline float | 
 
 
 
 
 
 | 1164 | 
   sph_neumannf(unsigned int __n, float __x) | 
 
 
 
 
 
 | 1165 | 
   { return __detail::__sph_neumann<float>(__n, __x); } | 
 
 
 
 
 
 | 1166 | 
  | 
 
 
 
 
 
 | 1167 | 
   /** | 
 
 
 
 
 
 | 1168 | 
    * Return the spherical Neumann function of integral order @f$ n >= 0 @f$ | 
 
 
 
 
 
 | 1169 | 
    * and <tt>long double</tt> @f$ x >= 0 @f$. | 
 
 
 
 
 
 | 1170 | 
    * | 
 
 
 
 
 
 | 1171 | 
    * @see sph_neumann for details. | 
 
 
 
 
 
 | 1172 | 
    */ | 
 
 
 
 
 
 | 1173 | 
   inline long double | 
 
 
 
 
 
 | 1174 | 
   sph_neumannl(unsigned int __n, long double __x) | 
 
 
 
 
 
 | 1175 | 
   { return __detail::__sph_neumann<long double>(__n, __x); } | 
 
 
 
 
 
 | 1176 | 
  | 
 
 
 
 
 
 | 1177 | 
   /** | 
 
 
 
 
 
 | 1178 | 
    * Return the spherical Neumann function of integral order @f$ n >= 0 @f$ | 
 
 
 
 
 
 | 1179 | 
    * and real argument @f$ x >= 0 @f$. | 
 
 
 
 
 
 | 1180 | 
    * | 
 
 
 
 
 
 | 1181 | 
    * The spherical Neumann function is defined by | 
 
 
 
 
 
 | 1182 | 
    * @f[ | 
 
 
 
 
 
 | 1183 | 
    *    n_n(x) = \left(\frac{\pi}{2x} \right) ^{1/2} N_{n+1/2}(x) | 
 
 
 
 
 
 | 1184 | 
    * @f] | 
 
 
 
 
 
 | 1185 | 
    * | 
 
 
 
 
 
 | 1186 | 
    * @tparam _Tp The floating-point type of the argument @c __x. | 
 
 
 
 
 
 | 1187 | 
    * @param  __n  The integral order <tt> n >= 0 </tt> | 
 
 
 
 
 
 | 1188 | 
    * @param  __x  The real argument <tt> __x >= 0 </tt> | 
 
 
 
 
 
 | 1189 | 
    * @throw std::domain_error if <tt> __x < 0 </tt>. | 
 
 
 
 
 
 | 1190 | 
    */ | 
 
 
 
 
 
 | 1191 | 
   template<typename _Tp> | 
 
 
 
 
 
 | 1192 | 
     inline typename __gnu_cxx::__promote<_Tp>::__type | 
 
 
 
 
 
 | 1193 | 
     sph_neumann(unsigned int __n, _Tp __x) | 
 
 
 
 
 
 | 1194 | 
     { | 
 
 
 
 
 
 | 1195 | 
       typedef typename __gnu_cxx::__promote<_Tp>::__type __type; | 
 
 
 
 
 
 | 1196 | 
       return __detail::__sph_neumann<__type>(__n, __x); | 
 
 
 
 
 
 | 1197 | 
     } | 
 
 
 
 
 
 | 1198 | 
  | 
 
 
 
 
 
 | 1199 | 
   /// @} group mathsf | 
 
 
 
 
 
 | 1200 | 
  | 
 
 
 
 
 
 | 1201 | 
 _GLIBCXX_END_NAMESPACE_VERSION | 
 
 
 
 
 
 | 1202 | 
 } // namespace std | 
 
 
 
 
 
 | 1203 | 
  | 
 
 
 
 
 
 | 1204 | 
 #ifndef __STRICT_ANSI__ | 
 
 
 
 
 
 | 1205 | 
 namespace __gnu_cxx _GLIBCXX_VISIBILITY(default) | 
 
 
 
 
 
 | 1206 | 
 { | 
 
 
 
 
 
 | 1207 | 
 _GLIBCXX_BEGIN_NAMESPACE_VERSION | 
 
 
 
 
 
 | 1208 | 
  | 
 
 
 
 
 
 | 1209 | 
   /** @addtogroup mathsf | 
 
 
 
 
 
 | 1210 | 
    *  @{ | 
 
 
 
 
 
 | 1211 | 
    */ | 
 
 
 
 
 
 | 1212 | 
  | 
 
 
 
 
 
 | 1213 | 
   // Airy functions | 
 
 
 
 
 
 | 1214 | 
  | 
 
 
 
 
 
 | 1215 | 
   /** | 
 
 
 
 
 
 | 1216 | 
    * Return the Airy function @f$ Ai(x) @f$ of @c float argument x. | 
 
 
 
 
 
 | 1217 | 
    */ | 
 
 
 
 
 
 | 1218 | 
   inline float | 
 
 
 
 
 
 | 1219 | 
   airy_aif(float __x) | 
 
 
 
 
 
 | 1220 | 
   { | 
 
 
 
 
 
 | 1221 | 
     float __Ai, __Bi, __Aip, __Bip; | 
 
 
 
 
 
 | 1222 | 
     std::__detail::__airy<float>(__x, __Ai, __Bi, __Aip, __Bip); | 
 
 
 
 
 
 | 1223 | 
     return __Ai; | 
 
 
 
 
 
 | 1224 | 
   } | 
 
 
 
 
 
 | 1225 | 
  | 
 
 
 
 
 
 | 1226 | 
   /** | 
 
 
 
 
 
 | 1227 | 
    * Return the Airy function @f$ Ai(x) @f$ of <tt>long double</tt> argument x. | 
 
 
 
 
 
 | 1228 | 
    */ | 
 
 
 
 
 
 | 1229 | 
   inline long double | 
 
 
 
 
 
 | 1230 | 
   airy_ail(long double __x) | 
 
 
 
 
 
 | 1231 | 
   { | 
 
 
 
 
 
 | 1232 | 
     long double __Ai, __Bi, __Aip, __Bip; | 
 
 
 
 
 
 | 1233 | 
     std::__detail::__airy<long double>(__x, __Ai, __Bi, __Aip, __Bip); | 
 
 
 
 
 
 | 1234 | 
     return __Ai; | 
 
 
 
 
 
 | 1235 | 
   } | 
 
 
 
 
 
 | 1236 | 
  | 
 
 
 
 
 
 | 1237 | 
   /** | 
 
 
 
 
 
 | 1238 | 
    * Return the Airy function @f$ Ai(x) @f$ of real argument x. | 
 
 
 
 
 
 | 1239 | 
    */ | 
 
 
 
 
 
 | 1240 | 
   template<typename _Tp> | 
 
 
 
 
 
 | 1241 | 
     inline typename __gnu_cxx::__promote<_Tp>::__type | 
 
 
 
 
 
 | 1242 | 
     airy_ai(_Tp __x) | 
 
 
 
 
 
 | 1243 | 
     { | 
 
 
 
 
 
 | 1244 | 
       typedef typename __gnu_cxx::__promote<_Tp>::__type __type; | 
 
 
 
 
 
 | 1245 | 
       __type __Ai, __Bi, __Aip, __Bip; | 
 
 
 
 
 
 | 1246 | 
       std::__detail::__airy<__type>(__x, __Ai, __Bi, __Aip, __Bip); | 
 
 
 
 
 
 | 1247 | 
       return __Ai; | 
 
 
 
 
 
 | 1248 | 
     } | 
 
 
 
 
 
 | 1249 | 
  | 
 
 
 
 
 
 | 1250 | 
   /** | 
 
 
 
 
 
 | 1251 | 
    * Return the Airy function @f$ Bi(x) @f$ of @c float argument x. | 
 
 
 
 
 
 | 1252 | 
    */ | 
 
 
 
 
 
 | 1253 | 
   inline float | 
 
 
 
 
 
 | 1254 | 
   airy_bif(float __x) | 
 
 
 
 
 
 | 1255 | 
   { | 
 
 
 
 
 
 | 1256 | 
     float __Ai, __Bi, __Aip, __Bip; | 
 
 
 
 
 
 | 1257 | 
     std::__detail::__airy<float>(__x, __Ai, __Bi, __Aip, __Bip); | 
 
 
 
 
 
 | 1258 | 
     return __Bi; | 
 
 
 
 
 
 | 1259 | 
   } | 
 
 
 
 
 
 | 1260 | 
  | 
 
 
 
 
 
 | 1261 | 
   /** | 
 
 
 
 
 
 | 1262 | 
    * Return the Airy function @f$ Bi(x) @f$ of <tt>long double</tt> argument x. | 
 
 
 
 
 
 | 1263 | 
    */ | 
 
 
 
 
 
 | 1264 | 
   inline long double | 
 
 
 
 
 
 | 1265 | 
   airy_bil(long double __x) | 
 
 
 
 
 
 | 1266 | 
   { | 
 
 
 
 
 
 | 1267 | 
     long double __Ai, __Bi, __Aip, __Bip; | 
 
 
 
 
 
 | 1268 | 
     std::__detail::__airy<long double>(__x, __Ai, __Bi, __Aip, __Bip); | 
 
 
 
 
 
 | 1269 | 
     return __Bi; | 
 
 
 
 
 
 | 1270 | 
   } | 
 
 
 
 
 
 | 1271 | 
  | 
 
 
 
 
 
 | 1272 | 
   /** | 
 
 
 
 
 
 | 1273 | 
    * Return the Airy function @f$ Bi(x) @f$ of real argument x. | 
 
 
 
 
 
 | 1274 | 
    */ | 
 
 
 
 
 
 | 1275 | 
   template<typename _Tp> | 
 
 
 
 
 
 | 1276 | 
     inline typename __gnu_cxx::__promote<_Tp>::__type | 
 
 
 
 
 
 | 1277 | 
     airy_bi(_Tp __x) | 
 
 
 
 
 
 | 1278 | 
     { | 
 
 
 
 
 
 | 1279 | 
       typedef typename __gnu_cxx::__promote<_Tp>::__type __type; | 
 
 
 
 
 
 | 1280 | 
       __type __Ai, __Bi, __Aip, __Bip; | 
 
 
 
 
 
 | 1281 | 
       std::__detail::__airy<__type>(__x, __Ai, __Bi, __Aip, __Bip); | 
 
 
 
 
 
 | 1282 | 
       return __Bi; | 
 
 
 
 
 
 | 1283 | 
     } | 
 
 
 
 
 
 | 1284 | 
  | 
 
 
 
 
 
 | 1285 | 
   // Confluent hypergeometric functions | 
 
 
 
 
 
 | 1286 | 
  | 
 
 
 
 
 
 | 1287 | 
   /** | 
 
 
 
 
 
 | 1288 | 
    * Return the confluent hypergeometric function @f$ {}_1F_1(a;c;x) @f$ | 
 
 
 
 
 
 | 1289 | 
    * of @c float numeratorial parameter @c a, denominatorial parameter @c c, | 
 
 
 
 
 
 | 1290 | 
    * and argument @c x. | 
 
 
 
 
 
 | 1291 | 
    * | 
 
 
 
 
 
 | 1292 | 
    * @see conf_hyperg for details. | 
 
 
 
 
 
 | 1293 | 
    */ | 
 
 
 
 
 
 | 1294 | 
   inline float | 
 
 
 
 
 
 | 1295 | 
   conf_hypergf(float __a, float __c, float __x) | 
 
 
 
 
 
 | 1296 | 
   { return std::__detail::__conf_hyperg<float>(__a, __c, __x); } | 
 
 
 
 
 
 | 1297 | 
  | 
 
 
 
 
 
 | 1298 | 
   /** | 
 
 
 
 
 
 | 1299 | 
    * Return the confluent hypergeometric function @f$ {}_1F_1(a;c;x) @f$ | 
 
 
 
 
 
 | 1300 | 
    * of <tt>long double</tt> numeratorial parameter @c a, | 
 
 
 
 
 
 | 1301 | 
    * denominatorial parameter @c c, and argument @c x. | 
 
 
 
 
 
 | 1302 | 
    * | 
 
 
 
 
 
 | 1303 | 
    * @see conf_hyperg for details. | 
 
 
 
 
 
 | 1304 | 
    */ | 
 
 
 
 
 
 | 1305 | 
   inline long double | 
 
 
 
 
 
 | 1306 | 
   conf_hypergl(long double __a, long double __c, long double __x) | 
 
 
 
 
 
 | 1307 | 
   { return std::__detail::__conf_hyperg<long double>(__a, __c, __x); } | 
 
 
 
 
 
 | 1308 | 
  | 
 
 
 
 
 
 | 1309 | 
   /** | 
 
 
 
 
 
 | 1310 | 
    * Return the confluent hypergeometric function @f$ {}_1F_1(a;c;x) @f$ | 
 
 
 
 
 
 | 1311 | 
    * of real numeratorial parameter @c a, denominatorial parameter @c c, | 
 
 
 
 
 
 | 1312 | 
    * and argument @c x. | 
 
 
 
 
 
 | 1313 | 
    * | 
 
 
 
 
 
 | 1314 | 
    * The confluent hypergeometric function is defined by | 
 
 
 
 
 
 | 1315 | 
    * @f[ | 
 
 
 
 
 
 | 1316 | 
    *    {}_1F_1(a;c;x) = \sum_{n=0}^{\infty} \frac{(a)_n x^n}{(c)_n n!} | 
 
 
 
 
 
 | 1317 | 
    * @f] | 
 
 
 
 
 
 | 1318 | 
    * where the Pochhammer symbol is @f$ (x)_k = (x)(x+1)...(x+k-1) @f$, | 
 
 
 
 
 
 | 1319 | 
    * @f$ (x)_0 = 1 @f$ | 
 
 
 
 
 
 | 1320 | 
    * | 
 
 
 
 
 
 | 1321 | 
    * @param __a The numeratorial parameter | 
 
 
 
 
 
 | 1322 | 
    * @param __c The denominatorial parameter | 
 
 
 
 
 
 | 1323 | 
    * @param __x The argument | 
 
 
 
 
 
 | 1324 | 
    */ | 
 
 
 
 
 
 | 1325 | 
   template<typename _Tpa, typename _Tpc, typename _Tp> | 
 
 
 
 
 
 | 1326 | 
     inline typename __gnu_cxx::__promote_3<_Tpa, _Tpc, _Tp>::__type | 
 
 
 
 
 
 | 1327 | 
     conf_hyperg(_Tpa __a, _Tpc __c, _Tp __x) | 
 
 
 
 
 
 | 1328 | 
     { | 
 
 
 
 
 
 | 1329 | 
       typedef typename __gnu_cxx::__promote_3<_Tpa, _Tpc, _Tp>::__type __type; | 
 
 
 
 
 
 | 1330 | 
       return std::__detail::__conf_hyperg<__type>(__a, __c, __x); | 
 
 
 
 
 
 | 1331 | 
     } | 
 
 
 
 
 
 | 1332 | 
  | 
 
 
 
 
 
 | 1333 | 
   // Hypergeometric functions | 
 
 
 
 
 
 | 1334 | 
  | 
 
 
 
 
 
 | 1335 | 
   /** | 
 
 
 
 
 
 | 1336 | 
    * Return the hypergeometric function @f$ {}_2F_1(a,b;c;x) @f$ | 
 
 
 
 
 
 | 1337 | 
    * of @ float numeratorial parameters @c a and @c b, | 
 
 
 
 
 
 | 1338 | 
    * denominatorial parameter @c c, and argument @c x. | 
 
 
 
 
 
 | 1339 | 
    * | 
 
 
 
 
 
 | 1340 | 
    * @see hyperg for details. | 
 
 
 
 
 
 | 1341 | 
    */ | 
 
 
 
 
 
 | 1342 | 
   inline float | 
 
 
 
 
 
 | 1343 | 
   hypergf(float __a, float __b, float __c, float __x) | 
 
 
 
 
 
 | 1344 | 
   { return std::__detail::__hyperg<float>(__a, __b, __c, __x); } | 
 
 
 
 
 
 | 1345 | 
  | 
 
 
 
 
 
 | 1346 | 
   /** | 
 
 
 
 
 
 | 1347 | 
    * Return the hypergeometric function @f$ {}_2F_1(a,b;c;x) @f$ | 
 
 
 
 
 
 | 1348 | 
    * of <tt>long double</tt> numeratorial parameters @c a and @c b, | 
 
 
 
 
 
 | 1349 | 
    * denominatorial parameter @c c, and argument @c x. | 
 
 
 
 
 
 | 1350 | 
    * | 
 
 
 
 
 
 | 1351 | 
    * @see hyperg for details. | 
 
 
 
 
 
 | 1352 | 
    */ | 
 
 
 
 
 
 | 1353 | 
   inline long double | 
 
 
 
 
 
 | 1354 | 
   hypergl(long double __a, long double __b, long double __c, long double __x) | 
 
 
 
 
 
 | 1355 | 
   { return std::__detail::__hyperg<long double>(__a, __b, __c, __x); } | 
 
 
 
 
 
 | 1356 | 
  | 
 
 
 
 
 
 | 1357 | 
   /** | 
 
 
 
 
 
 | 1358 | 
    * Return the hypergeometric function @f$ {}_2F_1(a,b;c;x) @f$ | 
 
 
 
 
 
 | 1359 | 
    * of real numeratorial parameters @c a and @c b, | 
 
 
 
 
 
 | 1360 | 
    * denominatorial parameter @c c, and argument @c x. | 
 
 
 
 
 
 | 1361 | 
    * | 
 
 
 
 
 
 | 1362 | 
    * The hypergeometric function is defined by | 
 
 
 
 
 
 | 1363 | 
    * @f[ | 
 
 
 
 
 
 | 1364 | 
    *    {}_2F_1(a;c;x) = \sum_{n=0}^{\infty} \frac{(a)_n (b)_n x^n}{(c)_n n!} | 
 
 
 
 
 
 | 1365 | 
    * @f] | 
 
 
 
 
 
 | 1366 | 
    * where the Pochhammer symbol is @f$ (x)_k = (x)(x+1)...(x+k-1) @f$, | 
 
 
 
 
 
 | 1367 | 
    * @f$ (x)_0 = 1 @f$ | 
 
 
 
 
 
 | 1368 | 
    * | 
 
 
 
 
 
 | 1369 | 
    * @param __a The first numeratorial parameter | 
 
 
 
 
 
 | 1370 | 
    * @param __b The second numeratorial parameter | 
 
 
 
 
 
 | 1371 | 
    * @param __c The denominatorial parameter | 
 
 
 
 
 
 | 1372 | 
    * @param __x The argument | 
 
 
 
 
 
 | 1373 | 
    */ | 
 
 
 
 
 
 | 1374 | 
   template<typename _Tpa, typename _Tpb, typename _Tpc, typename _Tp> | 
 
 
 
 
 
 | 1375 | 
     inline typename __gnu_cxx::__promote_4<_Tpa, _Tpb, _Tpc, _Tp>::__type | 
 
 
 
 
 
 | 1376 | 
     hyperg(_Tpa __a, _Tpb __b, _Tpc __c, _Tp __x) | 
 
 
 
 
 
 | 1377 | 
     { | 
 
 
 
 
 
 | 1378 | 
       typedef typename __gnu_cxx::__promote_4<_Tpa, _Tpb, _Tpc, _Tp> | 
 
 
 
 
 
 | 1379 | 
                 ::__type __type; | 
 
 
 
 
 
 | 1380 | 
       return std::__detail::__hyperg<__type>(__a, __b, __c, __x); | 
 
 
 
 
 
 | 1381 | 
     } | 
 
 
 
 
 
 | 1382 | 
  | 
 
 
 
 
 
 | 1383 | 
   /// @} | 
 
 
 
 
 
 | 1384 | 
 _GLIBCXX_END_NAMESPACE_VERSION | 
 
 
 
 
 
 | 1385 | 
 } // namespace __gnu_cxx | 
 
 
 
 
 
 | 1386 | 
 #endif // __STRICT_ANSI__ | 
 
 
 
 
 
 | 1387 | 
  | 
 
 
 
 
 
 | 1388 | 
 #pragma GCC visibility pop | 
 
 
 
 
 
 | 1389 | 
  | 
 
 
 
 
 
 | 1390 | 
 #endif // _GLIBCXX_BITS_SPECFUN_H |