| 1 |
// random number generation (out of line) -*- C++ -*- |
| 2 |
|
| 3 |
// Copyright (C) 2009-2021 Free Software Foundation, Inc. |
| 4 |
// |
| 5 |
// This file is part of the GNU ISO C++ Library. This library is free |
| 6 |
// software; you can redistribute it and/or modify it under the |
| 7 |
// terms of the GNU General Public License as published by the |
| 8 |
// Free Software Foundation; either version 3, or (at your option) |
| 9 |
// any later version. |
| 10 |
|
| 11 |
// This library is distributed in the hope that it will be useful, |
| 12 |
// but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 13 |
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 14 |
// GNU General Public License for more details. |
| 15 |
|
| 16 |
// Under Section 7 of GPL version 3, you are granted additional |
| 17 |
// permissions described in the GCC Runtime Library Exception, version |
| 18 |
// 3.1, as published by the Free Software Foundation. |
| 19 |
|
| 20 |
// You should have received a copy of the GNU General Public License and |
| 21 |
// a copy of the GCC Runtime Library Exception along with this program; |
| 22 |
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see |
| 23 |
// <http://www.gnu.org/licenses/>. |
| 24 |
|
| 25 |
/** @file bits/random.tcc |
| 26 |
* This is an internal header file, included by other library headers. |
| 27 |
* Do not attempt to use it directly. @headername{random} |
| 28 |
*/ |
| 29 |
|
| 30 |
#ifndef _RANDOM_TCC |
| 31 |
#define _RANDOM_TCC 1 |
| 32 |
|
| 33 |
#include <numeric> // std::accumulate and std::partial_sum |
| 34 |
|
| 35 |
namespace std _GLIBCXX_VISIBILITY(default) |
| 36 |
{ |
| 37 |
_GLIBCXX_BEGIN_NAMESPACE_VERSION |
| 38 |
|
| 39 |
/* |
| 40 |
* (Further) implementation-space details. |
| 41 |
*/ |
| 42 |
namespace __detail |
| 43 |
{ |
| 44 |
// General case for x = (ax + c) mod m -- use Schrage's algorithm |
| 45 |
// to avoid integer overflow. |
| 46 |
// |
| 47 |
// Preconditions: a > 0, m > 0. |
| 48 |
// |
| 49 |
// Note: only works correctly for __m % __a < __m / __a. |
| 50 |
template<typename _Tp, _Tp __m, _Tp __a, _Tp __c> |
| 51 |
_Tp |
| 52 |
_Mod<_Tp, __m, __a, __c, false, true>:: |
| 53 |
__calc(_Tp __x) |
| 54 |
{ |
| 55 |
if (__a == 1) |
| 56 |
__x %= __m; |
| 57 |
else |
| 58 |
{ |
| 59 |
static const _Tp __q = __m / __a; |
| 60 |
static const _Tp __r = __m % __a; |
| 61 |
|
| 62 |
_Tp __t1 = __a * (__x % __q); |
| 63 |
_Tp __t2 = __r * (__x / __q); |
| 64 |
if (__t1 >= __t2) |
| 65 |
__x = __t1 - __t2; |
| 66 |
else |
| 67 |
__x = __m - __t2 + __t1; |
| 68 |
} |
| 69 |
|
| 70 |
if (__c != 0) |
| 71 |
{ |
| 72 |
const _Tp __d = __m - __x; |
| 73 |
if (__d > __c) |
| 74 |
__x += __c; |
| 75 |
else |
| 76 |
__x = __c - __d; |
| 77 |
} |
| 78 |
return __x; |
| 79 |
} |
| 80 |
|
| 81 |
template<typename _InputIterator, typename _OutputIterator, |
| 82 |
typename _Tp> |
| 83 |
_OutputIterator |
| 84 |
__normalize(_InputIterator __first, _InputIterator __last, |
| 85 |
_OutputIterator __result, const _Tp& __factor) |
| 86 |
{ |
| 87 |
for (; __first != __last; ++__first, ++__result) |
| 88 |
*__result = *__first / __factor; |
| 89 |
return __result; |
| 90 |
} |
| 91 |
|
| 92 |
} // namespace __detail |
| 93 |
|
| 94 |
template<typename _UIntType, _UIntType __a, _UIntType __c, _UIntType __m> |
| 95 |
constexpr _UIntType |
| 96 |
linear_congruential_engine<_UIntType, __a, __c, __m>::multiplier; |
| 97 |
|
| 98 |
template<typename _UIntType, _UIntType __a, _UIntType __c, _UIntType __m> |
| 99 |
constexpr _UIntType |
| 100 |
linear_congruential_engine<_UIntType, __a, __c, __m>::increment; |
| 101 |
|
| 102 |
template<typename _UIntType, _UIntType __a, _UIntType __c, _UIntType __m> |
| 103 |
constexpr _UIntType |
| 104 |
linear_congruential_engine<_UIntType, __a, __c, __m>::modulus; |
| 105 |
|
| 106 |
template<typename _UIntType, _UIntType __a, _UIntType __c, _UIntType __m> |
| 107 |
constexpr _UIntType |
| 108 |
linear_congruential_engine<_UIntType, __a, __c, __m>::default_seed; |
| 109 |
|
| 110 |
/** |
| 111 |
* Seeds the LCR with integral value @p __s, adjusted so that the |
| 112 |
* ring identity is never a member of the convergence set. |
| 113 |
*/ |
| 114 |
template<typename _UIntType, _UIntType __a, _UIntType __c, _UIntType __m> |
| 115 |
void |
| 116 |
linear_congruential_engine<_UIntType, __a, __c, __m>:: |
| 117 |
seed(result_type __s) |
| 118 |
{ |
| 119 |
if ((__detail::__mod<_UIntType, __m>(__c) == 0) |
| 120 |
&& (__detail::__mod<_UIntType, __m>(__s) == 0)) |
| 121 |
_M_x = 1; |
| 122 |
else |
| 123 |
_M_x = __detail::__mod<_UIntType, __m>(__s); |
| 124 |
} |
| 125 |
|
| 126 |
/** |
| 127 |
* Seeds the LCR engine with a value generated by @p __q. |
| 128 |
*/ |
| 129 |
template<typename _UIntType, _UIntType __a, _UIntType __c, _UIntType __m> |
| 130 |
template<typename _Sseq> |
| 131 |
auto |
| 132 |
linear_congruential_engine<_UIntType, __a, __c, __m>:: |
| 133 |
seed(_Sseq& __q) |
| 134 |
-> _If_seed_seq<_Sseq> |
| 135 |
{ |
| 136 |
const _UIntType __k0 = __m == 0 ? std::numeric_limits<_UIntType>::digits |
| 137 |
: std::__lg(__m); |
| 138 |
const _UIntType __k = (__k0 + 31) / 32; |
| 139 |
uint_least32_t __arr[__k + 3]; |
| 140 |
__q.generate(__arr + 0, __arr + __k + 3); |
| 141 |
_UIntType __factor = 1u; |
| 142 |
_UIntType __sum = 0u; |
| 143 |
for (size_t __j = 0; __j < __k; ++__j) |
| 144 |
{ |
| 145 |
__sum += __arr[__j + 3] * __factor; |
| 146 |
__factor *= __detail::_Shift<_UIntType, 32>::__value; |
| 147 |
} |
| 148 |
seed(__sum); |
| 149 |
} |
| 150 |
|
| 151 |
template<typename _UIntType, _UIntType __a, _UIntType __c, _UIntType __m, |
| 152 |
typename _CharT, typename _Traits> |
| 153 |
std::basic_ostream<_CharT, _Traits>& |
| 154 |
operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| 155 |
const linear_congruential_engine<_UIntType, |
| 156 |
__a, __c, __m>& __lcr) |
| 157 |
{ |
| 158 |
using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base; |
| 159 |
|
| 160 |
const typename __ios_base::fmtflags __flags = __os.flags(); |
| 161 |
const _CharT __fill = __os.fill(); |
| 162 |
__os.flags(__ios_base::dec | __ios_base::fixed | __ios_base::left); |
| 163 |
__os.fill(__os.widen(' ')); |
| 164 |
|
| 165 |
__os << __lcr._M_x; |
| 166 |
|
| 167 |
__os.flags(__flags); |
| 168 |
__os.fill(__fill); |
| 169 |
return __os; |
| 170 |
} |
| 171 |
|
| 172 |
template<typename _UIntType, _UIntType __a, _UIntType __c, _UIntType __m, |
| 173 |
typename _CharT, typename _Traits> |
| 174 |
std::basic_istream<_CharT, _Traits>& |
| 175 |
operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| 176 |
linear_congruential_engine<_UIntType, __a, __c, __m>& __lcr) |
| 177 |
{ |
| 178 |
using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base; |
| 179 |
|
| 180 |
const typename __ios_base::fmtflags __flags = __is.flags(); |
| 181 |
__is.flags(__ios_base::dec); |
| 182 |
|
| 183 |
__is >> __lcr._M_x; |
| 184 |
|
| 185 |
__is.flags(__flags); |
| 186 |
return __is; |
| 187 |
} |
| 188 |
|
| 189 |
|
| 190 |
template<typename _UIntType, |
| 191 |
size_t __w, size_t __n, size_t __m, size_t __r, |
| 192 |
_UIntType __a, size_t __u, _UIntType __d, size_t __s, |
| 193 |
_UIntType __b, size_t __t, _UIntType __c, size_t __l, |
| 194 |
_UIntType __f> |
| 195 |
constexpr size_t |
| 196 |
mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, |
| 197 |
__s, __b, __t, __c, __l, __f>::word_size; |
| 198 |
|
| 199 |
template<typename _UIntType, |
| 200 |
size_t __w, size_t __n, size_t __m, size_t __r, |
| 201 |
_UIntType __a, size_t __u, _UIntType __d, size_t __s, |
| 202 |
_UIntType __b, size_t __t, _UIntType __c, size_t __l, |
| 203 |
_UIntType __f> |
| 204 |
constexpr size_t |
| 205 |
mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, |
| 206 |
__s, __b, __t, __c, __l, __f>::state_size; |
| 207 |
|
| 208 |
template<typename _UIntType, |
| 209 |
size_t __w, size_t __n, size_t __m, size_t __r, |
| 210 |
_UIntType __a, size_t __u, _UIntType __d, size_t __s, |
| 211 |
_UIntType __b, size_t __t, _UIntType __c, size_t __l, |
| 212 |
_UIntType __f> |
| 213 |
constexpr size_t |
| 214 |
mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, |
| 215 |
__s, __b, __t, __c, __l, __f>::shift_size; |
| 216 |
|
| 217 |
template<typename _UIntType, |
| 218 |
size_t __w, size_t __n, size_t __m, size_t __r, |
| 219 |
_UIntType __a, size_t __u, _UIntType __d, size_t __s, |
| 220 |
_UIntType __b, size_t __t, _UIntType __c, size_t __l, |
| 221 |
_UIntType __f> |
| 222 |
constexpr size_t |
| 223 |
mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, |
| 224 |
__s, __b, __t, __c, __l, __f>::mask_bits; |
| 225 |
|
| 226 |
template<typename _UIntType, |
| 227 |
size_t __w, size_t __n, size_t __m, size_t __r, |
| 228 |
_UIntType __a, size_t __u, _UIntType __d, size_t __s, |
| 229 |
_UIntType __b, size_t __t, _UIntType __c, size_t __l, |
| 230 |
_UIntType __f> |
| 231 |
constexpr _UIntType |
| 232 |
mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, |
| 233 |
__s, __b, __t, __c, __l, __f>::xor_mask; |
| 234 |
|
| 235 |
template<typename _UIntType, |
| 236 |
size_t __w, size_t __n, size_t __m, size_t __r, |
| 237 |
_UIntType __a, size_t __u, _UIntType __d, size_t __s, |
| 238 |
_UIntType __b, size_t __t, _UIntType __c, size_t __l, |
| 239 |
_UIntType __f> |
| 240 |
constexpr size_t |
| 241 |
mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, |
| 242 |
__s, __b, __t, __c, __l, __f>::tempering_u; |
| 243 |
|
| 244 |
template<typename _UIntType, |
| 245 |
size_t __w, size_t __n, size_t __m, size_t __r, |
| 246 |
_UIntType __a, size_t __u, _UIntType __d, size_t __s, |
| 247 |
_UIntType __b, size_t __t, _UIntType __c, size_t __l, |
| 248 |
_UIntType __f> |
| 249 |
constexpr _UIntType |
| 250 |
mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, |
| 251 |
__s, __b, __t, __c, __l, __f>::tempering_d; |
| 252 |
|
| 253 |
template<typename _UIntType, |
| 254 |
size_t __w, size_t __n, size_t __m, size_t __r, |
| 255 |
_UIntType __a, size_t __u, _UIntType __d, size_t __s, |
| 256 |
_UIntType __b, size_t __t, _UIntType __c, size_t __l, |
| 257 |
_UIntType __f> |
| 258 |
constexpr size_t |
| 259 |
mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, |
| 260 |
__s, __b, __t, __c, __l, __f>::tempering_s; |
| 261 |
|
| 262 |
template<typename _UIntType, |
| 263 |
size_t __w, size_t __n, size_t __m, size_t __r, |
| 264 |
_UIntType __a, size_t __u, _UIntType __d, size_t __s, |
| 265 |
_UIntType __b, size_t __t, _UIntType __c, size_t __l, |
| 266 |
_UIntType __f> |
| 267 |
constexpr _UIntType |
| 268 |
mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, |
| 269 |
__s, __b, __t, __c, __l, __f>::tempering_b; |
| 270 |
|
| 271 |
template<typename _UIntType, |
| 272 |
size_t __w, size_t __n, size_t __m, size_t __r, |
| 273 |
_UIntType __a, size_t __u, _UIntType __d, size_t __s, |
| 274 |
_UIntType __b, size_t __t, _UIntType __c, size_t __l, |
| 275 |
_UIntType __f> |
| 276 |
constexpr size_t |
| 277 |
mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, |
| 278 |
__s, __b, __t, __c, __l, __f>::tempering_t; |
| 279 |
|
| 280 |
template<typename _UIntType, |
| 281 |
size_t __w, size_t __n, size_t __m, size_t __r, |
| 282 |
_UIntType __a, size_t __u, _UIntType __d, size_t __s, |
| 283 |
_UIntType __b, size_t __t, _UIntType __c, size_t __l, |
| 284 |
_UIntType __f> |
| 285 |
constexpr _UIntType |
| 286 |
mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, |
| 287 |
__s, __b, __t, __c, __l, __f>::tempering_c; |
| 288 |
|
| 289 |
template<typename _UIntType, |
| 290 |
size_t __w, size_t __n, size_t __m, size_t __r, |
| 291 |
_UIntType __a, size_t __u, _UIntType __d, size_t __s, |
| 292 |
_UIntType __b, size_t __t, _UIntType __c, size_t __l, |
| 293 |
_UIntType __f> |
| 294 |
constexpr size_t |
| 295 |
mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, |
| 296 |
__s, __b, __t, __c, __l, __f>::tempering_l; |
| 297 |
|
| 298 |
template<typename _UIntType, |
| 299 |
size_t __w, size_t __n, size_t __m, size_t __r, |
| 300 |
_UIntType __a, size_t __u, _UIntType __d, size_t __s, |
| 301 |
_UIntType __b, size_t __t, _UIntType __c, size_t __l, |
| 302 |
_UIntType __f> |
| 303 |
constexpr _UIntType |
| 304 |
mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, |
| 305 |
__s, __b, __t, __c, __l, __f>:: |
| 306 |
initialization_multiplier; |
| 307 |
|
| 308 |
template<typename _UIntType, |
| 309 |
size_t __w, size_t __n, size_t __m, size_t __r, |
| 310 |
_UIntType __a, size_t __u, _UIntType __d, size_t __s, |
| 311 |
_UIntType __b, size_t __t, _UIntType __c, size_t __l, |
| 312 |
_UIntType __f> |
| 313 |
constexpr _UIntType |
| 314 |
mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, |
| 315 |
__s, __b, __t, __c, __l, __f>::default_seed; |
| 316 |
|
| 317 |
template<typename _UIntType, |
| 318 |
size_t __w, size_t __n, size_t __m, size_t __r, |
| 319 |
_UIntType __a, size_t __u, _UIntType __d, size_t __s, |
| 320 |
_UIntType __b, size_t __t, _UIntType __c, size_t __l, |
| 321 |
_UIntType __f> |
| 322 |
void |
| 323 |
mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, |
| 324 |
__s, __b, __t, __c, __l, __f>:: |
| 325 |
seed(result_type __sd) |
| 326 |
{ |
| 327 |
_M_x[0] = __detail::__mod<_UIntType, |
| 328 |
__detail::_Shift<_UIntType, __w>::__value>(__sd); |
| 329 |
|
| 330 |
for (size_t __i = 1; __i < state_size; ++__i) |
| 331 |
{ |
| 332 |
_UIntType __x = _M_x[__i - 1]; |
| 333 |
__x ^= __x >> (__w - 2); |
| 334 |
__x *= __f; |
| 335 |
__x += __detail::__mod<_UIntType, __n>(__i); |
| 336 |
_M_x[__i] = __detail::__mod<_UIntType, |
| 337 |
__detail::_Shift<_UIntType, __w>::__value>(__x); |
| 338 |
} |
| 339 |
_M_p = state_size; |
| 340 |
} |
| 341 |
|
| 342 |
template<typename _UIntType, |
| 343 |
size_t __w, size_t __n, size_t __m, size_t __r, |
| 344 |
_UIntType __a, size_t __u, _UIntType __d, size_t __s, |
| 345 |
_UIntType __b, size_t __t, _UIntType __c, size_t __l, |
| 346 |
_UIntType __f> |
| 347 |
template<typename _Sseq> |
| 348 |
auto |
| 349 |
mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, |
| 350 |
__s, __b, __t, __c, __l, __f>:: |
| 351 |
seed(_Sseq& __q) |
| 352 |
-> _If_seed_seq<_Sseq> |
| 353 |
{ |
| 354 |
const _UIntType __upper_mask = (~_UIntType()) << __r; |
| 355 |
const size_t __k = (__w + 31) / 32; |
| 356 |
uint_least32_t __arr[__n * __k]; |
| 357 |
__q.generate(__arr + 0, __arr + __n * __k); |
| 358 |
|
| 359 |
bool __zero = true; |
| 360 |
for (size_t __i = 0; __i < state_size; ++__i) |
| 361 |
{ |
| 362 |
_UIntType __factor = 1u; |
| 363 |
_UIntType __sum = 0u; |
| 364 |
for (size_t __j = 0; __j < __k; ++__j) |
| 365 |
{ |
| 366 |
__sum += __arr[__k * __i + __j] * __factor; |
| 367 |
__factor *= __detail::_Shift<_UIntType, 32>::__value; |
| 368 |
} |
| 369 |
_M_x[__i] = __detail::__mod<_UIntType, |
| 370 |
__detail::_Shift<_UIntType, __w>::__value>(__sum); |
| 371 |
|
| 372 |
if (__zero) |
| 373 |
{ |
| 374 |
if (__i == 0) |
| 375 |
{ |
| 376 |
if ((_M_x[0] & __upper_mask) != 0u) |
| 377 |
__zero = false; |
| 378 |
} |
| 379 |
else if (_M_x[__i] != 0u) |
| 380 |
__zero = false; |
| 381 |
} |
| 382 |
} |
| 383 |
if (__zero) |
| 384 |
_M_x[0] = __detail::_Shift<_UIntType, __w - 1>::__value; |
| 385 |
_M_p = state_size; |
| 386 |
} |
| 387 |
|
| 388 |
template<typename _UIntType, size_t __w, |
| 389 |
size_t __n, size_t __m, size_t __r, |
| 390 |
_UIntType __a, size_t __u, _UIntType __d, size_t __s, |
| 391 |
_UIntType __b, size_t __t, _UIntType __c, size_t __l, |
| 392 |
_UIntType __f> |
| 393 |
void |
| 394 |
mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, |
| 395 |
__s, __b, __t, __c, __l, __f>:: |
| 396 |
_M_gen_rand(void) |
| 397 |
{ |
| 398 |
const _UIntType __upper_mask = (~_UIntType()) << __r; |
| 399 |
const _UIntType __lower_mask = ~__upper_mask; |
| 400 |
|
| 401 |
for (size_t __k = 0; __k < (__n - __m); ++__k) |
| 402 |
{ |
| 403 |
_UIntType __y = ((_M_x[__k] & __upper_mask) |
| 404 |
| (_M_x[__k + 1] & __lower_mask)); |
| 405 |
_M_x[__k] = (_M_x[__k + __m] ^ (__y >> 1) |
| 406 |
^ ((__y & 0x01) ? __a : 0)); |
| 407 |
} |
| 408 |
|
| 409 |
for (size_t __k = (__n - __m); __k < (__n - 1); ++__k) |
| 410 |
{ |
| 411 |
_UIntType __y = ((_M_x[__k] & __upper_mask) |
| 412 |
| (_M_x[__k + 1] & __lower_mask)); |
| 413 |
_M_x[__k] = (_M_x[__k + (__m - __n)] ^ (__y >> 1) |
| 414 |
^ ((__y & 0x01) ? __a : 0)); |
| 415 |
} |
| 416 |
|
| 417 |
_UIntType __y = ((_M_x[__n - 1] & __upper_mask) |
| 418 |
| (_M_x[0] & __lower_mask)); |
| 419 |
_M_x[__n - 1] = (_M_x[__m - 1] ^ (__y >> 1) |
| 420 |
^ ((__y & 0x01) ? __a : 0)); |
| 421 |
_M_p = 0; |
| 422 |
} |
| 423 |
|
| 424 |
template<typename _UIntType, size_t __w, |
| 425 |
size_t __n, size_t __m, size_t __r, |
| 426 |
_UIntType __a, size_t __u, _UIntType __d, size_t __s, |
| 427 |
_UIntType __b, size_t __t, _UIntType __c, size_t __l, |
| 428 |
_UIntType __f> |
| 429 |
void |
| 430 |
mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, |
| 431 |
__s, __b, __t, __c, __l, __f>:: |
| 432 |
discard(unsigned long long __z) |
| 433 |
{ |
| 434 |
while (__z > state_size - _M_p) |
| 435 |
{ |
| 436 |
__z -= state_size - _M_p; |
| 437 |
_M_gen_rand(); |
| 438 |
} |
| 439 |
_M_p += __z; |
| 440 |
} |
| 441 |
|
| 442 |
template<typename _UIntType, size_t __w, |
| 443 |
size_t __n, size_t __m, size_t __r, |
| 444 |
_UIntType __a, size_t __u, _UIntType __d, size_t __s, |
| 445 |
_UIntType __b, size_t __t, _UIntType __c, size_t __l, |
| 446 |
_UIntType __f> |
| 447 |
typename |
| 448 |
mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, |
| 449 |
__s, __b, __t, __c, __l, __f>::result_type |
| 450 |
mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, |
| 451 |
__s, __b, __t, __c, __l, __f>:: |
| 452 |
operator()() |
| 453 |
{ |
| 454 |
// Reload the vector - cost is O(n) amortized over n calls. |
| 455 |
if (_M_p >= state_size) |
| 456 |
_M_gen_rand(); |
| 457 |
|
| 458 |
// Calculate o(x(i)). |
| 459 |
result_type __z = _M_x[_M_p++]; |
| 460 |
__z ^= (__z >> __u) & __d; |
| 461 |
__z ^= (__z << __s) & __b; |
| 462 |
__z ^= (__z << __t) & __c; |
| 463 |
__z ^= (__z >> __l); |
| 464 |
|
| 465 |
return __z; |
| 466 |
} |
| 467 |
|
| 468 |
template<typename _UIntType, size_t __w, |
| 469 |
size_t __n, size_t __m, size_t __r, |
| 470 |
_UIntType __a, size_t __u, _UIntType __d, size_t __s, |
| 471 |
_UIntType __b, size_t __t, _UIntType __c, size_t __l, |
| 472 |
_UIntType __f, typename _CharT, typename _Traits> |
| 473 |
std::basic_ostream<_CharT, _Traits>& |
| 474 |
operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| 475 |
const mersenne_twister_engine<_UIntType, __w, __n, __m, |
| 476 |
__r, __a, __u, __d, __s, __b, __t, __c, __l, __f>& __x) |
| 477 |
{ |
| 478 |
using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base; |
| 479 |
|
| 480 |
const typename __ios_base::fmtflags __flags = __os.flags(); |
| 481 |
const _CharT __fill = __os.fill(); |
| 482 |
const _CharT __space = __os.widen(' '); |
| 483 |
__os.flags(__ios_base::dec | __ios_base::fixed | __ios_base::left); |
| 484 |
__os.fill(__space); |
| 485 |
|
| 486 |
for (size_t __i = 0; __i < __n; ++__i) |
| 487 |
__os << __x._M_x[__i] << __space; |
| 488 |
__os << __x._M_p; |
| 489 |
|
| 490 |
__os.flags(__flags); |
| 491 |
__os.fill(__fill); |
| 492 |
return __os; |
| 493 |
} |
| 494 |
|
| 495 |
template<typename _UIntType, size_t __w, |
| 496 |
size_t __n, size_t __m, size_t __r, |
| 497 |
_UIntType __a, size_t __u, _UIntType __d, size_t __s, |
| 498 |
_UIntType __b, size_t __t, _UIntType __c, size_t __l, |
| 499 |
_UIntType __f, typename _CharT, typename _Traits> |
| 500 |
std::basic_istream<_CharT, _Traits>& |
| 501 |
operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| 502 |
mersenne_twister_engine<_UIntType, __w, __n, __m, |
| 503 |
__r, __a, __u, __d, __s, __b, __t, __c, __l, __f>& __x) |
| 504 |
{ |
| 505 |
using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base; |
| 506 |
|
| 507 |
const typename __ios_base::fmtflags __flags = __is.flags(); |
| 508 |
__is.flags(__ios_base::dec | __ios_base::skipws); |
| 509 |
|
| 510 |
for (size_t __i = 0; __i < __n; ++__i) |
| 511 |
__is >> __x._M_x[__i]; |
| 512 |
__is >> __x._M_p; |
| 513 |
|
| 514 |
__is.flags(__flags); |
| 515 |
return __is; |
| 516 |
} |
| 517 |
|
| 518 |
|
| 519 |
template<typename _UIntType, size_t __w, size_t __s, size_t __r> |
| 520 |
constexpr size_t |
| 521 |
subtract_with_carry_engine<_UIntType, __w, __s, __r>::word_size; |
| 522 |
|
| 523 |
template<typename _UIntType, size_t __w, size_t __s, size_t __r> |
| 524 |
constexpr size_t |
| 525 |
subtract_with_carry_engine<_UIntType, __w, __s, __r>::short_lag; |
| 526 |
|
| 527 |
template<typename _UIntType, size_t __w, size_t __s, size_t __r> |
| 528 |
constexpr size_t |
| 529 |
subtract_with_carry_engine<_UIntType, __w, __s, __r>::long_lag; |
| 530 |
|
| 531 |
template<typename _UIntType, size_t __w, size_t __s, size_t __r> |
| 532 |
constexpr _UIntType |
| 533 |
subtract_with_carry_engine<_UIntType, __w, __s, __r>::default_seed; |
| 534 |
|
| 535 |
template<typename _UIntType, size_t __w, size_t __s, size_t __r> |
| 536 |
void |
| 537 |
subtract_with_carry_engine<_UIntType, __w, __s, __r>:: |
| 538 |
seed(result_type __value) |
| 539 |
{ |
| 540 |
std::linear_congruential_engine<result_type, 40014u, 0u, 2147483563u> |
| 541 |
__lcg(__value == 0u ? default_seed : __value); |
| 542 |
|
| 543 |
const size_t __n = (__w + 31) / 32; |
| 544 |
|
| 545 |
for (size_t __i = 0; __i < long_lag; ++__i) |
| 546 |
{ |
| 547 |
_UIntType __sum = 0u; |
| 548 |
_UIntType __factor = 1u; |
| 549 |
for (size_t __j = 0; __j < __n; ++__j) |
| 550 |
{ |
| 551 |
__sum += __detail::__mod<uint_least32_t, |
| 552 |
__detail::_Shift<uint_least32_t, 32>::__value> |
| 553 |
(__lcg()) * __factor; |
| 554 |
__factor *= __detail::_Shift<_UIntType, 32>::__value; |
| 555 |
} |
| 556 |
_M_x[__i] = __detail::__mod<_UIntType, |
| 557 |
__detail::_Shift<_UIntType, __w>::__value>(__sum); |
| 558 |
} |
| 559 |
_M_carry = (_M_x[long_lag - 1] == 0) ? 1 : 0; |
| 560 |
_M_p = 0; |
| 561 |
} |
| 562 |
|
| 563 |
template<typename _UIntType, size_t __w, size_t __s, size_t __r> |
| 564 |
template<typename _Sseq> |
| 565 |
auto |
| 566 |
subtract_with_carry_engine<_UIntType, __w, __s, __r>:: |
| 567 |
seed(_Sseq& __q) |
| 568 |
-> _If_seed_seq<_Sseq> |
| 569 |
{ |
| 570 |
const size_t __k = (__w + 31) / 32; |
| 571 |
uint_least32_t __arr[__r * __k]; |
| 572 |
__q.generate(__arr + 0, __arr + __r * __k); |
| 573 |
|
| 574 |
for (size_t __i = 0; __i < long_lag; ++__i) |
| 575 |
{ |
| 576 |
_UIntType __sum = 0u; |
| 577 |
_UIntType __factor = 1u; |
| 578 |
for (size_t __j = 0; __j < __k; ++__j) |
| 579 |
{ |
| 580 |
__sum += __arr[__k * __i + __j] * __factor; |
| 581 |
__factor *= __detail::_Shift<_UIntType, 32>::__value; |
| 582 |
} |
| 583 |
_M_x[__i] = __detail::__mod<_UIntType, |
| 584 |
__detail::_Shift<_UIntType, __w>::__value>(__sum); |
| 585 |
} |
| 586 |
_M_carry = (_M_x[long_lag - 1] == 0) ? 1 : 0; |
| 587 |
_M_p = 0; |
| 588 |
} |
| 589 |
|
| 590 |
template<typename _UIntType, size_t __w, size_t __s, size_t __r> |
| 591 |
typename subtract_with_carry_engine<_UIntType, __w, __s, __r>:: |
| 592 |
result_type |
| 593 |
subtract_with_carry_engine<_UIntType, __w, __s, __r>:: |
| 594 |
operator()() |
| 595 |
{ |
| 596 |
// Derive short lag index from current index. |
| 597 |
long __ps = _M_p - short_lag; |
| 598 |
if (__ps < 0) |
| 599 |
__ps += long_lag; |
| 600 |
|
| 601 |
// Calculate new x(i) without overflow or division. |
| 602 |
// NB: Thanks to the requirements for _UIntType, _M_x[_M_p] + _M_carry |
| 603 |
// cannot overflow. |
| 604 |
_UIntType __xi; |
| 605 |
if (_M_x[__ps] >= _M_x[_M_p] + _M_carry) |
| 606 |
{ |
| 607 |
__xi = _M_x[__ps] - _M_x[_M_p] - _M_carry; |
| 608 |
_M_carry = 0; |
| 609 |
} |
| 610 |
else |
| 611 |
{ |
| 612 |
__xi = (__detail::_Shift<_UIntType, __w>::__value |
| 613 |
- _M_x[_M_p] - _M_carry + _M_x[__ps]); |
| 614 |
_M_carry = 1; |
| 615 |
} |
| 616 |
_M_x[_M_p] = __xi; |
| 617 |
|
| 618 |
// Adjust current index to loop around in ring buffer. |
| 619 |
if (++_M_p >= long_lag) |
| 620 |
_M_p = 0; |
| 621 |
|
| 622 |
return __xi; |
| 623 |
} |
| 624 |
|
| 625 |
template<typename _UIntType, size_t __w, size_t __s, size_t __r, |
| 626 |
typename _CharT, typename _Traits> |
| 627 |
std::basic_ostream<_CharT, _Traits>& |
| 628 |
operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| 629 |
const subtract_with_carry_engine<_UIntType, |
| 630 |
__w, __s, __r>& __x) |
| 631 |
{ |
| 632 |
using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base; |
| 633 |
|
| 634 |
const typename __ios_base::fmtflags __flags = __os.flags(); |
| 635 |
const _CharT __fill = __os.fill(); |
| 636 |
const _CharT __space = __os.widen(' '); |
| 637 |
__os.flags(__ios_base::dec | __ios_base::fixed | __ios_base::left); |
| 638 |
__os.fill(__space); |
| 639 |
|
| 640 |
for (size_t __i = 0; __i < __r; ++__i) |
| 641 |
__os << __x._M_x[__i] << __space; |
| 642 |
__os << __x._M_carry << __space << __x._M_p; |
| 643 |
|
| 644 |
__os.flags(__flags); |
| 645 |
__os.fill(__fill); |
| 646 |
return __os; |
| 647 |
} |
| 648 |
|
| 649 |
template<typename _UIntType, size_t __w, size_t __s, size_t __r, |
| 650 |
typename _CharT, typename _Traits> |
| 651 |
std::basic_istream<_CharT, _Traits>& |
| 652 |
operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| 653 |
subtract_with_carry_engine<_UIntType, __w, __s, __r>& __x) |
| 654 |
{ |
| 655 |
using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base; |
| 656 |
|
| 657 |
const typename __ios_base::fmtflags __flags = __is.flags(); |
| 658 |
__is.flags(__ios_base::dec | __ios_base::skipws); |
| 659 |
|
| 660 |
for (size_t __i = 0; __i < __r; ++__i) |
| 661 |
__is >> __x._M_x[__i]; |
| 662 |
__is >> __x._M_carry; |
| 663 |
__is >> __x._M_p; |
| 664 |
|
| 665 |
__is.flags(__flags); |
| 666 |
return __is; |
| 667 |
} |
| 668 |
|
| 669 |
|
| 670 |
template<typename _RandomNumberEngine, size_t __p, size_t __r> |
| 671 |
constexpr size_t |
| 672 |
discard_block_engine<_RandomNumberEngine, __p, __r>::block_size; |
| 673 |
|
| 674 |
template<typename _RandomNumberEngine, size_t __p, size_t __r> |
| 675 |
constexpr size_t |
| 676 |
discard_block_engine<_RandomNumberEngine, __p, __r>::used_block; |
| 677 |
|
| 678 |
template<typename _RandomNumberEngine, size_t __p, size_t __r> |
| 679 |
typename discard_block_engine<_RandomNumberEngine, |
| 680 |
__p, __r>::result_type |
| 681 |
discard_block_engine<_RandomNumberEngine, __p, __r>:: |
| 682 |
operator()() |
| 683 |
{ |
| 684 |
if (_M_n >= used_block) |
| 685 |
{ |
| 686 |
_M_b.discard(block_size - _M_n); |
| 687 |
_M_n = 0; |
| 688 |
} |
| 689 |
++_M_n; |
| 690 |
return _M_b(); |
| 691 |
} |
| 692 |
|
| 693 |
template<typename _RandomNumberEngine, size_t __p, size_t __r, |
| 694 |
typename _CharT, typename _Traits> |
| 695 |
std::basic_ostream<_CharT, _Traits>& |
| 696 |
operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| 697 |
const discard_block_engine<_RandomNumberEngine, |
| 698 |
__p, __r>& __x) |
| 699 |
{ |
| 700 |
using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base; |
| 701 |
|
| 702 |
const typename __ios_base::fmtflags __flags = __os.flags(); |
| 703 |
const _CharT __fill = __os.fill(); |
| 704 |
const _CharT __space = __os.widen(' '); |
| 705 |
__os.flags(__ios_base::dec | __ios_base::fixed | __ios_base::left); |
| 706 |
__os.fill(__space); |
| 707 |
|
| 708 |
__os << __x.base() << __space << __x._M_n; |
| 709 |
|
| 710 |
__os.flags(__flags); |
| 711 |
__os.fill(__fill); |
| 712 |
return __os; |
| 713 |
} |
| 714 |
|
| 715 |
template<typename _RandomNumberEngine, size_t __p, size_t __r, |
| 716 |
typename _CharT, typename _Traits> |
| 717 |
std::basic_istream<_CharT, _Traits>& |
| 718 |
operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| 719 |
discard_block_engine<_RandomNumberEngine, __p, __r>& __x) |
| 720 |
{ |
| 721 |
using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base; |
| 722 |
|
| 723 |
const typename __ios_base::fmtflags __flags = __is.flags(); |
| 724 |
__is.flags(__ios_base::dec | __ios_base::skipws); |
| 725 |
|
| 726 |
__is >> __x._M_b >> __x._M_n; |
| 727 |
|
| 728 |
__is.flags(__flags); |
| 729 |
return __is; |
| 730 |
} |
| 731 |
|
| 732 |
|
| 733 |
template<typename _RandomNumberEngine, size_t __w, typename _UIntType> |
| 734 |
typename independent_bits_engine<_RandomNumberEngine, __w, _UIntType>:: |
| 735 |
result_type |
| 736 |
independent_bits_engine<_RandomNumberEngine, __w, _UIntType>:: |
| 737 |
operator()() |
| 738 |
{ |
| 739 |
typedef typename _RandomNumberEngine::result_type _Eresult_type; |
| 740 |
const _Eresult_type __r |
| 741 |
= (_M_b.max() - _M_b.min() < std::numeric_limits<_Eresult_type>::max() |
| 742 |
? _M_b.max() - _M_b.min() + 1 : 0); |
| 743 |
const unsigned __edig = std::numeric_limits<_Eresult_type>::digits; |
| 744 |
const unsigned __m = __r ? std::__lg(__r) : __edig; |
| 745 |
|
| 746 |
typedef typename std::common_type<_Eresult_type, result_type>::type |
| 747 |
__ctype; |
| 748 |
const unsigned __cdig = std::numeric_limits<__ctype>::digits; |
| 749 |
|
| 750 |
unsigned __n, __n0; |
| 751 |
__ctype __s0, __s1, __y0, __y1; |
| 752 |
|
| 753 |
for (size_t __i = 0; __i < 2; ++__i) |
| 754 |
{ |
| 755 |
__n = (__w + __m - 1) / __m + __i; |
| 756 |
__n0 = __n - __w % __n; |
| 757 |
const unsigned __w0 = __w / __n; // __w0 <= __m |
| 758 |
|
| 759 |
__s0 = 0; |
| 760 |
__s1 = 0; |
| 761 |
if (__w0 < __cdig) |
| 762 |
{ |
| 763 |
__s0 = __ctype(1) << __w0; |
| 764 |
__s1 = __s0 << 1; |
| 765 |
} |
| 766 |
|
| 767 |
__y0 = 0; |
| 768 |
__y1 = 0; |
| 769 |
if (__r) |
| 770 |
{ |
| 771 |
__y0 = __s0 * (__r / __s0); |
| 772 |
if (__s1) |
| 773 |
__y1 = __s1 * (__r / __s1); |
| 774 |
|
| 775 |
if (__r - __y0 <= __y0 / __n) |
| 776 |
break; |
| 777 |
} |
| 778 |
else |
| 779 |
break; |
| 780 |
} |
| 781 |
|
| 782 |
result_type __sum = 0; |
| 783 |
for (size_t __k = 0; __k < __n0; ++__k) |
| 784 |
{ |
| 785 |
__ctype __u; |
| 786 |
do |
| 787 |
__u = _M_b() - _M_b.min(); |
| 788 |
while (__y0 && __u >= __y0); |
| 789 |
__sum = __s0 * __sum + (__s0 ? __u % __s0 : __u); |
| 790 |
} |
| 791 |
for (size_t __k = __n0; __k < __n; ++__k) |
| 792 |
{ |
| 793 |
__ctype __u; |
| 794 |
do |
| 795 |
__u = _M_b() - _M_b.min(); |
| 796 |
while (__y1 && __u >= __y1); |
| 797 |
__sum = __s1 * __sum + (__s1 ? __u % __s1 : __u); |
| 798 |
} |
| 799 |
return __sum; |
| 800 |
} |
| 801 |
|
| 802 |
|
| 803 |
template<typename _RandomNumberEngine, size_t __k> |
| 804 |
constexpr size_t |
| 805 |
shuffle_order_engine<_RandomNumberEngine, __k>::table_size; |
| 806 |
|
| 807 |
namespace __detail |
| 808 |
{ |
| 809 |
// Determine whether an integer is representable as double. |
| 810 |
template<typename _Tp> |
| 811 |
constexpr bool |
| 812 |
__representable_as_double(_Tp __x) noexcept |
| 813 |
{ |
| 814 |
static_assert(numeric_limits<_Tp>::is_integer, ""); |
| 815 |
static_assert(!numeric_limits<_Tp>::is_signed, ""); |
| 816 |
// All integers <= 2^53 are representable. |
| 817 |
return (__x <= (1ull << __DBL_MANT_DIG__)) |
| 818 |
// Between 2^53 and 2^54 only even numbers are representable. |
| 819 |
|| (!(__x & 1) && __detail::__representable_as_double(__x >> 1)); |
| 820 |
} |
| 821 |
|
| 822 |
// Determine whether x+1 is representable as double. |
| 823 |
template<typename _Tp> |
| 824 |
constexpr bool |
| 825 |
__p1_representable_as_double(_Tp __x) noexcept |
| 826 |
{ |
| 827 |
static_assert(numeric_limits<_Tp>::is_integer, ""); |
| 828 |
static_assert(!numeric_limits<_Tp>::is_signed, ""); |
| 829 |
return numeric_limits<_Tp>::digits < __DBL_MANT_DIG__ |
| 830 |
|| (bool(__x + 1u) // return false if x+1 wraps around to zero |
| 831 |
&& __detail::__representable_as_double(__x + 1u)); |
| 832 |
} |
| 833 |
} |
| 834 |
|
| 835 |
template<typename _RandomNumberEngine, size_t __k> |
| 836 |
typename shuffle_order_engine<_RandomNumberEngine, __k>::result_type |
| 837 |
shuffle_order_engine<_RandomNumberEngine, __k>:: |
| 838 |
operator()() |
| 839 |
{ |
| 840 |
constexpr result_type __range = max() - min(); |
| 841 |
size_t __j = __k; |
| 842 |
const result_type __y = _M_y - min(); |
| 843 |
// Avoid using slower long double arithmetic if possible. |
| 844 |
if _GLIBCXX17_CONSTEXPR (__detail::__p1_representable_as_double(__range)) |
| 845 |
__j *= __y / (__range + 1.0); |
| 846 |
else |
| 847 |
__j *= __y / (__range + 1.0L); |
| 848 |
_M_y = _M_v[__j]; |
| 849 |
_M_v[__j] = _M_b(); |
| 850 |
|
| 851 |
return _M_y; |
| 852 |
} |
| 853 |
|
| 854 |
template<typename _RandomNumberEngine, size_t __k, |
| 855 |
typename _CharT, typename _Traits> |
| 856 |
std::basic_ostream<_CharT, _Traits>& |
| 857 |
operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| 858 |
const shuffle_order_engine<_RandomNumberEngine, __k>& __x) |
| 859 |
{ |
| 860 |
using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base; |
| 861 |
|
| 862 |
const typename __ios_base::fmtflags __flags = __os.flags(); |
| 863 |
const _CharT __fill = __os.fill(); |
| 864 |
const _CharT __space = __os.widen(' '); |
| 865 |
__os.flags(__ios_base::dec | __ios_base::fixed | __ios_base::left); |
| 866 |
__os.fill(__space); |
| 867 |
|
| 868 |
__os << __x.base(); |
| 869 |
for (size_t __i = 0; __i < __k; ++__i) |
| 870 |
__os << __space << __x._M_v[__i]; |
| 871 |
__os << __space << __x._M_y; |
| 872 |
|
| 873 |
__os.flags(__flags); |
| 874 |
__os.fill(__fill); |
| 875 |
return __os; |
| 876 |
} |
| 877 |
|
| 878 |
template<typename _RandomNumberEngine, size_t __k, |
| 879 |
typename _CharT, typename _Traits> |
| 880 |
std::basic_istream<_CharT, _Traits>& |
| 881 |
operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| 882 |
shuffle_order_engine<_RandomNumberEngine, __k>& __x) |
| 883 |
{ |
| 884 |
using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base; |
| 885 |
|
| 886 |
const typename __ios_base::fmtflags __flags = __is.flags(); |
| 887 |
__is.flags(__ios_base::dec | __ios_base::skipws); |
| 888 |
|
| 889 |
__is >> __x._M_b; |
| 890 |
for (size_t __i = 0; __i < __k; ++__i) |
| 891 |
__is >> __x._M_v[__i]; |
| 892 |
__is >> __x._M_y; |
| 893 |
|
| 894 |
__is.flags(__flags); |
| 895 |
return __is; |
| 896 |
} |
| 897 |
|
| 898 |
|
| 899 |
template<typename _IntType, typename _CharT, typename _Traits> |
| 900 |
std::basic_ostream<_CharT, _Traits>& |
| 901 |
operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| 902 |
const uniform_int_distribution<_IntType>& __x) |
| 903 |
{ |
| 904 |
using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base; |
| 905 |
|
| 906 |
const typename __ios_base::fmtflags __flags = __os.flags(); |
| 907 |
const _CharT __fill = __os.fill(); |
| 908 |
const _CharT __space = __os.widen(' '); |
| 909 |
__os.flags(__ios_base::scientific | __ios_base::left); |
| 910 |
__os.fill(__space); |
| 911 |
|
| 912 |
__os << __x.a() << __space << __x.b(); |
| 913 |
|
| 914 |
__os.flags(__flags); |
| 915 |
__os.fill(__fill); |
| 916 |
return __os; |
| 917 |
} |
| 918 |
|
| 919 |
template<typename _IntType, typename _CharT, typename _Traits> |
| 920 |
std::basic_istream<_CharT, _Traits>& |
| 921 |
operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| 922 |
uniform_int_distribution<_IntType>& __x) |
| 923 |
{ |
| 924 |
using param_type |
| 925 |
= typename uniform_int_distribution<_IntType>::param_type; |
| 926 |
using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base; |
| 927 |
|
| 928 |
const typename __ios_base::fmtflags __flags = __is.flags(); |
| 929 |
__is.flags(__ios_base::dec | __ios_base::skipws); |
| 930 |
|
| 931 |
_IntType __a, __b; |
| 932 |
if (__is >> __a >> __b) |
| 933 |
__x.param(param_type(__a, __b)); |
| 934 |
|
| 935 |
__is.flags(__flags); |
| 936 |
return __is; |
| 937 |
} |
| 938 |
|
| 939 |
|
| 940 |
template<typename _RealType> |
| 941 |
template<typename _ForwardIterator, |
| 942 |
typename _UniformRandomNumberGenerator> |
| 943 |
void |
| 944 |
uniform_real_distribution<_RealType>:: |
| 945 |
__generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| 946 |
_UniformRandomNumberGenerator& __urng, |
| 947 |
const param_type& __p) |
| 948 |
{ |
| 949 |
__glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) |
| 950 |
__detail::_Adaptor<_UniformRandomNumberGenerator, result_type> |
| 951 |
__aurng(__urng); |
| 952 |
auto __range = __p.b() - __p.a(); |
| 953 |
while (__f != __t) |
| 954 |
*__f++ = __aurng() * __range + __p.a(); |
| 955 |
} |
| 956 |
|
| 957 |
template<typename _RealType, typename _CharT, typename _Traits> |
| 958 |
std::basic_ostream<_CharT, _Traits>& |
| 959 |
operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| 960 |
const uniform_real_distribution<_RealType>& __x) |
| 961 |
{ |
| 962 |
using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base; |
| 963 |
|
| 964 |
const typename __ios_base::fmtflags __flags = __os.flags(); |
| 965 |
const _CharT __fill = __os.fill(); |
| 966 |
const std::streamsize __precision = __os.precision(); |
| 967 |
const _CharT __space = __os.widen(' '); |
| 968 |
__os.flags(__ios_base::scientific | __ios_base::left); |
| 969 |
__os.fill(__space); |
| 970 |
__os.precision(std::numeric_limits<_RealType>::max_digits10); |
| 971 |
|
| 972 |
__os << __x.a() << __space << __x.b(); |
| 973 |
|
| 974 |
__os.flags(__flags); |
| 975 |
__os.fill(__fill); |
| 976 |
__os.precision(__precision); |
| 977 |
return __os; |
| 978 |
} |
| 979 |
|
| 980 |
template<typename _RealType, typename _CharT, typename _Traits> |
| 981 |
std::basic_istream<_CharT, _Traits>& |
| 982 |
operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| 983 |
uniform_real_distribution<_RealType>& __x) |
| 984 |
{ |
| 985 |
using param_type |
| 986 |
= typename uniform_real_distribution<_RealType>::param_type; |
| 987 |
using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base; |
| 988 |
|
| 989 |
const typename __ios_base::fmtflags __flags = __is.flags(); |
| 990 |
__is.flags(__ios_base::skipws); |
| 991 |
|
| 992 |
_RealType __a, __b; |
| 993 |
if (__is >> __a >> __b) |
| 994 |
__x.param(param_type(__a, __b)); |
| 995 |
|
| 996 |
__is.flags(__flags); |
| 997 |
return __is; |
| 998 |
} |
| 999 |
|
| 1000 |
|
| 1001 |
template<typename _ForwardIterator, |
| 1002 |
typename _UniformRandomNumberGenerator> |
| 1003 |
void |
| 1004 |
std::bernoulli_distribution:: |
| 1005 |
__generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| 1006 |
_UniformRandomNumberGenerator& __urng, |
| 1007 |
const param_type& __p) |
| 1008 |
{ |
| 1009 |
__glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) |
| 1010 |
__detail::_Adaptor<_UniformRandomNumberGenerator, double> |
| 1011 |
__aurng(__urng); |
| 1012 |
auto __limit = __p.p() * (__aurng.max() - __aurng.min()); |
| 1013 |
|
| 1014 |
while (__f != __t) |
| 1015 |
*__f++ = (__aurng() - __aurng.min()) < __limit; |
| 1016 |
} |
| 1017 |
|
| 1018 |
template<typename _CharT, typename _Traits> |
| 1019 |
std::basic_ostream<_CharT, _Traits>& |
| 1020 |
operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| 1021 |
const bernoulli_distribution& __x) |
| 1022 |
{ |
| 1023 |
using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base; |
| 1024 |
|
| 1025 |
const typename __ios_base::fmtflags __flags = __os.flags(); |
| 1026 |
const _CharT __fill = __os.fill(); |
| 1027 |
const std::streamsize __precision = __os.precision(); |
| 1028 |
__os.flags(__ios_base::scientific | __ios_base::left); |
| 1029 |
__os.fill(__os.widen(' ')); |
| 1030 |
__os.precision(std::numeric_limits<double>::max_digits10); |
| 1031 |
|
| 1032 |
__os << __x.p(); |
| 1033 |
|
| 1034 |
__os.flags(__flags); |
| 1035 |
__os.fill(__fill); |
| 1036 |
__os.precision(__precision); |
| 1037 |
return __os; |
| 1038 |
} |
| 1039 |
|
| 1040 |
|
| 1041 |
template<typename _IntType> |
| 1042 |
template<typename _UniformRandomNumberGenerator> |
| 1043 |
typename geometric_distribution<_IntType>::result_type |
| 1044 |
geometric_distribution<_IntType>:: |
| 1045 |
operator()(_UniformRandomNumberGenerator& __urng, |
| 1046 |
const param_type& __param) |
| 1047 |
{ |
| 1048 |
// About the epsilon thing see this thread: |
| 1049 |
// http://gcc.gnu.org/ml/gcc-patches/2006-10/msg00971.html |
| 1050 |
const double __naf = |
| 1051 |
(1 - std::numeric_limits<double>::epsilon()) / 2; |
| 1052 |
// The largest _RealType convertible to _IntType. |
| 1053 |
const double __thr = |
| 1054 |
std::numeric_limits<_IntType>::max() + __naf; |
| 1055 |
__detail::_Adaptor<_UniformRandomNumberGenerator, double> |
| 1056 |
__aurng(__urng); |
| 1057 |
|
| 1058 |
double __cand; |
| 1059 |
do |
| 1060 |
__cand = std::floor(std::log(1.0 - __aurng()) / __param._M_log_1_p); |
| 1061 |
while (__cand >= __thr); |
| 1062 |
|
| 1063 |
return result_type(__cand + __naf); |
| 1064 |
} |
| 1065 |
|
| 1066 |
template<typename _IntType> |
| 1067 |
template<typename _ForwardIterator, |
| 1068 |
typename _UniformRandomNumberGenerator> |
| 1069 |
void |
| 1070 |
geometric_distribution<_IntType>:: |
| 1071 |
__generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| 1072 |
_UniformRandomNumberGenerator& __urng, |
| 1073 |
const param_type& __param) |
| 1074 |
{ |
| 1075 |
__glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) |
| 1076 |
// About the epsilon thing see this thread: |
| 1077 |
// http://gcc.gnu.org/ml/gcc-patches/2006-10/msg00971.html |
| 1078 |
const double __naf = |
| 1079 |
(1 - std::numeric_limits<double>::epsilon()) / 2; |
| 1080 |
// The largest _RealType convertible to _IntType. |
| 1081 |
const double __thr = |
| 1082 |
std::numeric_limits<_IntType>::max() + __naf; |
| 1083 |
__detail::_Adaptor<_UniformRandomNumberGenerator, double> |
| 1084 |
__aurng(__urng); |
| 1085 |
|
| 1086 |
while (__f != __t) |
| 1087 |
{ |
| 1088 |
double __cand; |
| 1089 |
do |
| 1090 |
__cand = std::floor(std::log(1.0 - __aurng()) |
| 1091 |
/ __param._M_log_1_p); |
| 1092 |
while (__cand >= __thr); |
| 1093 |
|
| 1094 |
*__f++ = __cand + __naf; |
| 1095 |
} |
| 1096 |
} |
| 1097 |
|
| 1098 |
template<typename _IntType, |
| 1099 |
typename _CharT, typename _Traits> |
| 1100 |
std::basic_ostream<_CharT, _Traits>& |
| 1101 |
operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| 1102 |
const geometric_distribution<_IntType>& __x) |
| 1103 |
{ |
| 1104 |
using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base; |
| 1105 |
|
| 1106 |
const typename __ios_base::fmtflags __flags = __os.flags(); |
| 1107 |
const _CharT __fill = __os.fill(); |
| 1108 |
const std::streamsize __precision = __os.precision(); |
| 1109 |
__os.flags(__ios_base::scientific | __ios_base::left); |
| 1110 |
__os.fill(__os.widen(' ')); |
| 1111 |
__os.precision(std::numeric_limits<double>::max_digits10); |
| 1112 |
|
| 1113 |
__os << __x.p(); |
| 1114 |
|
| 1115 |
__os.flags(__flags); |
| 1116 |
__os.fill(__fill); |
| 1117 |
__os.precision(__precision); |
| 1118 |
return __os; |
| 1119 |
} |
| 1120 |
|
| 1121 |
template<typename _IntType, |
| 1122 |
typename _CharT, typename _Traits> |
| 1123 |
std::basic_istream<_CharT, _Traits>& |
| 1124 |
operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| 1125 |
geometric_distribution<_IntType>& __x) |
| 1126 |
{ |
| 1127 |
using param_type = typename geometric_distribution<_IntType>::param_type; |
| 1128 |
using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base; |
| 1129 |
|
| 1130 |
const typename __ios_base::fmtflags __flags = __is.flags(); |
| 1131 |
__is.flags(__ios_base::skipws); |
| 1132 |
|
| 1133 |
double __p; |
| 1134 |
if (__is >> __p) |
| 1135 |
__x.param(param_type(__p)); |
| 1136 |
|
| 1137 |
__is.flags(__flags); |
| 1138 |
return __is; |
| 1139 |
} |
| 1140 |
|
| 1141 |
// This is Leger's algorithm, also in Devroye, Ch. X, Example 1.5. |
| 1142 |
template<typename _IntType> |
| 1143 |
template<typename _UniformRandomNumberGenerator> |
| 1144 |
typename negative_binomial_distribution<_IntType>::result_type |
| 1145 |
negative_binomial_distribution<_IntType>:: |
| 1146 |
operator()(_UniformRandomNumberGenerator& __urng) |
| 1147 |
{ |
| 1148 |
const double __y = _M_gd(__urng); |
| 1149 |
|
| 1150 |
// XXX Is the constructor too slow? |
| 1151 |
std::poisson_distribution<result_type> __poisson(__y); |
| 1152 |
return __poisson(__urng); |
| 1153 |
} |
| 1154 |
|
| 1155 |
template<typename _IntType> |
| 1156 |
template<typename _UniformRandomNumberGenerator> |
| 1157 |
typename negative_binomial_distribution<_IntType>::result_type |
| 1158 |
negative_binomial_distribution<_IntType>:: |
| 1159 |
operator()(_UniformRandomNumberGenerator& __urng, |
| 1160 |
const param_type& __p) |
| 1161 |
{ |
| 1162 |
typedef typename std::gamma_distribution<double>::param_type |
| 1163 |
param_type; |
| 1164 |
|
| 1165 |
const double __y = |
| 1166 |
_M_gd(__urng, param_type(__p.k(), (1.0 - __p.p()) / __p.p())); |
| 1167 |
|
| 1168 |
std::poisson_distribution<result_type> __poisson(__y); |
| 1169 |
return __poisson(__urng); |
| 1170 |
} |
| 1171 |
|
| 1172 |
template<typename _IntType> |
| 1173 |
template<typename _ForwardIterator, |
| 1174 |
typename _UniformRandomNumberGenerator> |
| 1175 |
void |
| 1176 |
negative_binomial_distribution<_IntType>:: |
| 1177 |
__generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| 1178 |
_UniformRandomNumberGenerator& __urng) |
| 1179 |
{ |
| 1180 |
__glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) |
| 1181 |
while (__f != __t) |
| 1182 |
{ |
| 1183 |
const double __y = _M_gd(__urng); |
| 1184 |
|
| 1185 |
// XXX Is the constructor too slow? |
| 1186 |
std::poisson_distribution<result_type> __poisson(__y); |
| 1187 |
*__f++ = __poisson(__urng); |
| 1188 |
} |
| 1189 |
} |
| 1190 |
|
| 1191 |
template<typename _IntType> |
| 1192 |
template<typename _ForwardIterator, |
| 1193 |
typename _UniformRandomNumberGenerator> |
| 1194 |
void |
| 1195 |
negative_binomial_distribution<_IntType>:: |
| 1196 |
__generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| 1197 |
_UniformRandomNumberGenerator& __urng, |
| 1198 |
const param_type& __p) |
| 1199 |
{ |
| 1200 |
__glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) |
| 1201 |
typename std::gamma_distribution<result_type>::param_type |
| 1202 |
__p2(__p.k(), (1.0 - __p.p()) / __p.p()); |
| 1203 |
|
| 1204 |
while (__f != __t) |
| 1205 |
{ |
| 1206 |
const double __y = _M_gd(__urng, __p2); |
| 1207 |
|
| 1208 |
std::poisson_distribution<result_type> __poisson(__y); |
| 1209 |
*__f++ = __poisson(__urng); |
| 1210 |
} |
| 1211 |
} |
| 1212 |
|
| 1213 |
template<typename _IntType, typename _CharT, typename _Traits> |
| 1214 |
std::basic_ostream<_CharT, _Traits>& |
| 1215 |
operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| 1216 |
const negative_binomial_distribution<_IntType>& __x) |
| 1217 |
{ |
| 1218 |
using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base; |
| 1219 |
|
| 1220 |
const typename __ios_base::fmtflags __flags = __os.flags(); |
| 1221 |
const _CharT __fill = __os.fill(); |
| 1222 |
const std::streamsize __precision = __os.precision(); |
| 1223 |
const _CharT __space = __os.widen(' '); |
| 1224 |
__os.flags(__ios_base::scientific | __ios_base::left); |
| 1225 |
__os.fill(__os.widen(' ')); |
| 1226 |
__os.precision(std::numeric_limits<double>::max_digits10); |
| 1227 |
|
| 1228 |
__os << __x.k() << __space << __x.p() |
| 1229 |
<< __space << __x._M_gd; |
| 1230 |
|
| 1231 |
__os.flags(__flags); |
| 1232 |
__os.fill(__fill); |
| 1233 |
__os.precision(__precision); |
| 1234 |
return __os; |
| 1235 |
} |
| 1236 |
|
| 1237 |
template<typename _IntType, typename _CharT, typename _Traits> |
| 1238 |
std::basic_istream<_CharT, _Traits>& |
| 1239 |
operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| 1240 |
negative_binomial_distribution<_IntType>& __x) |
| 1241 |
{ |
| 1242 |
using param_type |
| 1243 |
= typename negative_binomial_distribution<_IntType>::param_type; |
| 1244 |
using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base; |
| 1245 |
|
| 1246 |
const typename __ios_base::fmtflags __flags = __is.flags(); |
| 1247 |
__is.flags(__ios_base::skipws); |
| 1248 |
|
| 1249 |
_IntType __k; |
| 1250 |
double __p; |
| 1251 |
if (__is >> __k >> __p >> __x._M_gd) |
| 1252 |
__x.param(param_type(__k, __p)); |
| 1253 |
|
| 1254 |
__is.flags(__flags); |
| 1255 |
return __is; |
| 1256 |
} |
| 1257 |
|
| 1258 |
|
| 1259 |
template<typename _IntType> |
| 1260 |
void |
| 1261 |
poisson_distribution<_IntType>::param_type:: |
| 1262 |
_M_initialize() |
| 1263 |
{ |
| 1264 |
#if _GLIBCXX_USE_C99_MATH_TR1 |
| 1265 |
if (_M_mean >= 12) |
| 1266 |
{ |
| 1267 |
const double __m = std::floor(_M_mean); |
| 1268 |
_M_lm_thr = std::log(_M_mean); |
| 1269 |
_M_lfm = std::lgamma(__m + 1); |
| 1270 |
_M_sm = std::sqrt(__m); |
| 1271 |
|
| 1272 |
const double __pi_4 = 0.7853981633974483096156608458198757L; |
| 1273 |
const double __dx = std::sqrt(2 * __m * std::log(32 * __m |
| 1274 |
/ __pi_4)); |
| 1275 |
_M_d = std::round(std::max<double>(6.0, std::min(__m, __dx))); |
| 1276 |
const double __cx = 2 * __m + _M_d; |
| 1277 |
_M_scx = std::sqrt(__cx / 2); |
| 1278 |
_M_1cx = 1 / __cx; |
| 1279 |
|
| 1280 |
_M_c2b = std::sqrt(__pi_4 * __cx) * std::exp(_M_1cx); |
| 1281 |
_M_cb = 2 * __cx * std::exp(-_M_d * _M_1cx * (1 + _M_d / 2)) |
| 1282 |
/ _M_d; |
| 1283 |
} |
| 1284 |
else |
| 1285 |
#endif |
| 1286 |
_M_lm_thr = std::exp(-_M_mean); |
| 1287 |
} |
| 1288 |
|
| 1289 |
/** |
| 1290 |
* A rejection algorithm when mean >= 12 and a simple method based |
| 1291 |
* upon the multiplication of uniform random variates otherwise. |
| 1292 |
* NB: The former is available only if _GLIBCXX_USE_C99_MATH_TR1 |
| 1293 |
* is defined. |
| 1294 |
* |
| 1295 |
* Reference: |
| 1296 |
* Devroye, L. Non-Uniform Random Variates Generation. Springer-Verlag, |
| 1297 |
* New York, 1986, Ch. X, Sects. 3.3 & 3.4 (+ Errata!). |
| 1298 |
*/ |
| 1299 |
template<typename _IntType> |
| 1300 |
template<typename _UniformRandomNumberGenerator> |
| 1301 |
typename poisson_distribution<_IntType>::result_type |
| 1302 |
poisson_distribution<_IntType>:: |
| 1303 |
operator()(_UniformRandomNumberGenerator& __urng, |
| 1304 |
const param_type& __param) |
| 1305 |
{ |
| 1306 |
__detail::_Adaptor<_UniformRandomNumberGenerator, double> |
| 1307 |
__aurng(__urng); |
| 1308 |
#if _GLIBCXX_USE_C99_MATH_TR1 |
| 1309 |
if (__param.mean() >= 12) |
| 1310 |
{ |
| 1311 |
double __x; |
| 1312 |
|
| 1313 |
// See comments above... |
| 1314 |
const double __naf = |
| 1315 |
(1 - std::numeric_limits<double>::epsilon()) / 2; |
| 1316 |
const double __thr = |
| 1317 |
std::numeric_limits<_IntType>::max() + __naf; |
| 1318 |
|
| 1319 |
const double __m = std::floor(__param.mean()); |
| 1320 |
// sqrt(pi / 2) |
| 1321 |
const double __spi_2 = 1.2533141373155002512078826424055226L; |
| 1322 |
const double __c1 = __param._M_sm * __spi_2; |
| 1323 |
const double __c2 = __param._M_c2b + __c1; |
| 1324 |
const double __c3 = __c2 + 1; |
| 1325 |
const double __c4 = __c3 + 1; |
| 1326 |
// 1 / 78 |
| 1327 |
const double __178 = 0.0128205128205128205128205128205128L; |
| 1328 |
// e^(1 / 78) |
| 1329 |
const double __e178 = 1.0129030479320018583185514777512983L; |
| 1330 |
const double __c5 = __c4 + __e178; |
| 1331 |
const double __c = __param._M_cb + __c5; |
| 1332 |
const double __2cx = 2 * (2 * __m + __param._M_d); |
| 1333 |
|
| 1334 |
bool __reject = true; |
| 1335 |
do |
| 1336 |
{ |
| 1337 |
const double __u = __c * __aurng(); |
| 1338 |
const double __e = -std::log(1.0 - __aurng()); |
| 1339 |
|
| 1340 |
double __w = 0.0; |
| 1341 |
|
| 1342 |
if (__u <= __c1) |
| 1343 |
{ |
| 1344 |
const double __n = _M_nd(__urng); |
| 1345 |
const double __y = -std::abs(__n) * __param._M_sm - 1; |
| 1346 |
__x = std::floor(__y); |
| 1347 |
__w = -__n * __n / 2; |
| 1348 |
if (__x < -__m) |
| 1349 |
continue; |
| 1350 |
} |
| 1351 |
else if (__u <= __c2) |
| 1352 |
{ |
| 1353 |
const double __n = _M_nd(__urng); |
| 1354 |
const double __y = 1 + std::abs(__n) * __param._M_scx; |
| 1355 |
__x = std::ceil(__y); |
| 1356 |
__w = __y * (2 - __y) * __param._M_1cx; |
| 1357 |
if (__x > __param._M_d) |
| 1358 |
continue; |
| 1359 |
} |
| 1360 |
else if (__u <= __c3) |
| 1361 |
// NB: This case not in the book, nor in the Errata, |
| 1362 |
// but should be ok... |
| 1363 |
__x = -1; |
| 1364 |
else if (__u <= __c4) |
| 1365 |
__x = 0; |
| 1366 |
else if (__u <= __c5) |
| 1367 |
{ |
| 1368 |
__x = 1; |
| 1369 |
// Only in the Errata, see libstdc++/83237. |
| 1370 |
__w = __178; |
| 1371 |
} |
| 1372 |
else |
| 1373 |
{ |
| 1374 |
const double __v = -std::log(1.0 - __aurng()); |
| 1375 |
const double __y = __param._M_d |
| 1376 |
+ __v * __2cx / __param._M_d; |
| 1377 |
__x = std::ceil(__y); |
| 1378 |
__w = -__param._M_d * __param._M_1cx * (1 + __y / 2); |
| 1379 |
} |
| 1380 |
|
| 1381 |
__reject = (__w - __e - __x * __param._M_lm_thr |
| 1382 |
> __param._M_lfm - std::lgamma(__x + __m + 1)); |
| 1383 |
|
| 1384 |
__reject |= __x + __m >= __thr; |
| 1385 |
|
| 1386 |
} while (__reject); |
| 1387 |
|
| 1388 |
return result_type(__x + __m + __naf); |
| 1389 |
} |
| 1390 |
else |
| 1391 |
#endif |
| 1392 |
{ |
| 1393 |
_IntType __x = 0; |
| 1394 |
double __prod = 1.0; |
| 1395 |
|
| 1396 |
do |
| 1397 |
{ |
| 1398 |
__prod *= __aurng(); |
| 1399 |
__x += 1; |
| 1400 |
} |
| 1401 |
while (__prod > __param._M_lm_thr); |
| 1402 |
|
| 1403 |
return __x - 1; |
| 1404 |
} |
| 1405 |
} |
| 1406 |
|
| 1407 |
template<typename _IntType> |
| 1408 |
template<typename _ForwardIterator, |
| 1409 |
typename _UniformRandomNumberGenerator> |
| 1410 |
void |
| 1411 |
poisson_distribution<_IntType>:: |
| 1412 |
__generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| 1413 |
_UniformRandomNumberGenerator& __urng, |
| 1414 |
const param_type& __param) |
| 1415 |
{ |
| 1416 |
__glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) |
| 1417 |
// We could duplicate everything from operator()... |
| 1418 |
while (__f != __t) |
| 1419 |
*__f++ = this->operator()(__urng, __param); |
| 1420 |
} |
| 1421 |
|
| 1422 |
template<typename _IntType, |
| 1423 |
typename _CharT, typename _Traits> |
| 1424 |
std::basic_ostream<_CharT, _Traits>& |
| 1425 |
operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| 1426 |
const poisson_distribution<_IntType>& __x) |
| 1427 |
{ |
| 1428 |
using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base; |
| 1429 |
|
| 1430 |
const typename __ios_base::fmtflags __flags = __os.flags(); |
| 1431 |
const _CharT __fill = __os.fill(); |
| 1432 |
const std::streamsize __precision = __os.precision(); |
| 1433 |
const _CharT __space = __os.widen(' '); |
| 1434 |
__os.flags(__ios_base::scientific | __ios_base::left); |
| 1435 |
__os.fill(__space); |
| 1436 |
__os.precision(std::numeric_limits<double>::max_digits10); |
| 1437 |
|
| 1438 |
__os << __x.mean() << __space << __x._M_nd; |
| 1439 |
|
| 1440 |
__os.flags(__flags); |
| 1441 |
__os.fill(__fill); |
| 1442 |
__os.precision(__precision); |
| 1443 |
return __os; |
| 1444 |
} |
| 1445 |
|
| 1446 |
template<typename _IntType, |
| 1447 |
typename _CharT, typename _Traits> |
| 1448 |
std::basic_istream<_CharT, _Traits>& |
| 1449 |
operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| 1450 |
poisson_distribution<_IntType>& __x) |
| 1451 |
{ |
| 1452 |
using param_type = typename poisson_distribution<_IntType>::param_type; |
| 1453 |
using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base; |
| 1454 |
|
| 1455 |
const typename __ios_base::fmtflags __flags = __is.flags(); |
| 1456 |
__is.flags(__ios_base::skipws); |
| 1457 |
|
| 1458 |
double __mean; |
| 1459 |
if (__is >> __mean >> __x._M_nd) |
| 1460 |
__x.param(param_type(__mean)); |
| 1461 |
|
| 1462 |
__is.flags(__flags); |
| 1463 |
return __is; |
| 1464 |
} |
| 1465 |
|
| 1466 |
|
| 1467 |
template<typename _IntType> |
| 1468 |
void |
| 1469 |
binomial_distribution<_IntType>::param_type:: |
| 1470 |
_M_initialize() |
| 1471 |
{ |
| 1472 |
const double __p12 = _M_p <= 0.5 ? _M_p : 1.0 - _M_p; |
| 1473 |
|
| 1474 |
_M_easy = true; |
| 1475 |
|
| 1476 |
#if _GLIBCXX_USE_C99_MATH_TR1 |
| 1477 |
if (_M_t * __p12 >= 8) |
| 1478 |
{ |
| 1479 |
_M_easy = false; |
| 1480 |
const double __np = std::floor(_M_t * __p12); |
| 1481 |
const double __pa = __np / _M_t; |
| 1482 |
const double __1p = 1 - __pa; |
| 1483 |
|
| 1484 |
const double __pi_4 = 0.7853981633974483096156608458198757L; |
| 1485 |
const double __d1x = |
| 1486 |
std::sqrt(__np * __1p * std::log(32 * __np |
| 1487 |
/ (81 * __pi_4 * __1p))); |
| 1488 |
_M_d1 = std::round(std::max<double>(1.0, __d1x)); |
| 1489 |
const double __d2x = |
| 1490 |
std::sqrt(__np * __1p * std::log(32 * _M_t * __1p |
| 1491 |
/ (__pi_4 * __pa))); |
| 1492 |
_M_d2 = std::round(std::max<double>(1.0, __d2x)); |
| 1493 |
|
| 1494 |
// sqrt(pi / 2) |
| 1495 |
const double __spi_2 = 1.2533141373155002512078826424055226L; |
| 1496 |
_M_s1 = std::sqrt(__np * __1p) * (1 + _M_d1 / (4 * __np)); |
| 1497 |
_M_s2 = std::sqrt(__np * __1p) * (1 + _M_d2 / (4 * _M_t * __1p)); |
| 1498 |
_M_c = 2 * _M_d1 / __np; |
| 1499 |
_M_a1 = std::exp(_M_c) * _M_s1 * __spi_2; |
| 1500 |
const double __a12 = _M_a1 + _M_s2 * __spi_2; |
| 1501 |
const double __s1s = _M_s1 * _M_s1; |
| 1502 |
_M_a123 = __a12 + (std::exp(_M_d1 / (_M_t * __1p)) |
| 1503 |
* 2 * __s1s / _M_d1 |
| 1504 |
* std::exp(-_M_d1 * _M_d1 / (2 * __s1s))); |
| 1505 |
const double __s2s = _M_s2 * _M_s2; |
| 1506 |
_M_s = (_M_a123 + 2 * __s2s / _M_d2 |
| 1507 |
* std::exp(-_M_d2 * _M_d2 / (2 * __s2s))); |
| 1508 |
_M_lf = (std::lgamma(__np + 1) |
| 1509 |
+ std::lgamma(_M_t - __np + 1)); |
| 1510 |
_M_lp1p = std::log(__pa / __1p); |
| 1511 |
|
| 1512 |
_M_q = -std::log(1 - (__p12 - __pa) / __1p); |
| 1513 |
} |
| 1514 |
else |
| 1515 |
#endif |
| 1516 |
_M_q = -std::log(1 - __p12); |
| 1517 |
} |
| 1518 |
|
| 1519 |
template<typename _IntType> |
| 1520 |
template<typename _UniformRandomNumberGenerator> |
| 1521 |
typename binomial_distribution<_IntType>::result_type |
| 1522 |
binomial_distribution<_IntType>:: |
| 1523 |
_M_waiting(_UniformRandomNumberGenerator& __urng, |
| 1524 |
_IntType __t, double __q) |
| 1525 |
{ |
| 1526 |
_IntType __x = 0; |
| 1527 |
double __sum = 0.0; |
| 1528 |
__detail::_Adaptor<_UniformRandomNumberGenerator, double> |
| 1529 |
__aurng(__urng); |
| 1530 |
|
| 1531 |
do |
| 1532 |
{ |
| 1533 |
if (__t == __x) |
| 1534 |
return __x; |
| 1535 |
const double __e = -std::log(1.0 - __aurng()); |
| 1536 |
__sum += __e / (__t - __x); |
| 1537 |
__x += 1; |
| 1538 |
} |
| 1539 |
while (__sum <= __q); |
| 1540 |
|
| 1541 |
return __x - 1; |
| 1542 |
} |
| 1543 |
|
| 1544 |
/** |
| 1545 |
* A rejection algorithm when t * p >= 8 and a simple waiting time |
| 1546 |
* method - the second in the referenced book - otherwise. |
| 1547 |
* NB: The former is available only if _GLIBCXX_USE_C99_MATH_TR1 |
| 1548 |
* is defined. |
| 1549 |
* |
| 1550 |
* Reference: |
| 1551 |
* Devroye, L. Non-Uniform Random Variates Generation. Springer-Verlag, |
| 1552 |
* New York, 1986, Ch. X, Sect. 4 (+ Errata!). |
| 1553 |
*/ |
| 1554 |
template<typename _IntType> |
| 1555 |
template<typename _UniformRandomNumberGenerator> |
| 1556 |
typename binomial_distribution<_IntType>::result_type |
| 1557 |
binomial_distribution<_IntType>:: |
| 1558 |
operator()(_UniformRandomNumberGenerator& __urng, |
| 1559 |
const param_type& __param) |
| 1560 |
{ |
| 1561 |
result_type __ret; |
| 1562 |
const _IntType __t = __param.t(); |
| 1563 |
const double __p = __param.p(); |
| 1564 |
const double __p12 = __p <= 0.5 ? __p : 1.0 - __p; |
| 1565 |
__detail::_Adaptor<_UniformRandomNumberGenerator, double> |
| 1566 |
__aurng(__urng); |
| 1567 |
|
| 1568 |
#if _GLIBCXX_USE_C99_MATH_TR1 |
| 1569 |
if (!__param._M_easy) |
| 1570 |
{ |
| 1571 |
double __x; |
| 1572 |
|
| 1573 |
// See comments above... |
| 1574 |
const double __naf = |
| 1575 |
(1 - std::numeric_limits<double>::epsilon()) / 2; |
| 1576 |
const double __thr = |
| 1577 |
std::numeric_limits<_IntType>::max() + __naf; |
| 1578 |
|
| 1579 |
const double __np = std::floor(__t * __p12); |
| 1580 |
|
| 1581 |
// sqrt(pi / 2) |
| 1582 |
const double __spi_2 = 1.2533141373155002512078826424055226L; |
| 1583 |
const double __a1 = __param._M_a1; |
| 1584 |
const double __a12 = __a1 + __param._M_s2 * __spi_2; |
| 1585 |
const double __a123 = __param._M_a123; |
| 1586 |
const double __s1s = __param._M_s1 * __param._M_s1; |
| 1587 |
const double __s2s = __param._M_s2 * __param._M_s2; |
| 1588 |
|
| 1589 |
bool __reject; |
| 1590 |
do |
| 1591 |
{ |
| 1592 |
const double __u = __param._M_s * __aurng(); |
| 1593 |
|
| 1594 |
double __v; |
| 1595 |
|
| 1596 |
if (__u <= __a1) |
| 1597 |
{ |
| 1598 |
const double __n = _M_nd(__urng); |
| 1599 |
const double __y = __param._M_s1 * std::abs(__n); |
| 1600 |
__reject = __y >= __param._M_d1; |
| 1601 |
if (!__reject) |
| 1602 |
{ |
| 1603 |
const double __e = -std::log(1.0 - __aurng()); |
| 1604 |
__x = std::floor(__y); |
| 1605 |
__v = -__e - __n * __n / 2 + __param._M_c; |
| 1606 |
} |
| 1607 |
} |
| 1608 |
else if (__u <= __a12) |
| 1609 |
{ |
| 1610 |
const double __n = _M_nd(__urng); |
| 1611 |
const double __y = __param._M_s2 * std::abs(__n); |
| 1612 |
__reject = __y >= __param._M_d2; |
| 1613 |
if (!__reject) |
| 1614 |
{ |
| 1615 |
const double __e = -std::log(1.0 - __aurng()); |
| 1616 |
__x = std::floor(-__y); |
| 1617 |
__v = -__e - __n * __n / 2; |
| 1618 |
} |
| 1619 |
} |
| 1620 |
else if (__u <= __a123) |
| 1621 |
{ |
| 1622 |
const double __e1 = -std::log(1.0 - __aurng()); |
| 1623 |
const double __e2 = -std::log(1.0 - __aurng()); |
| 1624 |
|
| 1625 |
const double __y = __param._M_d1 |
| 1626 |
+ 2 * __s1s * __e1 / __param._M_d1; |
| 1627 |
__x = std::floor(__y); |
| 1628 |
__v = (-__e2 + __param._M_d1 * (1 / (__t - __np) |
| 1629 |
-__y / (2 * __s1s))); |
| 1630 |
__reject = false; |
| 1631 |
} |
| 1632 |
else |
| 1633 |
{ |
| 1634 |
const double __e1 = -std::log(1.0 - __aurng()); |
| 1635 |
const double __e2 = -std::log(1.0 - __aurng()); |
| 1636 |
|
| 1637 |
const double __y = __param._M_d2 |
| 1638 |
+ 2 * __s2s * __e1 / __param._M_d2; |
| 1639 |
__x = std::floor(-__y); |
| 1640 |
__v = -__e2 - __param._M_d2 * __y / (2 * __s2s); |
| 1641 |
__reject = false; |
| 1642 |
} |
| 1643 |
|
| 1644 |
__reject = __reject || __x < -__np || __x > __t - __np; |
| 1645 |
if (!__reject) |
| 1646 |
{ |
| 1647 |
const double __lfx = |
| 1648 |
std::lgamma(__np + __x + 1) |
| 1649 |
+ std::lgamma(__t - (__np + __x) + 1); |
| 1650 |
__reject = __v > __param._M_lf - __lfx |
| 1651 |
+ __x * __param._M_lp1p; |
| 1652 |
} |
| 1653 |
|
| 1654 |
__reject |= __x + __np >= __thr; |
| 1655 |
} |
| 1656 |
while (__reject); |
| 1657 |
|
| 1658 |
__x += __np + __naf; |
| 1659 |
|
| 1660 |
const _IntType __z = _M_waiting(__urng, __t - _IntType(__x), |
| 1661 |
__param._M_q); |
| 1662 |
__ret = _IntType(__x) + __z; |
| 1663 |
} |
| 1664 |
else |
| 1665 |
#endif |
| 1666 |
__ret = _M_waiting(__urng, __t, __param._M_q); |
| 1667 |
|
| 1668 |
if (__p12 != __p) |
| 1669 |
__ret = __t - __ret; |
| 1670 |
return __ret; |
| 1671 |
} |
| 1672 |
|
| 1673 |
template<typename _IntType> |
| 1674 |
template<typename _ForwardIterator, |
| 1675 |
typename _UniformRandomNumberGenerator> |
| 1676 |
void |
| 1677 |
binomial_distribution<_IntType>:: |
| 1678 |
__generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| 1679 |
_UniformRandomNumberGenerator& __urng, |
| 1680 |
const param_type& __param) |
| 1681 |
{ |
| 1682 |
__glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) |
| 1683 |
// We could duplicate everything from operator()... |
| 1684 |
while (__f != __t) |
| 1685 |
*__f++ = this->operator()(__urng, __param); |
| 1686 |
} |
| 1687 |
|
| 1688 |
template<typename _IntType, |
| 1689 |
typename _CharT, typename _Traits> |
| 1690 |
std::basic_ostream<_CharT, _Traits>& |
| 1691 |
operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| 1692 |
const binomial_distribution<_IntType>& __x) |
| 1693 |
{ |
| 1694 |
using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base; |
| 1695 |
|
| 1696 |
const typename __ios_base::fmtflags __flags = __os.flags(); |
| 1697 |
const _CharT __fill = __os.fill(); |
| 1698 |
const std::streamsize __precision = __os.precision(); |
| 1699 |
const _CharT __space = __os.widen(' '); |
| 1700 |
__os.flags(__ios_base::scientific | __ios_base::left); |
| 1701 |
__os.fill(__space); |
| 1702 |
__os.precision(std::numeric_limits<double>::max_digits10); |
| 1703 |
|
| 1704 |
__os << __x.t() << __space << __x.p() |
| 1705 |
<< __space << __x._M_nd; |
| 1706 |
|
| 1707 |
__os.flags(__flags); |
| 1708 |
__os.fill(__fill); |
| 1709 |
__os.precision(__precision); |
| 1710 |
return __os; |
| 1711 |
} |
| 1712 |
|
| 1713 |
template<typename _IntType, |
| 1714 |
typename _CharT, typename _Traits> |
| 1715 |
std::basic_istream<_CharT, _Traits>& |
| 1716 |
operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| 1717 |
binomial_distribution<_IntType>& __x) |
| 1718 |
{ |
| 1719 |
using param_type = typename binomial_distribution<_IntType>::param_type; |
| 1720 |
using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base; |
| 1721 |
|
| 1722 |
const typename __ios_base::fmtflags __flags = __is.flags(); |
| 1723 |
__is.flags(__ios_base::dec | __ios_base::skipws); |
| 1724 |
|
| 1725 |
_IntType __t; |
| 1726 |
double __p; |
| 1727 |
if (__is >> __t >> __p >> __x._M_nd) |
| 1728 |
__x.param(param_type(__t, __p)); |
| 1729 |
|
| 1730 |
__is.flags(__flags); |
| 1731 |
return __is; |
| 1732 |
} |
| 1733 |
|
| 1734 |
|
| 1735 |
template<typename _RealType> |
| 1736 |
template<typename _ForwardIterator, |
| 1737 |
typename _UniformRandomNumberGenerator> |
| 1738 |
void |
| 1739 |
std::exponential_distribution<_RealType>:: |
| 1740 |
__generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| 1741 |
_UniformRandomNumberGenerator& __urng, |
| 1742 |
const param_type& __p) |
| 1743 |
{ |
| 1744 |
__glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) |
| 1745 |
__detail::_Adaptor<_UniformRandomNumberGenerator, result_type> |
| 1746 |
__aurng(__urng); |
| 1747 |
while (__f != __t) |
| 1748 |
*__f++ = -std::log(result_type(1) - __aurng()) / __p.lambda(); |
| 1749 |
} |
| 1750 |
|
| 1751 |
template<typename _RealType, typename _CharT, typename _Traits> |
| 1752 |
std::basic_ostream<_CharT, _Traits>& |
| 1753 |
operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| 1754 |
const exponential_distribution<_RealType>& __x) |
| 1755 |
{ |
| 1756 |
using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base; |
| 1757 |
|
| 1758 |
const typename __ios_base::fmtflags __flags = __os.flags(); |
| 1759 |
const _CharT __fill = __os.fill(); |
| 1760 |
const std::streamsize __precision = __os.precision(); |
| 1761 |
__os.flags(__ios_base::scientific | __ios_base::left); |
| 1762 |
__os.fill(__os.widen(' ')); |
| 1763 |
__os.precision(std::numeric_limits<_RealType>::max_digits10); |
| 1764 |
|
| 1765 |
__os << __x.lambda(); |
| 1766 |
|
| 1767 |
__os.flags(__flags); |
| 1768 |
__os.fill(__fill); |
| 1769 |
__os.precision(__precision); |
| 1770 |
return __os; |
| 1771 |
} |
| 1772 |
|
| 1773 |
template<typename _RealType, typename _CharT, typename _Traits> |
| 1774 |
std::basic_istream<_CharT, _Traits>& |
| 1775 |
operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| 1776 |
exponential_distribution<_RealType>& __x) |
| 1777 |
{ |
| 1778 |
using param_type |
| 1779 |
= typename exponential_distribution<_RealType>::param_type; |
| 1780 |
using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base; |
| 1781 |
|
| 1782 |
const typename __ios_base::fmtflags __flags = __is.flags(); |
| 1783 |
__is.flags(__ios_base::dec | __ios_base::skipws); |
| 1784 |
|
| 1785 |
_RealType __lambda; |
| 1786 |
if (__is >> __lambda) |
| 1787 |
__x.param(param_type(__lambda)); |
| 1788 |
|
| 1789 |
__is.flags(__flags); |
| 1790 |
return __is; |
| 1791 |
} |
| 1792 |
|
| 1793 |
|
| 1794 |
/** |
| 1795 |
* Polar method due to Marsaglia. |
| 1796 |
* |
| 1797 |
* Devroye, L. Non-Uniform Random Variates Generation. Springer-Verlag, |
| 1798 |
* New York, 1986, Ch. V, Sect. 4.4. |
| 1799 |
*/ |
| 1800 |
template<typename _RealType> |
| 1801 |
template<typename _UniformRandomNumberGenerator> |
| 1802 |
typename normal_distribution<_RealType>::result_type |
| 1803 |
normal_distribution<_RealType>:: |
| 1804 |
operator()(_UniformRandomNumberGenerator& __urng, |
| 1805 |
const param_type& __param) |
| 1806 |
{ |
| 1807 |
result_type __ret; |
| 1808 |
__detail::_Adaptor<_UniformRandomNumberGenerator, result_type> |
| 1809 |
__aurng(__urng); |
| 1810 |
|
| 1811 |
if (_M_saved_available) |
| 1812 |
{ |
| 1813 |
_M_saved_available = false; |
| 1814 |
__ret = _M_saved; |
| 1815 |
} |
| 1816 |
else |
| 1817 |
{ |
| 1818 |
result_type __x, __y, __r2; |
| 1819 |
do |
| 1820 |
{ |
| 1821 |
__x = result_type(2.0) * __aurng() - 1.0; |
| 1822 |
__y = result_type(2.0) * __aurng() - 1.0; |
| 1823 |
__r2 = __x * __x + __y * __y; |
| 1824 |
} |
| 1825 |
while (__r2 > 1.0 || __r2 == 0.0); |
| 1826 |
|
| 1827 |
const result_type __mult = std::sqrt(-2 * std::log(__r2) / __r2); |
| 1828 |
_M_saved = __x * __mult; |
| 1829 |
_M_saved_available = true; |
| 1830 |
__ret = __y * __mult; |
| 1831 |
} |
| 1832 |
|
| 1833 |
__ret = __ret * __param.stddev() + __param.mean(); |
| 1834 |
return __ret; |
| 1835 |
} |
| 1836 |
|
| 1837 |
template<typename _RealType> |
| 1838 |
template<typename _ForwardIterator, |
| 1839 |
typename _UniformRandomNumberGenerator> |
| 1840 |
void |
| 1841 |
normal_distribution<_RealType>:: |
| 1842 |
__generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| 1843 |
_UniformRandomNumberGenerator& __urng, |
| 1844 |
const param_type& __param) |
| 1845 |
{ |
| 1846 |
__glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) |
| 1847 |
|
| 1848 |
if (__f == __t) |
| 1849 |
return; |
| 1850 |
|
| 1851 |
if (_M_saved_available) |
| 1852 |
{ |
| 1853 |
_M_saved_available = false; |
| 1854 |
*__f++ = _M_saved * __param.stddev() + __param.mean(); |
| 1855 |
|
| 1856 |
if (__f == __t) |
| 1857 |
return; |
| 1858 |
} |
| 1859 |
|
| 1860 |
__detail::_Adaptor<_UniformRandomNumberGenerator, result_type> |
| 1861 |
__aurng(__urng); |
| 1862 |
|
| 1863 |
while (__f + 1 < __t) |
| 1864 |
{ |
| 1865 |
result_type __x, __y, __r2; |
| 1866 |
do |
| 1867 |
{ |
| 1868 |
__x = result_type(2.0) * __aurng() - 1.0; |
| 1869 |
__y = result_type(2.0) * __aurng() - 1.0; |
| 1870 |
__r2 = __x * __x + __y * __y; |
| 1871 |
} |
| 1872 |
while (__r2 > 1.0 || __r2 == 0.0); |
| 1873 |
|
| 1874 |
const result_type __mult = std::sqrt(-2 * std::log(__r2) / __r2); |
| 1875 |
*__f++ = __y * __mult * __param.stddev() + __param.mean(); |
| 1876 |
*__f++ = __x * __mult * __param.stddev() + __param.mean(); |
| 1877 |
} |
| 1878 |
|
| 1879 |
if (__f != __t) |
| 1880 |
{ |
| 1881 |
result_type __x, __y, __r2; |
| 1882 |
do |
| 1883 |
{ |
| 1884 |
__x = result_type(2.0) * __aurng() - 1.0; |
| 1885 |
__y = result_type(2.0) * __aurng() - 1.0; |
| 1886 |
__r2 = __x * __x + __y * __y; |
| 1887 |
} |
| 1888 |
while (__r2 > 1.0 || __r2 == 0.0); |
| 1889 |
|
| 1890 |
const result_type __mult = std::sqrt(-2 * std::log(__r2) / __r2); |
| 1891 |
_M_saved = __x * __mult; |
| 1892 |
_M_saved_available = true; |
| 1893 |
*__f = __y * __mult * __param.stddev() + __param.mean(); |
| 1894 |
} |
| 1895 |
} |
| 1896 |
|
| 1897 |
template<typename _RealType> |
| 1898 |
bool |
| 1899 |
operator==(const std::normal_distribution<_RealType>& __d1, |
| 1900 |
const std::normal_distribution<_RealType>& __d2) |
| 1901 |
{ |
| 1902 |
if (__d1._M_param == __d2._M_param |
| 1903 |
&& __d1._M_saved_available == __d2._M_saved_available) |
| 1904 |
{ |
| 1905 |
if (__d1._M_saved_available |
| 1906 |
&& __d1._M_saved == __d2._M_saved) |
| 1907 |
return true; |
| 1908 |
else if(!__d1._M_saved_available) |
| 1909 |
return true; |
| 1910 |
else |
| 1911 |
return false; |
| 1912 |
} |
| 1913 |
else |
| 1914 |
return false; |
| 1915 |
} |
| 1916 |
|
| 1917 |
template<typename _RealType, typename _CharT, typename _Traits> |
| 1918 |
std::basic_ostream<_CharT, _Traits>& |
| 1919 |
operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| 1920 |
const normal_distribution<_RealType>& __x) |
| 1921 |
{ |
| 1922 |
using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base; |
| 1923 |
|
| 1924 |
const typename __ios_base::fmtflags __flags = __os.flags(); |
| 1925 |
const _CharT __fill = __os.fill(); |
| 1926 |
const std::streamsize __precision = __os.precision(); |
| 1927 |
const _CharT __space = __os.widen(' '); |
| 1928 |
__os.flags(__ios_base::scientific | __ios_base::left); |
| 1929 |
__os.fill(__space); |
| 1930 |
__os.precision(std::numeric_limits<_RealType>::max_digits10); |
| 1931 |
|
| 1932 |
__os << __x.mean() << __space << __x.stddev() |
| 1933 |
<< __space << __x._M_saved_available; |
| 1934 |
if (__x._M_saved_available) |
| 1935 |
__os << __space << __x._M_saved; |
| 1936 |
|
| 1937 |
__os.flags(__flags); |
| 1938 |
__os.fill(__fill); |
| 1939 |
__os.precision(__precision); |
| 1940 |
return __os; |
| 1941 |
} |
| 1942 |
|
| 1943 |
template<typename _RealType, typename _CharT, typename _Traits> |
| 1944 |
std::basic_istream<_CharT, _Traits>& |
| 1945 |
operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| 1946 |
normal_distribution<_RealType>& __x) |
| 1947 |
{ |
| 1948 |
using param_type = typename normal_distribution<_RealType>::param_type; |
| 1949 |
using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base; |
| 1950 |
|
| 1951 |
const typename __ios_base::fmtflags __flags = __is.flags(); |
| 1952 |
__is.flags(__ios_base::dec | __ios_base::skipws); |
| 1953 |
|
| 1954 |
double __mean, __stddev; |
| 1955 |
bool __saved_avail; |
| 1956 |
if (__is >> __mean >> __stddev >> __saved_avail) |
| 1957 |
{ |
| 1958 |
if (__saved_avail && (__is >> __x._M_saved)) |
| 1959 |
{ |
| 1960 |
__x._M_saved_available = __saved_avail; |
| 1961 |
__x.param(param_type(__mean, __stddev)); |
| 1962 |
} |
| 1963 |
} |
| 1964 |
|
| 1965 |
__is.flags(__flags); |
| 1966 |
return __is; |
| 1967 |
} |
| 1968 |
|
| 1969 |
|
| 1970 |
template<typename _RealType> |
| 1971 |
template<typename _ForwardIterator, |
| 1972 |
typename _UniformRandomNumberGenerator> |
| 1973 |
void |
| 1974 |
lognormal_distribution<_RealType>:: |
| 1975 |
__generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| 1976 |
_UniformRandomNumberGenerator& __urng, |
| 1977 |
const param_type& __p) |
| 1978 |
{ |
| 1979 |
__glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) |
| 1980 |
while (__f != __t) |
| 1981 |
*__f++ = std::exp(__p.s() * _M_nd(__urng) + __p.m()); |
| 1982 |
} |
| 1983 |
|
| 1984 |
template<typename _RealType, typename _CharT, typename _Traits> |
| 1985 |
std::basic_ostream<_CharT, _Traits>& |
| 1986 |
operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| 1987 |
const lognormal_distribution<_RealType>& __x) |
| 1988 |
{ |
| 1989 |
using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base; |
| 1990 |
|
| 1991 |
const typename __ios_base::fmtflags __flags = __os.flags(); |
| 1992 |
const _CharT __fill = __os.fill(); |
| 1993 |
const std::streamsize __precision = __os.precision(); |
| 1994 |
const _CharT __space = __os.widen(' '); |
| 1995 |
__os.flags(__ios_base::scientific | __ios_base::left); |
| 1996 |
__os.fill(__space); |
| 1997 |
__os.precision(std::numeric_limits<_RealType>::max_digits10); |
| 1998 |
|
| 1999 |
__os << __x.m() << __space << __x.s() |
| 2000 |
<< __space << __x._M_nd; |
| 2001 |
|
| 2002 |
__os.flags(__flags); |
| 2003 |
__os.fill(__fill); |
| 2004 |
__os.precision(__precision); |
| 2005 |
return __os; |
| 2006 |
} |
| 2007 |
|
| 2008 |
template<typename _RealType, typename _CharT, typename _Traits> |
| 2009 |
std::basic_istream<_CharT, _Traits>& |
| 2010 |
operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| 2011 |
lognormal_distribution<_RealType>& __x) |
| 2012 |
{ |
| 2013 |
using param_type |
| 2014 |
= typename lognormal_distribution<_RealType>::param_type; |
| 2015 |
using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base; |
| 2016 |
|
| 2017 |
const typename __ios_base::fmtflags __flags = __is.flags(); |
| 2018 |
__is.flags(__ios_base::dec | __ios_base::skipws); |
| 2019 |
|
| 2020 |
_RealType __m, __s; |
| 2021 |
if (__is >> __m >> __s >> __x._M_nd) |
| 2022 |
__x.param(param_type(__m, __s)); |
| 2023 |
|
| 2024 |
__is.flags(__flags); |
| 2025 |
return __is; |
| 2026 |
} |
| 2027 |
|
| 2028 |
template<typename _RealType> |
| 2029 |
template<typename _ForwardIterator, |
| 2030 |
typename _UniformRandomNumberGenerator> |
| 2031 |
void |
| 2032 |
std::chi_squared_distribution<_RealType>:: |
| 2033 |
__generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| 2034 |
_UniformRandomNumberGenerator& __urng) |
| 2035 |
{ |
| 2036 |
__glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) |
| 2037 |
while (__f != __t) |
| 2038 |
*__f++ = 2 * _M_gd(__urng); |
| 2039 |
} |
| 2040 |
|
| 2041 |
template<typename _RealType> |
| 2042 |
template<typename _ForwardIterator, |
| 2043 |
typename _UniformRandomNumberGenerator> |
| 2044 |
void |
| 2045 |
std::chi_squared_distribution<_RealType>:: |
| 2046 |
__generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| 2047 |
_UniformRandomNumberGenerator& __urng, |
| 2048 |
const typename |
| 2049 |
std::gamma_distribution<result_type>::param_type& __p) |
| 2050 |
{ |
| 2051 |
__glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) |
| 2052 |
while (__f != __t) |
| 2053 |
*__f++ = 2 * _M_gd(__urng, __p); |
| 2054 |
} |
| 2055 |
|
| 2056 |
template<typename _RealType, typename _CharT, typename _Traits> |
| 2057 |
std::basic_ostream<_CharT, _Traits>& |
| 2058 |
operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| 2059 |
const chi_squared_distribution<_RealType>& __x) |
| 2060 |
{ |
| 2061 |
using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base; |
| 2062 |
|
| 2063 |
const typename __ios_base::fmtflags __flags = __os.flags(); |
| 2064 |
const _CharT __fill = __os.fill(); |
| 2065 |
const std::streamsize __precision = __os.precision(); |
| 2066 |
const _CharT __space = __os.widen(' '); |
| 2067 |
__os.flags(__ios_base::scientific | __ios_base::left); |
| 2068 |
__os.fill(__space); |
| 2069 |
__os.precision(std::numeric_limits<_RealType>::max_digits10); |
| 2070 |
|
| 2071 |
__os << __x.n() << __space << __x._M_gd; |
| 2072 |
|
| 2073 |
__os.flags(__flags); |
| 2074 |
__os.fill(__fill); |
| 2075 |
__os.precision(__precision); |
| 2076 |
return __os; |
| 2077 |
} |
| 2078 |
|
| 2079 |
template<typename _RealType, typename _CharT, typename _Traits> |
| 2080 |
std::basic_istream<_CharT, _Traits>& |
| 2081 |
operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| 2082 |
chi_squared_distribution<_RealType>& __x) |
| 2083 |
{ |
| 2084 |
using param_type |
| 2085 |
= typename chi_squared_distribution<_RealType>::param_type; |
| 2086 |
using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base; |
| 2087 |
|
| 2088 |
const typename __ios_base::fmtflags __flags = __is.flags(); |
| 2089 |
__is.flags(__ios_base::dec | __ios_base::skipws); |
| 2090 |
|
| 2091 |
_RealType __n; |
| 2092 |
if (__is >> __n >> __x._M_gd) |
| 2093 |
__x.param(param_type(__n)); |
| 2094 |
|
| 2095 |
__is.flags(__flags); |
| 2096 |
return __is; |
| 2097 |
} |
| 2098 |
|
| 2099 |
|
| 2100 |
template<typename _RealType> |
| 2101 |
template<typename _UniformRandomNumberGenerator> |
| 2102 |
typename cauchy_distribution<_RealType>::result_type |
| 2103 |
cauchy_distribution<_RealType>:: |
| 2104 |
operator()(_UniformRandomNumberGenerator& __urng, |
| 2105 |
const param_type& __p) |
| 2106 |
{ |
| 2107 |
__detail::_Adaptor<_UniformRandomNumberGenerator, result_type> |
| 2108 |
__aurng(__urng); |
| 2109 |
_RealType __u; |
| 2110 |
do |
| 2111 |
__u = __aurng(); |
| 2112 |
while (__u == 0.5); |
| 2113 |
|
| 2114 |
const _RealType __pi = 3.1415926535897932384626433832795029L; |
| 2115 |
return __p.a() + __p.b() * std::tan(__pi * __u); |
| 2116 |
} |
| 2117 |
|
| 2118 |
template<typename _RealType> |
| 2119 |
template<typename _ForwardIterator, |
| 2120 |
typename _UniformRandomNumberGenerator> |
| 2121 |
void |
| 2122 |
cauchy_distribution<_RealType>:: |
| 2123 |
__generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| 2124 |
_UniformRandomNumberGenerator& __urng, |
| 2125 |
const param_type& __p) |
| 2126 |
{ |
| 2127 |
__glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) |
| 2128 |
const _RealType __pi = 3.1415926535897932384626433832795029L; |
| 2129 |
__detail::_Adaptor<_UniformRandomNumberGenerator, result_type> |
| 2130 |
__aurng(__urng); |
| 2131 |
while (__f != __t) |
| 2132 |
{ |
| 2133 |
_RealType __u; |
| 2134 |
do |
| 2135 |
__u = __aurng(); |
| 2136 |
while (__u == 0.5); |
| 2137 |
|
| 2138 |
*__f++ = __p.a() + __p.b() * std::tan(__pi * __u); |
| 2139 |
} |
| 2140 |
} |
| 2141 |
|
| 2142 |
template<typename _RealType, typename _CharT, typename _Traits> |
| 2143 |
std::basic_ostream<_CharT, _Traits>& |
| 2144 |
operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| 2145 |
const cauchy_distribution<_RealType>& __x) |
| 2146 |
{ |
| 2147 |
using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base; |
| 2148 |
|
| 2149 |
const typename __ios_base::fmtflags __flags = __os.flags(); |
| 2150 |
const _CharT __fill = __os.fill(); |
| 2151 |
const std::streamsize __precision = __os.precision(); |
| 2152 |
const _CharT __space = __os.widen(' '); |
| 2153 |
__os.flags(__ios_base::scientific | __ios_base::left); |
| 2154 |
__os.fill(__space); |
| 2155 |
__os.precision(std::numeric_limits<_RealType>::max_digits10); |
| 2156 |
|
| 2157 |
__os << __x.a() << __space << __x.b(); |
| 2158 |
|
| 2159 |
__os.flags(__flags); |
| 2160 |
__os.fill(__fill); |
| 2161 |
__os.precision(__precision); |
| 2162 |
return __os; |
| 2163 |
} |
| 2164 |
|
| 2165 |
template<typename _RealType, typename _CharT, typename _Traits> |
| 2166 |
std::basic_istream<_CharT, _Traits>& |
| 2167 |
operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| 2168 |
cauchy_distribution<_RealType>& __x) |
| 2169 |
{ |
| 2170 |
using param_type = typename cauchy_distribution<_RealType>::param_type; |
| 2171 |
using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base; |
| 2172 |
|
| 2173 |
const typename __ios_base::fmtflags __flags = __is.flags(); |
| 2174 |
__is.flags(__ios_base::dec | __ios_base::skipws); |
| 2175 |
|
| 2176 |
_RealType __a, __b; |
| 2177 |
if (__is >> __a >> __b) |
| 2178 |
__x.param(param_type(__a, __b)); |
| 2179 |
|
| 2180 |
__is.flags(__flags); |
| 2181 |
return __is; |
| 2182 |
} |
| 2183 |
|
| 2184 |
|
| 2185 |
template<typename _RealType> |
| 2186 |
template<typename _ForwardIterator, |
| 2187 |
typename _UniformRandomNumberGenerator> |
| 2188 |
void |
| 2189 |
std::fisher_f_distribution<_RealType>:: |
| 2190 |
__generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| 2191 |
_UniformRandomNumberGenerator& __urng) |
| 2192 |
{ |
| 2193 |
__glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) |
| 2194 |
while (__f != __t) |
| 2195 |
*__f++ = ((_M_gd_x(__urng) * n()) / (_M_gd_y(__urng) * m())); |
| 2196 |
} |
| 2197 |
|
| 2198 |
template<typename _RealType> |
| 2199 |
template<typename _ForwardIterator, |
| 2200 |
typename _UniformRandomNumberGenerator> |
| 2201 |
void |
| 2202 |
std::fisher_f_distribution<_RealType>:: |
| 2203 |
__generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| 2204 |
_UniformRandomNumberGenerator& __urng, |
| 2205 |
const param_type& __p) |
| 2206 |
{ |
| 2207 |
__glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) |
| 2208 |
typedef typename std::gamma_distribution<result_type>::param_type |
| 2209 |
param_type; |
| 2210 |
param_type __p1(__p.m() / 2); |
| 2211 |
param_type __p2(__p.n() / 2); |
| 2212 |
while (__f != __t) |
| 2213 |
*__f++ = ((_M_gd_x(__urng, __p1) * n()) |
| 2214 |
/ (_M_gd_y(__urng, __p2) * m())); |
| 2215 |
} |
| 2216 |
|
| 2217 |
template<typename _RealType, typename _CharT, typename _Traits> |
| 2218 |
std::basic_ostream<_CharT, _Traits>& |
| 2219 |
operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| 2220 |
const fisher_f_distribution<_RealType>& __x) |
| 2221 |
{ |
| 2222 |
using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base; |
| 2223 |
|
| 2224 |
const typename __ios_base::fmtflags __flags = __os.flags(); |
| 2225 |
const _CharT __fill = __os.fill(); |
| 2226 |
const std::streamsize __precision = __os.precision(); |
| 2227 |
const _CharT __space = __os.widen(' '); |
| 2228 |
__os.flags(__ios_base::scientific | __ios_base::left); |
| 2229 |
__os.fill(__space); |
| 2230 |
__os.precision(std::numeric_limits<_RealType>::max_digits10); |
| 2231 |
|
| 2232 |
__os << __x.m() << __space << __x.n() |
| 2233 |
<< __space << __x._M_gd_x << __space << __x._M_gd_y; |
| 2234 |
|
| 2235 |
__os.flags(__flags); |
| 2236 |
__os.fill(__fill); |
| 2237 |
__os.precision(__precision); |
| 2238 |
return __os; |
| 2239 |
} |
| 2240 |
|
| 2241 |
template<typename _RealType, typename _CharT, typename _Traits> |
| 2242 |
std::basic_istream<_CharT, _Traits>& |
| 2243 |
operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| 2244 |
fisher_f_distribution<_RealType>& __x) |
| 2245 |
{ |
| 2246 |
using param_type |
| 2247 |
= typename fisher_f_distribution<_RealType>::param_type; |
| 2248 |
using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base; |
| 2249 |
|
| 2250 |
const typename __ios_base::fmtflags __flags = __is.flags(); |
| 2251 |
__is.flags(__ios_base::dec | __ios_base::skipws); |
| 2252 |
|
| 2253 |
_RealType __m, __n; |
| 2254 |
if (__is >> __m >> __n >> __x._M_gd_x >> __x._M_gd_y) |
| 2255 |
__x.param(param_type(__m, __n)); |
| 2256 |
|
| 2257 |
__is.flags(__flags); |
| 2258 |
return __is; |
| 2259 |
} |
| 2260 |
|
| 2261 |
|
| 2262 |
template<typename _RealType> |
| 2263 |
template<typename _ForwardIterator, |
| 2264 |
typename _UniformRandomNumberGenerator> |
| 2265 |
void |
| 2266 |
std::student_t_distribution<_RealType>:: |
| 2267 |
__generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| 2268 |
_UniformRandomNumberGenerator& __urng) |
| 2269 |
{ |
| 2270 |
__glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) |
| 2271 |
while (__f != __t) |
| 2272 |
*__f++ = _M_nd(__urng) * std::sqrt(n() / _M_gd(__urng)); |
| 2273 |
} |
| 2274 |
|
| 2275 |
template<typename _RealType> |
| 2276 |
template<typename _ForwardIterator, |
| 2277 |
typename _UniformRandomNumberGenerator> |
| 2278 |
void |
| 2279 |
std::student_t_distribution<_RealType>:: |
| 2280 |
__generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| 2281 |
_UniformRandomNumberGenerator& __urng, |
| 2282 |
const param_type& __p) |
| 2283 |
{ |
| 2284 |
__glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) |
| 2285 |
typename std::gamma_distribution<result_type>::param_type |
| 2286 |
__p2(__p.n() / 2, 2); |
| 2287 |
while (__f != __t) |
| 2288 |
*__f++ = _M_nd(__urng) * std::sqrt(__p.n() / _M_gd(__urng, __p2)); |
| 2289 |
} |
| 2290 |
|
| 2291 |
template<typename _RealType, typename _CharT, typename _Traits> |
| 2292 |
std::basic_ostream<_CharT, _Traits>& |
| 2293 |
operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| 2294 |
const student_t_distribution<_RealType>& __x) |
| 2295 |
{ |
| 2296 |
using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base; |
| 2297 |
|
| 2298 |
const typename __ios_base::fmtflags __flags = __os.flags(); |
| 2299 |
const _CharT __fill = __os.fill(); |
| 2300 |
const std::streamsize __precision = __os.precision(); |
| 2301 |
const _CharT __space = __os.widen(' '); |
| 2302 |
__os.flags(__ios_base::scientific | __ios_base::left); |
| 2303 |
__os.fill(__space); |
| 2304 |
__os.precision(std::numeric_limits<_RealType>::max_digits10); |
| 2305 |
|
| 2306 |
__os << __x.n() << __space << __x._M_nd << __space << __x._M_gd; |
| 2307 |
|
| 2308 |
__os.flags(__flags); |
| 2309 |
__os.fill(__fill); |
| 2310 |
__os.precision(__precision); |
| 2311 |
return __os; |
| 2312 |
} |
| 2313 |
|
| 2314 |
template<typename _RealType, typename _CharT, typename _Traits> |
| 2315 |
std::basic_istream<_CharT, _Traits>& |
| 2316 |
operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| 2317 |
student_t_distribution<_RealType>& __x) |
| 2318 |
{ |
| 2319 |
using param_type |
| 2320 |
= typename student_t_distribution<_RealType>::param_type; |
| 2321 |
using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base; |
| 2322 |
|
| 2323 |
const typename __ios_base::fmtflags __flags = __is.flags(); |
| 2324 |
__is.flags(__ios_base::dec | __ios_base::skipws); |
| 2325 |
|
| 2326 |
_RealType __n; |
| 2327 |
if (__is >> __n >> __x._M_nd >> __x._M_gd) |
| 2328 |
__x.param(param_type(__n)); |
| 2329 |
|
| 2330 |
__is.flags(__flags); |
| 2331 |
return __is; |
| 2332 |
} |
| 2333 |
|
| 2334 |
|
| 2335 |
template<typename _RealType> |
| 2336 |
void |
| 2337 |
gamma_distribution<_RealType>::param_type:: |
| 2338 |
_M_initialize() |
| 2339 |
{ |
| 2340 |
_M_malpha = _M_alpha < 1.0 ? _M_alpha + _RealType(1.0) : _M_alpha; |
| 2341 |
|
| 2342 |
const _RealType __a1 = _M_malpha - _RealType(1.0) / _RealType(3.0); |
| 2343 |
_M_a2 = _RealType(1.0) / std::sqrt(_RealType(9.0) * __a1); |
| 2344 |
} |
| 2345 |
|
| 2346 |
/** |
| 2347 |
* Marsaglia, G. and Tsang, W. W. |
| 2348 |
* "A Simple Method for Generating Gamma Variables" |
| 2349 |
* ACM Transactions on Mathematical Software, 26, 3, 363-372, 2000. |
| 2350 |
*/ |
| 2351 |
template<typename _RealType> |
| 2352 |
template<typename _UniformRandomNumberGenerator> |
| 2353 |
typename gamma_distribution<_RealType>::result_type |
| 2354 |
gamma_distribution<_RealType>:: |
| 2355 |
operator()(_UniformRandomNumberGenerator& __urng, |
| 2356 |
const param_type& __param) |
| 2357 |
{ |
| 2358 |
__detail::_Adaptor<_UniformRandomNumberGenerator, result_type> |
| 2359 |
__aurng(__urng); |
| 2360 |
|
| 2361 |
result_type __u, __v, __n; |
| 2362 |
const result_type __a1 = (__param._M_malpha |
| 2363 |
- _RealType(1.0) / _RealType(3.0)); |
| 2364 |
|
| 2365 |
do |
| 2366 |
{ |
| 2367 |
do |
| 2368 |
{ |
| 2369 |
__n = _M_nd(__urng); |
| 2370 |
__v = result_type(1.0) + __param._M_a2 * __n; |
| 2371 |
} |
| 2372 |
while (__v <= 0.0); |
| 2373 |
|
| 2374 |
__v = __v * __v * __v; |
| 2375 |
__u = __aurng(); |
| 2376 |
} |
| 2377 |
while (__u > result_type(1.0) - 0.0331 * __n * __n * __n * __n |
| 2378 |
&& (std::log(__u) > (0.5 * __n * __n + __a1 |
| 2379 |
* (1.0 - __v + std::log(__v))))); |
| 2380 |
|
| 2381 |
if (__param.alpha() == __param._M_malpha) |
| 2382 |
return __a1 * __v * __param.beta(); |
| 2383 |
else |
| 2384 |
{ |
| 2385 |
do |
| 2386 |
__u = __aurng(); |
| 2387 |
while (__u == 0.0); |
| 2388 |
|
| 2389 |
return (std::pow(__u, result_type(1.0) / __param.alpha()) |
| 2390 |
* __a1 * __v * __param.beta()); |
| 2391 |
} |
| 2392 |
} |
| 2393 |
|
| 2394 |
template<typename _RealType> |
| 2395 |
template<typename _ForwardIterator, |
| 2396 |
typename _UniformRandomNumberGenerator> |
| 2397 |
void |
| 2398 |
gamma_distribution<_RealType>:: |
| 2399 |
__generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| 2400 |
_UniformRandomNumberGenerator& __urng, |
| 2401 |
const param_type& __param) |
| 2402 |
{ |
| 2403 |
__glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) |
| 2404 |
__detail::_Adaptor<_UniformRandomNumberGenerator, result_type> |
| 2405 |
__aurng(__urng); |
| 2406 |
|
| 2407 |
result_type __u, __v, __n; |
| 2408 |
const result_type __a1 = (__param._M_malpha |
| 2409 |
- _RealType(1.0) / _RealType(3.0)); |
| 2410 |
|
| 2411 |
if (__param.alpha() == __param._M_malpha) |
| 2412 |
while (__f != __t) |
| 2413 |
{ |
| 2414 |
do |
| 2415 |
{ |
| 2416 |
do |
| 2417 |
{ |
| 2418 |
__n = _M_nd(__urng); |
| 2419 |
__v = result_type(1.0) + __param._M_a2 * __n; |
| 2420 |
} |
| 2421 |
while (__v <= 0.0); |
| 2422 |
|
| 2423 |
__v = __v * __v * __v; |
| 2424 |
__u = __aurng(); |
| 2425 |
} |
| 2426 |
while (__u > result_type(1.0) - 0.0331 * __n * __n * __n * __n |
| 2427 |
&& (std::log(__u) > (0.5 * __n * __n + __a1 |
| 2428 |
* (1.0 - __v + std::log(__v))))); |
| 2429 |
|
| 2430 |
*__f++ = __a1 * __v * __param.beta(); |
| 2431 |
} |
| 2432 |
else |
| 2433 |
while (__f != __t) |
| 2434 |
{ |
| 2435 |
do |
| 2436 |
{ |
| 2437 |
do |
| 2438 |
{ |
| 2439 |
__n = _M_nd(__urng); |
| 2440 |
__v = result_type(1.0) + __param._M_a2 * __n; |
| 2441 |
} |
| 2442 |
while (__v <= 0.0); |
| 2443 |
|
| 2444 |
__v = __v * __v * __v; |
| 2445 |
__u = __aurng(); |
| 2446 |
} |
| 2447 |
while (__u > result_type(1.0) - 0.0331 * __n * __n * __n * __n |
| 2448 |
&& (std::log(__u) > (0.5 * __n * __n + __a1 |
| 2449 |
* (1.0 - __v + std::log(__v))))); |
| 2450 |
|
| 2451 |
do |
| 2452 |
__u = __aurng(); |
| 2453 |
while (__u == 0.0); |
| 2454 |
|
| 2455 |
*__f++ = (std::pow(__u, result_type(1.0) / __param.alpha()) |
| 2456 |
* __a1 * __v * __param.beta()); |
| 2457 |
} |
| 2458 |
} |
| 2459 |
|
| 2460 |
template<typename _RealType, typename _CharT, typename _Traits> |
| 2461 |
std::basic_ostream<_CharT, _Traits>& |
| 2462 |
operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| 2463 |
const gamma_distribution<_RealType>& __x) |
| 2464 |
{ |
| 2465 |
using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base; |
| 2466 |
|
| 2467 |
const typename __ios_base::fmtflags __flags = __os.flags(); |
| 2468 |
const _CharT __fill = __os.fill(); |
| 2469 |
const std::streamsize __precision = __os.precision(); |
| 2470 |
const _CharT __space = __os.widen(' '); |
| 2471 |
__os.flags(__ios_base::scientific | __ios_base::left); |
| 2472 |
__os.fill(__space); |
| 2473 |
__os.precision(std::numeric_limits<_RealType>::max_digits10); |
| 2474 |
|
| 2475 |
__os << __x.alpha() << __space << __x.beta() |
| 2476 |
<< __space << __x._M_nd; |
| 2477 |
|
| 2478 |
__os.flags(__flags); |
| 2479 |
__os.fill(__fill); |
| 2480 |
__os.precision(__precision); |
| 2481 |
return __os; |
| 2482 |
} |
| 2483 |
|
| 2484 |
template<typename _RealType, typename _CharT, typename _Traits> |
| 2485 |
std::basic_istream<_CharT, _Traits>& |
| 2486 |
operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| 2487 |
gamma_distribution<_RealType>& __x) |
| 2488 |
{ |
| 2489 |
using param_type = typename gamma_distribution<_RealType>::param_type; |
| 2490 |
using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base; |
| 2491 |
|
| 2492 |
const typename __ios_base::fmtflags __flags = __is.flags(); |
| 2493 |
__is.flags(__ios_base::dec | __ios_base::skipws); |
| 2494 |
|
| 2495 |
_RealType __alpha_val, __beta_val; |
| 2496 |
if (__is >> __alpha_val >> __beta_val >> __x._M_nd) |
| 2497 |
__x.param(param_type(__alpha_val, __beta_val)); |
| 2498 |
|
| 2499 |
__is.flags(__flags); |
| 2500 |
return __is; |
| 2501 |
} |
| 2502 |
|
| 2503 |
|
| 2504 |
template<typename _RealType> |
| 2505 |
template<typename _UniformRandomNumberGenerator> |
| 2506 |
typename weibull_distribution<_RealType>::result_type |
| 2507 |
weibull_distribution<_RealType>:: |
| 2508 |
operator()(_UniformRandomNumberGenerator& __urng, |
| 2509 |
const param_type& __p) |
| 2510 |
{ |
| 2511 |
__detail::_Adaptor<_UniformRandomNumberGenerator, result_type> |
| 2512 |
__aurng(__urng); |
| 2513 |
return __p.b() * std::pow(-std::log(result_type(1) - __aurng()), |
| 2514 |
result_type(1) / __p.a()); |
| 2515 |
} |
| 2516 |
|
| 2517 |
template<typename _RealType> |
| 2518 |
template<typename _ForwardIterator, |
| 2519 |
typename _UniformRandomNumberGenerator> |
| 2520 |
void |
| 2521 |
weibull_distribution<_RealType>:: |
| 2522 |
__generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| 2523 |
_UniformRandomNumberGenerator& __urng, |
| 2524 |
const param_type& __p) |
| 2525 |
{ |
| 2526 |
__glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) |
| 2527 |
__detail::_Adaptor<_UniformRandomNumberGenerator, result_type> |
| 2528 |
__aurng(__urng); |
| 2529 |
auto __inv_a = result_type(1) / __p.a(); |
| 2530 |
|
| 2531 |
while (__f != __t) |
| 2532 |
*__f++ = __p.b() * std::pow(-std::log(result_type(1) - __aurng()), |
| 2533 |
__inv_a); |
| 2534 |
} |
| 2535 |
|
| 2536 |
template<typename _RealType, typename _CharT, typename _Traits> |
| 2537 |
std::basic_ostream<_CharT, _Traits>& |
| 2538 |
operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| 2539 |
const weibull_distribution<_RealType>& __x) |
| 2540 |
{ |
| 2541 |
using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base; |
| 2542 |
|
| 2543 |
const typename __ios_base::fmtflags __flags = __os.flags(); |
| 2544 |
const _CharT __fill = __os.fill(); |
| 2545 |
const std::streamsize __precision = __os.precision(); |
| 2546 |
const _CharT __space = __os.widen(' '); |
| 2547 |
__os.flags(__ios_base::scientific | __ios_base::left); |
| 2548 |
__os.fill(__space); |
| 2549 |
__os.precision(std::numeric_limits<_RealType>::max_digits10); |
| 2550 |
|
| 2551 |
__os << __x.a() << __space << __x.b(); |
| 2552 |
|
| 2553 |
__os.flags(__flags); |
| 2554 |
__os.fill(__fill); |
| 2555 |
__os.precision(__precision); |
| 2556 |
return __os; |
| 2557 |
} |
| 2558 |
|
| 2559 |
template<typename _RealType, typename _CharT, typename _Traits> |
| 2560 |
std::basic_istream<_CharT, _Traits>& |
| 2561 |
operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| 2562 |
weibull_distribution<_RealType>& __x) |
| 2563 |
{ |
| 2564 |
using param_type = typename weibull_distribution<_RealType>::param_type; |
| 2565 |
using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base; |
| 2566 |
|
| 2567 |
const typename __ios_base::fmtflags __flags = __is.flags(); |
| 2568 |
__is.flags(__ios_base::dec | __ios_base::skipws); |
| 2569 |
|
| 2570 |
_RealType __a, __b; |
| 2571 |
if (__is >> __a >> __b) |
| 2572 |
__x.param(param_type(__a, __b)); |
| 2573 |
|
| 2574 |
__is.flags(__flags); |
| 2575 |
return __is; |
| 2576 |
} |
| 2577 |
|
| 2578 |
|
| 2579 |
template<typename _RealType> |
| 2580 |
template<typename _UniformRandomNumberGenerator> |
| 2581 |
typename extreme_value_distribution<_RealType>::result_type |
| 2582 |
extreme_value_distribution<_RealType>:: |
| 2583 |
operator()(_UniformRandomNumberGenerator& __urng, |
| 2584 |
const param_type& __p) |
| 2585 |
{ |
| 2586 |
__detail::_Adaptor<_UniformRandomNumberGenerator, result_type> |
| 2587 |
__aurng(__urng); |
| 2588 |
return __p.a() - __p.b() * std::log(-std::log(result_type(1) |
| 2589 |
- __aurng())); |
| 2590 |
} |
| 2591 |
|
| 2592 |
template<typename _RealType> |
| 2593 |
template<typename _ForwardIterator, |
| 2594 |
typename _UniformRandomNumberGenerator> |
| 2595 |
void |
| 2596 |
extreme_value_distribution<_RealType>:: |
| 2597 |
__generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| 2598 |
_UniformRandomNumberGenerator& __urng, |
| 2599 |
const param_type& __p) |
| 2600 |
{ |
| 2601 |
__glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) |
| 2602 |
__detail::_Adaptor<_UniformRandomNumberGenerator, result_type> |
| 2603 |
__aurng(__urng); |
| 2604 |
|
| 2605 |
while (__f != __t) |
| 2606 |
*__f++ = __p.a() - __p.b() * std::log(-std::log(result_type(1) |
| 2607 |
- __aurng())); |
| 2608 |
} |
| 2609 |
|
| 2610 |
template<typename _RealType, typename _CharT, typename _Traits> |
| 2611 |
std::basic_ostream<_CharT, _Traits>& |
| 2612 |
operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| 2613 |
const extreme_value_distribution<_RealType>& __x) |
| 2614 |
{ |
| 2615 |
using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base; |
| 2616 |
|
| 2617 |
const typename __ios_base::fmtflags __flags = __os.flags(); |
| 2618 |
const _CharT __fill = __os.fill(); |
| 2619 |
const std::streamsize __precision = __os.precision(); |
| 2620 |
const _CharT __space = __os.widen(' '); |
| 2621 |
__os.flags(__ios_base::scientific | __ios_base::left); |
| 2622 |
__os.fill(__space); |
| 2623 |
__os.precision(std::numeric_limits<_RealType>::max_digits10); |
| 2624 |
|
| 2625 |
__os << __x.a() << __space << __x.b(); |
| 2626 |
|
| 2627 |
__os.flags(__flags); |
| 2628 |
__os.fill(__fill); |
| 2629 |
__os.precision(__precision); |
| 2630 |
return __os; |
| 2631 |
} |
| 2632 |
|
| 2633 |
template<typename _RealType, typename _CharT, typename _Traits> |
| 2634 |
std::basic_istream<_CharT, _Traits>& |
| 2635 |
operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| 2636 |
extreme_value_distribution<_RealType>& __x) |
| 2637 |
{ |
| 2638 |
using param_type |
| 2639 |
= typename extreme_value_distribution<_RealType>::param_type; |
| 2640 |
using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base; |
| 2641 |
|
| 2642 |
const typename __ios_base::fmtflags __flags = __is.flags(); |
| 2643 |
__is.flags(__ios_base::dec | __ios_base::skipws); |
| 2644 |
|
| 2645 |
_RealType __a, __b; |
| 2646 |
if (__is >> __a >> __b) |
| 2647 |
__x.param(param_type(__a, __b)); |
| 2648 |
|
| 2649 |
__is.flags(__flags); |
| 2650 |
return __is; |
| 2651 |
} |
| 2652 |
|
| 2653 |
|
| 2654 |
template<typename _IntType> |
| 2655 |
void |
| 2656 |
discrete_distribution<_IntType>::param_type:: |
| 2657 |
_M_initialize() |
| 2658 |
{ |
| 2659 |
if (_M_prob.size() < 2) |
| 2660 |
{ |
| 2661 |
_M_prob.clear(); |
| 2662 |
return; |
| 2663 |
} |
| 2664 |
|
| 2665 |
const double __sum = std::accumulate(_M_prob.begin(), |
| 2666 |
_M_prob.end(), 0.0); |
| 2667 |
__glibcxx_assert(__sum > 0); |
| 2668 |
// Now normalize the probabilites. |
| 2669 |
__detail::__normalize(_M_prob.begin(), _M_prob.end(), _M_prob.begin(), |
| 2670 |
__sum); |
| 2671 |
// Accumulate partial sums. |
| 2672 |
_M_cp.reserve(_M_prob.size()); |
| 2673 |
std::partial_sum(_M_prob.begin(), _M_prob.end(), |
| 2674 |
std::back_inserter(_M_cp)); |
| 2675 |
// Make sure the last cumulative probability is one. |
| 2676 |
_M_cp[_M_cp.size() - 1] = 1.0; |
| 2677 |
} |
| 2678 |
|
| 2679 |
template<typename _IntType> |
| 2680 |
template<typename _Func> |
| 2681 |
discrete_distribution<_IntType>::param_type:: |
| 2682 |
param_type(size_t __nw, double __xmin, double __xmax, _Func __fw) |
| 2683 |
: _M_prob(), _M_cp() |
| 2684 |
{ |
| 2685 |
const size_t __n = __nw == 0 ? 1 : __nw; |
| 2686 |
const double __delta = (__xmax - __xmin) / __n; |
| 2687 |
|
| 2688 |
_M_prob.reserve(__n); |
| 2689 |
for (size_t __k = 0; __k < __nw; ++__k) |
| 2690 |
_M_prob.push_back(__fw(__xmin + __k * __delta + 0.5 * __delta)); |
| 2691 |
|
| 2692 |
_M_initialize(); |
| 2693 |
} |
| 2694 |
|
| 2695 |
template<typename _IntType> |
| 2696 |
template<typename _UniformRandomNumberGenerator> |
| 2697 |
typename discrete_distribution<_IntType>::result_type |
| 2698 |
discrete_distribution<_IntType>:: |
| 2699 |
operator()(_UniformRandomNumberGenerator& __urng, |
| 2700 |
const param_type& __param) |
| 2701 |
{ |
| 2702 |
if (__param._M_cp.empty()) |
| 2703 |
return result_type(0); |
| 2704 |
|
| 2705 |
__detail::_Adaptor<_UniformRandomNumberGenerator, double> |
| 2706 |
__aurng(__urng); |
| 2707 |
|
| 2708 |
const double __p = __aurng(); |
| 2709 |
auto __pos = std::lower_bound(__param._M_cp.begin(), |
| 2710 |
__param._M_cp.end(), __p); |
| 2711 |
|
| 2712 |
return __pos - __param._M_cp.begin(); |
| 2713 |
} |
| 2714 |
|
| 2715 |
template<typename _IntType> |
| 2716 |
template<typename _ForwardIterator, |
| 2717 |
typename _UniformRandomNumberGenerator> |
| 2718 |
void |
| 2719 |
discrete_distribution<_IntType>:: |
| 2720 |
__generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| 2721 |
_UniformRandomNumberGenerator& __urng, |
| 2722 |
const param_type& __param) |
| 2723 |
{ |
| 2724 |
__glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) |
| 2725 |
|
| 2726 |
if (__param._M_cp.empty()) |
| 2727 |
{ |
| 2728 |
while (__f != __t) |
| 2729 |
*__f++ = result_type(0); |
| 2730 |
return; |
| 2731 |
} |
| 2732 |
|
| 2733 |
__detail::_Adaptor<_UniformRandomNumberGenerator, double> |
| 2734 |
__aurng(__urng); |
| 2735 |
|
| 2736 |
while (__f != __t) |
| 2737 |
{ |
| 2738 |
const double __p = __aurng(); |
| 2739 |
auto __pos = std::lower_bound(__param._M_cp.begin(), |
| 2740 |
__param._M_cp.end(), __p); |
| 2741 |
|
| 2742 |
*__f++ = __pos - __param._M_cp.begin(); |
| 2743 |
} |
| 2744 |
} |
| 2745 |
|
| 2746 |
template<typename _IntType, typename _CharT, typename _Traits> |
| 2747 |
std::basic_ostream<_CharT, _Traits>& |
| 2748 |
operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| 2749 |
const discrete_distribution<_IntType>& __x) |
| 2750 |
{ |
| 2751 |
using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base; |
| 2752 |
|
| 2753 |
const typename __ios_base::fmtflags __flags = __os.flags(); |
| 2754 |
const _CharT __fill = __os.fill(); |
| 2755 |
const std::streamsize __precision = __os.precision(); |
| 2756 |
const _CharT __space = __os.widen(' '); |
| 2757 |
__os.flags(__ios_base::scientific | __ios_base::left); |
| 2758 |
__os.fill(__space); |
| 2759 |
__os.precision(std::numeric_limits<double>::max_digits10); |
| 2760 |
|
| 2761 |
std::vector<double> __prob = __x.probabilities(); |
| 2762 |
__os << __prob.size(); |
| 2763 |
for (auto __dit = __prob.begin(); __dit != __prob.end(); ++__dit) |
| 2764 |
__os << __space << *__dit; |
| 2765 |
|
| 2766 |
__os.flags(__flags); |
| 2767 |
__os.fill(__fill); |
| 2768 |
__os.precision(__precision); |
| 2769 |
return __os; |
| 2770 |
} |
| 2771 |
|
| 2772 |
namespace __detail |
| 2773 |
{ |
| 2774 |
template<typename _ValT, typename _CharT, typename _Traits> |
| 2775 |
basic_istream<_CharT, _Traits>& |
| 2776 |
__extract_params(basic_istream<_CharT, _Traits>& __is, |
| 2777 |
vector<_ValT>& __vals, size_t __n) |
| 2778 |
{ |
| 2779 |
__vals.reserve(__n); |
| 2780 |
while (__n--) |
| 2781 |
{ |
| 2782 |
_ValT __val; |
| 2783 |
if (__is >> __val) |
| 2784 |
__vals.push_back(__val); |
| 2785 |
else |
| 2786 |
break; |
| 2787 |
} |
| 2788 |
return __is; |
| 2789 |
} |
| 2790 |
} // namespace __detail |
| 2791 |
|
| 2792 |
template<typename _IntType, typename _CharT, typename _Traits> |
| 2793 |
std::basic_istream<_CharT, _Traits>& |
| 2794 |
operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| 2795 |
discrete_distribution<_IntType>& __x) |
| 2796 |
{ |
| 2797 |
using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base; |
| 2798 |
|
| 2799 |
const typename __ios_base::fmtflags __flags = __is.flags(); |
| 2800 |
__is.flags(__ios_base::dec | __ios_base::skipws); |
| 2801 |
|
| 2802 |
size_t __n; |
| 2803 |
if (__is >> __n) |
| 2804 |
{ |
| 2805 |
std::vector<double> __prob_vec; |
| 2806 |
if (__detail::__extract_params(__is, __prob_vec, __n)) |
| 2807 |
__x.param({__prob_vec.begin(), __prob_vec.end()}); |
| 2808 |
} |
| 2809 |
|
| 2810 |
__is.flags(__flags); |
| 2811 |
return __is; |
| 2812 |
} |
| 2813 |
|
| 2814 |
|
| 2815 |
template<typename _RealType> |
| 2816 |
void |
| 2817 |
piecewise_constant_distribution<_RealType>::param_type:: |
| 2818 |
_M_initialize() |
| 2819 |
{ |
| 2820 |
if (_M_int.size() < 2 |
| 2821 |
|| (_M_int.size() == 2 |
| 2822 |
&& _M_int[0] == _RealType(0) |
| 2823 |
&& _M_int[1] == _RealType(1))) |
| 2824 |
{ |
| 2825 |
_M_int.clear(); |
| 2826 |
_M_den.clear(); |
| 2827 |
return; |
| 2828 |
} |
| 2829 |
|
| 2830 |
const double __sum = std::accumulate(_M_den.begin(), |
| 2831 |
_M_den.end(), 0.0); |
| 2832 |
__glibcxx_assert(__sum > 0); |
| 2833 |
|
| 2834 |
__detail::__normalize(_M_den.begin(), _M_den.end(), _M_den.begin(), |
| 2835 |
__sum); |
| 2836 |
|
| 2837 |
_M_cp.reserve(_M_den.size()); |
| 2838 |
std::partial_sum(_M_den.begin(), _M_den.end(), |
| 2839 |
std::back_inserter(_M_cp)); |
| 2840 |
|
| 2841 |
// Make sure the last cumulative probability is one. |
| 2842 |
_M_cp[_M_cp.size() - 1] = 1.0; |
| 2843 |
|
| 2844 |
for (size_t __k = 0; __k < _M_den.size(); ++__k) |
| 2845 |
_M_den[__k] /= _M_int[__k + 1] - _M_int[__k]; |
| 2846 |
} |
| 2847 |
|
| 2848 |
template<typename _RealType> |
| 2849 |
template<typename _InputIteratorB, typename _InputIteratorW> |
| 2850 |
piecewise_constant_distribution<_RealType>::param_type:: |
| 2851 |
param_type(_InputIteratorB __bbegin, |
| 2852 |
_InputIteratorB __bend, |
| 2853 |
_InputIteratorW __wbegin) |
| 2854 |
: _M_int(), _M_den(), _M_cp() |
| 2855 |
{ |
| 2856 |
if (__bbegin != __bend) |
| 2857 |
{ |
| 2858 |
for (;;) |
| 2859 |
{ |
| 2860 |
_M_int.push_back(*__bbegin); |
| 2861 |
++__bbegin; |
| 2862 |
if (__bbegin == __bend) |
| 2863 |
break; |
| 2864 |
|
| 2865 |
_M_den.push_back(*__wbegin); |
| 2866 |
++__wbegin; |
| 2867 |
} |
| 2868 |
} |
| 2869 |
|
| 2870 |
_M_initialize(); |
| 2871 |
} |
| 2872 |
|
| 2873 |
template<typename _RealType> |
| 2874 |
template<typename _Func> |
| 2875 |
piecewise_constant_distribution<_RealType>::param_type:: |
| 2876 |
param_type(initializer_list<_RealType> __bl, _Func __fw) |
| 2877 |
: _M_int(), _M_den(), _M_cp() |
| 2878 |
{ |
| 2879 |
_M_int.reserve(__bl.size()); |
| 2880 |
for (auto __biter = __bl.begin(); __biter != __bl.end(); ++__biter) |
| 2881 |
_M_int.push_back(*__biter); |
| 2882 |
|
| 2883 |
_M_den.reserve(_M_int.size() - 1); |
| 2884 |
for (size_t __k = 0; __k < _M_int.size() - 1; ++__k) |
| 2885 |
_M_den.push_back(__fw(0.5 * (_M_int[__k + 1] + _M_int[__k]))); |
| 2886 |
|
| 2887 |
_M_initialize(); |
| 2888 |
} |
| 2889 |
|
| 2890 |
template<typename _RealType> |
| 2891 |
template<typename _Func> |
| 2892 |
piecewise_constant_distribution<_RealType>::param_type:: |
| 2893 |
param_type(size_t __nw, _RealType __xmin, _RealType __xmax, _Func __fw) |
| 2894 |
: _M_int(), _M_den(), _M_cp() |
| 2895 |
{ |
| 2896 |
const size_t __n = __nw == 0 ? 1 : __nw; |
| 2897 |
const _RealType __delta = (__xmax - __xmin) / __n; |
| 2898 |
|
| 2899 |
_M_int.reserve(__n + 1); |
| 2900 |
for (size_t __k = 0; __k <= __nw; ++__k) |
| 2901 |
_M_int.push_back(__xmin + __k * __delta); |
| 2902 |
|
| 2903 |
_M_den.reserve(__n); |
| 2904 |
for (size_t __k = 0; __k < __nw; ++__k) |
| 2905 |
_M_den.push_back(__fw(_M_int[__k] + 0.5 * __delta)); |
| 2906 |
|
| 2907 |
_M_initialize(); |
| 2908 |
} |
| 2909 |
|
| 2910 |
template<typename _RealType> |
| 2911 |
template<typename _UniformRandomNumberGenerator> |
| 2912 |
typename piecewise_constant_distribution<_RealType>::result_type |
| 2913 |
piecewise_constant_distribution<_RealType>:: |
| 2914 |
operator()(_UniformRandomNumberGenerator& __urng, |
| 2915 |
const param_type& __param) |
| 2916 |
{ |
| 2917 |
__detail::_Adaptor<_UniformRandomNumberGenerator, double> |
| 2918 |
__aurng(__urng); |
| 2919 |
|
| 2920 |
const double __p = __aurng(); |
| 2921 |
if (__param._M_cp.empty()) |
| 2922 |
return __p; |
| 2923 |
|
| 2924 |
auto __pos = std::lower_bound(__param._M_cp.begin(), |
| 2925 |
__param._M_cp.end(), __p); |
| 2926 |
const size_t __i = __pos - __param._M_cp.begin(); |
| 2927 |
|
| 2928 |
const double __pref = __i > 0 ? __param._M_cp[__i - 1] : 0.0; |
| 2929 |
|
| 2930 |
return __param._M_int[__i] + (__p - __pref) / __param._M_den[__i]; |
| 2931 |
} |
| 2932 |
|
| 2933 |
template<typename _RealType> |
| 2934 |
template<typename _ForwardIterator, |
| 2935 |
typename _UniformRandomNumberGenerator> |
| 2936 |
void |
| 2937 |
piecewise_constant_distribution<_RealType>:: |
| 2938 |
__generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| 2939 |
_UniformRandomNumberGenerator& __urng, |
| 2940 |
const param_type& __param) |
| 2941 |
{ |
| 2942 |
__glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) |
| 2943 |
__detail::_Adaptor<_UniformRandomNumberGenerator, double> |
| 2944 |
__aurng(__urng); |
| 2945 |
|
| 2946 |
if (__param._M_cp.empty()) |
| 2947 |
{ |
| 2948 |
while (__f != __t) |
| 2949 |
*__f++ = __aurng(); |
| 2950 |
return; |
| 2951 |
} |
| 2952 |
|
| 2953 |
while (__f != __t) |
| 2954 |
{ |
| 2955 |
const double __p = __aurng(); |
| 2956 |
|
| 2957 |
auto __pos = std::lower_bound(__param._M_cp.begin(), |
| 2958 |
__param._M_cp.end(), __p); |
| 2959 |
const size_t __i = __pos - __param._M_cp.begin(); |
| 2960 |
|
| 2961 |
const double __pref = __i > 0 ? __param._M_cp[__i - 1] : 0.0; |
| 2962 |
|
| 2963 |
*__f++ = (__param._M_int[__i] |
| 2964 |
+ (__p - __pref) / __param._M_den[__i]); |
| 2965 |
} |
| 2966 |
} |
| 2967 |
|
| 2968 |
template<typename _RealType, typename _CharT, typename _Traits> |
| 2969 |
std::basic_ostream<_CharT, _Traits>& |
| 2970 |
operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| 2971 |
const piecewise_constant_distribution<_RealType>& __x) |
| 2972 |
{ |
| 2973 |
using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base; |
| 2974 |
|
| 2975 |
const typename __ios_base::fmtflags __flags = __os.flags(); |
| 2976 |
const _CharT __fill = __os.fill(); |
| 2977 |
const std::streamsize __precision = __os.precision(); |
| 2978 |
const _CharT __space = __os.widen(' '); |
| 2979 |
__os.flags(__ios_base::scientific | __ios_base::left); |
| 2980 |
__os.fill(__space); |
| 2981 |
__os.precision(std::numeric_limits<_RealType>::max_digits10); |
| 2982 |
|
| 2983 |
std::vector<_RealType> __int = __x.intervals(); |
| 2984 |
__os << __int.size() - 1; |
| 2985 |
|
| 2986 |
for (auto __xit = __int.begin(); __xit != __int.end(); ++__xit) |
| 2987 |
__os << __space << *__xit; |
| 2988 |
|
| 2989 |
std::vector<double> __den = __x.densities(); |
| 2990 |
for (auto __dit = __den.begin(); __dit != __den.end(); ++__dit) |
| 2991 |
__os << __space << *__dit; |
| 2992 |
|
| 2993 |
__os.flags(__flags); |
| 2994 |
__os.fill(__fill); |
| 2995 |
__os.precision(__precision); |
| 2996 |
return __os; |
| 2997 |
} |
| 2998 |
|
| 2999 |
template<typename _RealType, typename _CharT, typename _Traits> |
| 3000 |
std::basic_istream<_CharT, _Traits>& |
| 3001 |
operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| 3002 |
piecewise_constant_distribution<_RealType>& __x) |
| 3003 |
{ |
| 3004 |
using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base; |
| 3005 |
|
| 3006 |
const typename __ios_base::fmtflags __flags = __is.flags(); |
| 3007 |
__is.flags(__ios_base::dec | __ios_base::skipws); |
| 3008 |
|
| 3009 |
size_t __n; |
| 3010 |
if (__is >> __n) |
| 3011 |
{ |
| 3012 |
std::vector<_RealType> __int_vec; |
| 3013 |
if (__detail::__extract_params(__is, __int_vec, __n + 1)) |
| 3014 |
{ |
| 3015 |
std::vector<double> __den_vec; |
| 3016 |
if (__detail::__extract_params(__is, __den_vec, __n)) |
| 3017 |
{ |
| 3018 |
__x.param({ __int_vec.begin(), __int_vec.end(), |
| 3019 |
__den_vec.begin() }); |
| 3020 |
} |
| 3021 |
} |
| 3022 |
} |
| 3023 |
|
| 3024 |
__is.flags(__flags); |
| 3025 |
return __is; |
| 3026 |
} |
| 3027 |
|
| 3028 |
|
| 3029 |
template<typename _RealType> |
| 3030 |
void |
| 3031 |
piecewise_linear_distribution<_RealType>::param_type:: |
| 3032 |
_M_initialize() |
| 3033 |
{ |
| 3034 |
if (_M_int.size() < 2 |
| 3035 |
|| (_M_int.size() == 2 |
| 3036 |
&& _M_int[0] == _RealType(0) |
| 3037 |
&& _M_int[1] == _RealType(1) |
| 3038 |
&& _M_den[0] == _M_den[1])) |
| 3039 |
{ |
| 3040 |
_M_int.clear(); |
| 3041 |
_M_den.clear(); |
| 3042 |
return; |
| 3043 |
} |
| 3044 |
|
| 3045 |
double __sum = 0.0; |
| 3046 |
_M_cp.reserve(_M_int.size() - 1); |
| 3047 |
_M_m.reserve(_M_int.size() - 1); |
| 3048 |
for (size_t __k = 0; __k < _M_int.size() - 1; ++__k) |
| 3049 |
{ |
| 3050 |
const _RealType __delta = _M_int[__k + 1] - _M_int[__k]; |
| 3051 |
__sum += 0.5 * (_M_den[__k + 1] + _M_den[__k]) * __delta; |
| 3052 |
_M_cp.push_back(__sum); |
| 3053 |
_M_m.push_back((_M_den[__k + 1] - _M_den[__k]) / __delta); |
| 3054 |
} |
| 3055 |
__glibcxx_assert(__sum > 0); |
| 3056 |
|
| 3057 |
// Now normalize the densities... |
| 3058 |
__detail::__normalize(_M_den.begin(), _M_den.end(), _M_den.begin(), |
| 3059 |
__sum); |
| 3060 |
// ... and partial sums... |
| 3061 |
__detail::__normalize(_M_cp.begin(), _M_cp.end(), _M_cp.begin(), __sum); |
| 3062 |
// ... and slopes. |
| 3063 |
__detail::__normalize(_M_m.begin(), _M_m.end(), _M_m.begin(), __sum); |
| 3064 |
|
| 3065 |
// Make sure the last cumulative probablility is one. |
| 3066 |
_M_cp[_M_cp.size() - 1] = 1.0; |
| 3067 |
} |
| 3068 |
|
| 3069 |
template<typename _RealType> |
| 3070 |
template<typename _InputIteratorB, typename _InputIteratorW> |
| 3071 |
piecewise_linear_distribution<_RealType>::param_type:: |
| 3072 |
param_type(_InputIteratorB __bbegin, |
| 3073 |
_InputIteratorB __bend, |
| 3074 |
_InputIteratorW __wbegin) |
| 3075 |
: _M_int(), _M_den(), _M_cp(), _M_m() |
| 3076 |
{ |
| 3077 |
for (; __bbegin != __bend; ++__bbegin, ++__wbegin) |
| 3078 |
{ |
| 3079 |
_M_int.push_back(*__bbegin); |
| 3080 |
_M_den.push_back(*__wbegin); |
| 3081 |
} |
| 3082 |
|
| 3083 |
_M_initialize(); |
| 3084 |
} |
| 3085 |
|
| 3086 |
template<typename _RealType> |
| 3087 |
template<typename _Func> |
| 3088 |
piecewise_linear_distribution<_RealType>::param_type:: |
| 3089 |
param_type(initializer_list<_RealType> __bl, _Func __fw) |
| 3090 |
: _M_int(), _M_den(), _M_cp(), _M_m() |
| 3091 |
{ |
| 3092 |
_M_int.reserve(__bl.size()); |
| 3093 |
_M_den.reserve(__bl.size()); |
| 3094 |
for (auto __biter = __bl.begin(); __biter != __bl.end(); ++__biter) |
| 3095 |
{ |
| 3096 |
_M_int.push_back(*__biter); |
| 3097 |
_M_den.push_back(__fw(*__biter)); |
| 3098 |
} |
| 3099 |
|
| 3100 |
_M_initialize(); |
| 3101 |
} |
| 3102 |
|
| 3103 |
template<typename _RealType> |
| 3104 |
template<typename _Func> |
| 3105 |
piecewise_linear_distribution<_RealType>::param_type:: |
| 3106 |
param_type(size_t __nw, _RealType __xmin, _RealType __xmax, _Func __fw) |
| 3107 |
: _M_int(), _M_den(), _M_cp(), _M_m() |
| 3108 |
{ |
| 3109 |
const size_t __n = __nw == 0 ? 1 : __nw; |
| 3110 |
const _RealType __delta = (__xmax - __xmin) / __n; |
| 3111 |
|
| 3112 |
_M_int.reserve(__n + 1); |
| 3113 |
_M_den.reserve(__n + 1); |
| 3114 |
for (size_t __k = 0; __k <= __nw; ++__k) |
| 3115 |
{ |
| 3116 |
_M_int.push_back(__xmin + __k * __delta); |
| 3117 |
_M_den.push_back(__fw(_M_int[__k] + __delta)); |
| 3118 |
} |
| 3119 |
|
| 3120 |
_M_initialize(); |
| 3121 |
} |
| 3122 |
|
| 3123 |
template<typename _RealType> |
| 3124 |
template<typename _UniformRandomNumberGenerator> |
| 3125 |
typename piecewise_linear_distribution<_RealType>::result_type |
| 3126 |
piecewise_linear_distribution<_RealType>:: |
| 3127 |
operator()(_UniformRandomNumberGenerator& __urng, |
| 3128 |
const param_type& __param) |
| 3129 |
{ |
| 3130 |
__detail::_Adaptor<_UniformRandomNumberGenerator, double> |
| 3131 |
__aurng(__urng); |
| 3132 |
|
| 3133 |
const double __p = __aurng(); |
| 3134 |
if (__param._M_cp.empty()) |
| 3135 |
return __p; |
| 3136 |
|
| 3137 |
auto __pos = std::lower_bound(__param._M_cp.begin(), |
| 3138 |
__param._M_cp.end(), __p); |
| 3139 |
const size_t __i = __pos - __param._M_cp.begin(); |
| 3140 |
|
| 3141 |
const double __pref = __i > 0 ? __param._M_cp[__i - 1] : 0.0; |
| 3142 |
|
| 3143 |
const double __a = 0.5 * __param._M_m[__i]; |
| 3144 |
const double __b = __param._M_den[__i]; |
| 3145 |
const double __cm = __p - __pref; |
| 3146 |
|
| 3147 |
_RealType __x = __param._M_int[__i]; |
| 3148 |
if (__a == 0) |
| 3149 |
__x += __cm / __b; |
| 3150 |
else |
| 3151 |
{ |
| 3152 |
const double __d = __b * __b + 4.0 * __a * __cm; |
| 3153 |
__x += 0.5 * (std::sqrt(__d) - __b) / __a; |
| 3154 |
} |
| 3155 |
|
| 3156 |
return __x; |
| 3157 |
} |
| 3158 |
|
| 3159 |
template<typename _RealType> |
| 3160 |
template<typename _ForwardIterator, |
| 3161 |
typename _UniformRandomNumberGenerator> |
| 3162 |
void |
| 3163 |
piecewise_linear_distribution<_RealType>:: |
| 3164 |
__generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| 3165 |
_UniformRandomNumberGenerator& __urng, |
| 3166 |
const param_type& __param) |
| 3167 |
{ |
| 3168 |
__glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) |
| 3169 |
// We could duplicate everything from operator()... |
| 3170 |
while (__f != __t) |
| 3171 |
*__f++ = this->operator()(__urng, __param); |
| 3172 |
} |
| 3173 |
|
| 3174 |
template<typename _RealType, typename _CharT, typename _Traits> |
| 3175 |
std::basic_ostream<_CharT, _Traits>& |
| 3176 |
operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| 3177 |
const piecewise_linear_distribution<_RealType>& __x) |
| 3178 |
{ |
| 3179 |
using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base; |
| 3180 |
|
| 3181 |
const typename __ios_base::fmtflags __flags = __os.flags(); |
| 3182 |
const _CharT __fill = __os.fill(); |
| 3183 |
const std::streamsize __precision = __os.precision(); |
| 3184 |
const _CharT __space = __os.widen(' '); |
| 3185 |
__os.flags(__ios_base::scientific | __ios_base::left); |
| 3186 |
__os.fill(__space); |
| 3187 |
__os.precision(std::numeric_limits<_RealType>::max_digits10); |
| 3188 |
|
| 3189 |
std::vector<_RealType> __int = __x.intervals(); |
| 3190 |
__os << __int.size() - 1; |
| 3191 |
|
| 3192 |
for (auto __xit = __int.begin(); __xit != __int.end(); ++__xit) |
| 3193 |
__os << __space << *__xit; |
| 3194 |
|
| 3195 |
std::vector<double> __den = __x.densities(); |
| 3196 |
for (auto __dit = __den.begin(); __dit != __den.end(); ++__dit) |
| 3197 |
__os << __space << *__dit; |
| 3198 |
|
| 3199 |
__os.flags(__flags); |
| 3200 |
__os.fill(__fill); |
| 3201 |
__os.precision(__precision); |
| 3202 |
return __os; |
| 3203 |
} |
| 3204 |
|
| 3205 |
template<typename _RealType, typename _CharT, typename _Traits> |
| 3206 |
std::basic_istream<_CharT, _Traits>& |
| 3207 |
operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| 3208 |
piecewise_linear_distribution<_RealType>& __x) |
| 3209 |
{ |
| 3210 |
using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base; |
| 3211 |
|
| 3212 |
const typename __ios_base::fmtflags __flags = __is.flags(); |
| 3213 |
__is.flags(__ios_base::dec | __ios_base::skipws); |
| 3214 |
|
| 3215 |
size_t __n; |
| 3216 |
if (__is >> __n) |
| 3217 |
{ |
| 3218 |
vector<_RealType> __int_vec; |
| 3219 |
if (__detail::__extract_params(__is, __int_vec, __n + 1)) |
| 3220 |
{ |
| 3221 |
vector<double> __den_vec; |
| 3222 |
if (__detail::__extract_params(__is, __den_vec, __n + 1)) |
| 3223 |
{ |
| 3224 |
__x.param({ __int_vec.begin(), __int_vec.end(), |
| 3225 |
__den_vec.begin() }); |
| 3226 |
} |
| 3227 |
} |
| 3228 |
} |
| 3229 |
__is.flags(__flags); |
| 3230 |
return __is; |
| 3231 |
} |
| 3232 |
|
| 3233 |
|
| 3234 |
template<typename _IntType> |
| 3235 |
seed_seq::seed_seq(std::initializer_list<_IntType> __il) |
| 3236 |
{ |
| 3237 |
for (auto __iter = __il.begin(); __iter != __il.end(); ++__iter) |
| 3238 |
_M_v.push_back(__detail::__mod<result_type, |
| 3239 |
__detail::_Shift<result_type, 32>::__value>(*__iter)); |
| 3240 |
} |
| 3241 |
|
| 3242 |
template<typename _InputIterator> |
| 3243 |
seed_seq::seed_seq(_InputIterator __begin, _InputIterator __end) |
| 3244 |
{ |
| 3245 |
for (_InputIterator __iter = __begin; __iter != __end; ++__iter) |
| 3246 |
_M_v.push_back(__detail::__mod<result_type, |
| 3247 |
__detail::_Shift<result_type, 32>::__value>(*__iter)); |
| 3248 |
} |
| 3249 |
|
| 3250 |
template<typename _RandomAccessIterator> |
| 3251 |
void |
| 3252 |
seed_seq::generate(_RandomAccessIterator __begin, |
| 3253 |
_RandomAccessIterator __end) |
| 3254 |
{ |
| 3255 |
typedef typename iterator_traits<_RandomAccessIterator>::value_type |
| 3256 |
_Type; |
| 3257 |
|
| 3258 |
if (__begin == __end) |
| 3259 |
return; |
| 3260 |
|
| 3261 |
std::fill(__begin, __end, _Type(0x8b8b8b8bu)); |
| 3262 |
|
| 3263 |
const size_t __n = __end - __begin; |
| 3264 |
const size_t __s = _M_v.size(); |
| 3265 |
const size_t __t = (__n >= 623) ? 11 |
| 3266 |
: (__n >= 68) ? 7 |
| 3267 |
: (__n >= 39) ? 5 |
| 3268 |
: (__n >= 7) ? 3 |
| 3269 |
: (__n - 1) / 2; |
| 3270 |
const size_t __p = (__n - __t) / 2; |
| 3271 |
const size_t __q = __p + __t; |
| 3272 |
const size_t __m = std::max(size_t(__s + 1), __n); |
| 3273 |
|
| 3274 |
#ifndef __UINT32_TYPE__ |
| 3275 |
struct _Up |
| 3276 |
{ |
| 3277 |
_Up(uint_least32_t v) : _M_v(v & 0xffffffffu) { } |
| 3278 |
|
| 3279 |
operator uint_least32_t() const { return _M_v; } |
| 3280 |
|
| 3281 |
uint_least32_t _M_v; |
| 3282 |
}; |
| 3283 |
using uint32_t = _Up; |
| 3284 |
#endif |
| 3285 |
|
| 3286 |
// k == 0, every element in [begin,end) equals 0x8b8b8b8bu |
| 3287 |
{ |
| 3288 |
uint32_t __r1 = 1371501266u; |
| 3289 |
uint32_t __r2 = __r1 + __s; |
| 3290 |
__begin[__p] += __r1; |
| 3291 |
__begin[__q] = (uint32_t)__begin[__q] + __r2; |
| 3292 |
__begin[0] = __r2; |
| 3293 |
} |
| 3294 |
|
| 3295 |
for (size_t __k = 1; __k <= __s; ++__k) |
| 3296 |
{ |
| 3297 |
const size_t __kn = __k % __n; |
| 3298 |
const size_t __kpn = (__k + __p) % __n; |
| 3299 |
const size_t __kqn = (__k + __q) % __n; |
| 3300 |
uint32_t __arg = (__begin[__kn] |
| 3301 |
^ __begin[__kpn] |
| 3302 |
^ __begin[(__k - 1) % __n]); |
| 3303 |
uint32_t __r1 = 1664525u * (__arg ^ (__arg >> 27)); |
| 3304 |
uint32_t __r2 = __r1 + (uint32_t)__kn + _M_v[__k - 1]; |
| 3305 |
__begin[__kpn] = (uint32_t)__begin[__kpn] + __r1; |
| 3306 |
__begin[__kqn] = (uint32_t)__begin[__kqn] + __r2; |
| 3307 |
__begin[__kn] = __r2; |
| 3308 |
} |
| 3309 |
|
| 3310 |
for (size_t __k = __s + 1; __k < __m; ++__k) |
| 3311 |
{ |
| 3312 |
const size_t __kn = __k % __n; |
| 3313 |
const size_t __kpn = (__k + __p) % __n; |
| 3314 |
const size_t __kqn = (__k + __q) % __n; |
| 3315 |
uint32_t __arg = (__begin[__kn] |
| 3316 |
^ __begin[__kpn] |
| 3317 |
^ __begin[(__k - 1) % __n]); |
| 3318 |
uint32_t __r1 = 1664525u * (__arg ^ (__arg >> 27)); |
| 3319 |
uint32_t __r2 = __r1 + (uint32_t)__kn; |
| 3320 |
__begin[__kpn] = (uint32_t)__begin[__kpn] + __r1; |
| 3321 |
__begin[__kqn] = (uint32_t)__begin[__kqn] + __r2; |
| 3322 |
__begin[__kn] = __r2; |
| 3323 |
} |
| 3324 |
|
| 3325 |
for (size_t __k = __m; __k < __m + __n; ++__k) |
| 3326 |
{ |
| 3327 |
const size_t __kn = __k % __n; |
| 3328 |
const size_t __kpn = (__k + __p) % __n; |
| 3329 |
const size_t __kqn = (__k + __q) % __n; |
| 3330 |
uint32_t __arg = (__begin[__kn] |
| 3331 |
+ __begin[__kpn] |
| 3332 |
+ __begin[(__k - 1) % __n]); |
| 3333 |
uint32_t __r3 = 1566083941u * (__arg ^ (__arg >> 27)); |
| 3334 |
uint32_t __r4 = __r3 - __kn; |
| 3335 |
__begin[__kpn] ^= __r3; |
| 3336 |
__begin[__kqn] ^= __r4; |
| 3337 |
__begin[__kn] = __r4; |
| 3338 |
} |
| 3339 |
} |
| 3340 |
|
| 3341 |
template<typename _RealType, size_t __bits, |
| 3342 |
typename _UniformRandomNumberGenerator> |
| 3343 |
_RealType |
| 3344 |
generate_canonical(_UniformRandomNumberGenerator& __urng) |
| 3345 |
{ |
| 3346 |
static_assert(std::is_floating_point<_RealType>::value, |
| 3347 |
"template argument must be a floating point type"); |
| 3348 |
|
| 3349 |
const size_t __b |
| 3350 |
= std::min(static_cast<size_t>(std::numeric_limits<_RealType>::digits), |
| 3351 |
__bits); |
| 3352 |
const long double __r = static_cast<long double>(__urng.max()) |
| 3353 |
- static_cast<long double>(__urng.min()) + 1.0L; |
| 3354 |
const size_t __log2r = std::log(__r) / std::log(2.0L); |
| 3355 |
const size_t __m = std::max<size_t>(1UL, |
| 3356 |
(__b + __log2r - 1UL) / __log2r); |
| 3357 |
_RealType __ret; |
| 3358 |
_RealType __sum = _RealType(0); |
| 3359 |
_RealType __tmp = _RealType(1); |
| 3360 |
for (size_t __k = __m; __k != 0; --__k) |
| 3361 |
{ |
| 3362 |
__sum += _RealType(__urng() - __urng.min()) * __tmp; |
| 3363 |
__tmp *= __r; |
| 3364 |
} |
| 3365 |
__ret = __sum / __tmp; |
| 3366 |
if (__builtin_expect(__ret >= _RealType(1), 0)) |
| 3367 |
{ |
| 3368 |
#if _GLIBCXX_USE_C99_MATH_TR1 |
| 3369 |
__ret = std::nextafter(_RealType(1), _RealType(0)); |
| 3370 |
#else |
| 3371 |
__ret = _RealType(1) |
| 3372 |
- std::numeric_limits<_RealType>::epsilon() / _RealType(2); |
| 3373 |
#endif |
| 3374 |
} |
| 3375 |
return __ret; |
| 3376 |
} |
| 3377 |
|
| 3378 |
_GLIBCXX_END_NAMESPACE_VERSION |
| 3379 |
} // namespace |
| 3380 |
|
| 3381 |
#endif |