| 1 |
/** |
| 2 |
* @file dSFMT.c |
| 3 |
* @brief double precision SIMD-oriented Fast Mersenne Twister (dSFMT) |
| 4 |
* based on IEEE 754 format. |
| 5 |
* |
| 6 |
* @author Mutsuo Saito (Hiroshima University) |
| 7 |
* @author Makoto Matsumoto (Hiroshima University) |
| 8 |
* |
| 9 |
* Copyright (C) 2007,2008 Mutsuo Saito, Makoto Matsumoto and Hiroshima |
| 10 |
* University. All rights reserved. |
| 11 |
* |
| 12 |
* The new BSD License is applied to this software, see LICENSE.txt |
| 13 |
*/ |
| 14 |
#include <stdio.h> |
| 15 |
#include <string.h> |
| 16 |
#include <stdlib.h> |
| 17 |
#include "dSFMT-params.h" |
| 18 |
|
| 19 |
/** dsfmt internal state vector */ |
| 20 |
dsfmt_t dsfmt_global_data; |
| 21 |
/** dsfmt mexp for check */ |
| 22 |
static const int dsfmt_mexp = DSFMT_MEXP; |
| 23 |
|
| 24 |
/*---------------- |
| 25 |
STATIC FUNCTIONS |
| 26 |
----------------*/ |
| 27 |
inline static uint32_t ini_func1(uint32_t x); |
| 28 |
inline static uint32_t ini_func2(uint32_t x); |
| 29 |
inline static void gen_rand_array_c1o2(dsfmt_t *dsfmt, w128_t *array, |
| 30 |
int size); |
| 31 |
inline static void gen_rand_array_c0o1(dsfmt_t *dsfmt, w128_t *array, |
| 32 |
int size); |
| 33 |
inline static void gen_rand_array_o0c1(dsfmt_t *dsfmt, w128_t *array, |
| 34 |
int size); |
| 35 |
inline static void gen_rand_array_o0o1(dsfmt_t *dsfmt, w128_t *array, |
| 36 |
int size); |
| 37 |
inline static int idxof(int i); |
| 38 |
static void initial_mask(dsfmt_t *dsfmt); |
| 39 |
static void period_certification(dsfmt_t *dsfmt); |
| 40 |
|
| 41 |
#if defined(HAVE_SSE2) |
| 42 |
# include <emmintrin.h> |
| 43 |
/** mask data for sse2 */ |
| 44 |
static __m128i sse2_param_mask; |
| 45 |
/** 1 in 64bit for sse2 */ |
| 46 |
static __m128i sse2_int_one; |
| 47 |
/** 2.0 double for sse2 */ |
| 48 |
static __m128d sse2_double_two; |
| 49 |
/** -1.0 double for sse2 */ |
| 50 |
static __m128d sse2_double_m_one; |
| 51 |
|
| 52 |
static void setup_const(void); |
| 53 |
#endif |
| 54 |
|
| 55 |
/** |
| 56 |
* This function simulate a 32-bit array index overlapped to 64-bit |
| 57 |
* array of LITTLE ENDIAN in BIG ENDIAN machine. |
| 58 |
*/ |
| 59 |
#if defined(DSFMT_BIG_ENDIAN) |
| 60 |
inline static int idxof(int i) { |
| 61 |
return i ^ 1; |
| 62 |
} |
| 63 |
#else |
| 64 |
inline static int idxof(int i) { |
| 65 |
return i; |
| 66 |
} |
| 67 |
#endif |
| 68 |
|
| 69 |
/** |
| 70 |
* This function represents the recursion formula. |
| 71 |
* @param r output |
| 72 |
* @param a a 128-bit part of the internal state array |
| 73 |
* @param b a 128-bit part of the internal state array |
| 74 |
* @param lung a 128-bit part of the internal state array |
| 75 |
*/ |
| 76 |
#if defined(HAVE_ALTIVEC) |
| 77 |
inline static void do_recursion(w128_t *r, w128_t *a, w128_t * b, |
| 78 |
w128_t *lung) { |
| 79 |
const vector unsigned char sl1 = ALTI_SL1; |
| 80 |
const vector unsigned char sl1_perm = ALTI_SL1_PERM; |
| 81 |
const vector unsigned int sl1_msk = ALTI_SL1_MSK; |
| 82 |
const vector unsigned char sr1 = ALTI_SR; |
| 83 |
const vector unsigned char sr1_perm = ALTI_SR_PERM; |
| 84 |
const vector unsigned int sr1_msk = ALTI_SR_MSK; |
| 85 |
const vector unsigned char perm = ALTI_PERM; |
| 86 |
const vector unsigned int msk1 = ALTI_MSK; |
| 87 |
vector unsigned int w, x, y, z; |
| 88 |
|
| 89 |
z = a->s; |
| 90 |
w = lung->s; |
| 91 |
x = vec_perm(w, (vector unsigned int)perm, perm); |
| 92 |
y = vec_perm(z, sl1_perm, sl1_perm); |
| 93 |
y = vec_sll(y, sl1); |
| 94 |
y = vec_and(y, sl1_msk); |
| 95 |
w = vec_xor(x, b->s); |
| 96 |
w = vec_xor(w, y); |
| 97 |
x = vec_perm(w, (vector unsigned int)sr1_perm, sr1_perm); |
| 98 |
x = vec_srl(x, sr1); |
| 99 |
x = vec_and(x, sr1_msk); |
| 100 |
y = vec_and(w, msk1); |
| 101 |
z = vec_xor(z, y); |
| 102 |
r->s = vec_xor(z, x); |
| 103 |
lung->s = w; |
| 104 |
} |
| 105 |
#elif defined(HAVE_SSE2) |
| 106 |
/** |
| 107 |
* This function setup some constant variables for SSE2. |
| 108 |
*/ |
| 109 |
static void setup_const(void) { |
| 110 |
static int first = 1; |
| 111 |
if (!first) { |
| 112 |
return; |
| 113 |
} |
| 114 |
sse2_param_mask = _mm_set_epi32(DSFMT_MSK32_3, DSFMT_MSK32_4, |
| 115 |
DSFMT_MSK32_1, DSFMT_MSK32_2); |
| 116 |
sse2_int_one = _mm_set_epi32(0, 1, 0, 1); |
| 117 |
sse2_double_two = _mm_set_pd(2.0, 2.0); |
| 118 |
sse2_double_m_one = _mm_set_pd(-1.0, -1.0); |
| 119 |
first = 0; |
| 120 |
} |
| 121 |
|
| 122 |
/** |
| 123 |
* This function represents the recursion formula. |
| 124 |
* @param r output 128-bit |
| 125 |
* @param a a 128-bit part of the internal state array |
| 126 |
* @param b a 128-bit part of the internal state array |
| 127 |
* @param d a 128-bit part of the internal state array (I/O) |
| 128 |
*/ |
| 129 |
inline static void do_recursion(w128_t *r, w128_t *a, w128_t *b, w128_t *u) { |
| 130 |
__m128i v, w, x, y, z; |
| 131 |
|
| 132 |
x = a->si; |
| 133 |
z = _mm_slli_epi64(x, DSFMT_SL1); |
| 134 |
y = _mm_shuffle_epi32(u->si, SSE2_SHUFF); |
| 135 |
z = _mm_xor_si128(z, b->si); |
| 136 |
y = _mm_xor_si128(y, z); |
| 137 |
|
| 138 |
v = _mm_srli_epi64(y, DSFMT_SR); |
| 139 |
w = _mm_and_si128(y, sse2_param_mask); |
| 140 |
v = _mm_xor_si128(v, x); |
| 141 |
v = _mm_xor_si128(v, w); |
| 142 |
r->si = v; |
| 143 |
u->si = y; |
| 144 |
} |
| 145 |
#else /* standard C */ |
| 146 |
/** |
| 147 |
* This function represents the recursion formula. |
| 148 |
* @param r output 128-bit |
| 149 |
* @param a a 128-bit part of the internal state array |
| 150 |
* @param b a 128-bit part of the internal state array |
| 151 |
* @param lung a 128-bit part of the internal state array (I/O) |
| 152 |
*/ |
| 153 |
inline static void do_recursion(w128_t *r, w128_t *a, w128_t * b, |
| 154 |
w128_t *lung) { |
| 155 |
uint64_t t0, t1, L0, L1; |
| 156 |
|
| 157 |
t0 = a->u[0]; |
| 158 |
t1 = a->u[1]; |
| 159 |
L0 = lung->u[0]; |
| 160 |
L1 = lung->u[1]; |
| 161 |
lung->u[0] = (t0 << DSFMT_SL1) ^ (L1 >> 32) ^ (L1 << 32) ^ b->u[0]; |
| 162 |
lung->u[1] = (t1 << DSFMT_SL1) ^ (L0 >> 32) ^ (L0 << 32) ^ b->u[1]; |
| 163 |
r->u[0] = (lung->u[0] >> DSFMT_SR) ^ (lung->u[0] & DSFMT_MSK1) ^ t0; |
| 164 |
r->u[1] = (lung->u[1] >> DSFMT_SR) ^ (lung->u[1] & DSFMT_MSK2) ^ t1; |
| 165 |
} |
| 166 |
#endif |
| 167 |
|
| 168 |
#if defined(HAVE_SSE2) |
| 169 |
/** |
| 170 |
* This function converts the double precision floating point numbers which |
| 171 |
* distribute uniformly in the range [1, 2) to those which distribute uniformly |
| 172 |
* in the range [0, 1). |
| 173 |
* @param w 128bit stracture of double precision floating point numbers (I/O) |
| 174 |
*/ |
| 175 |
inline static void convert_c0o1(w128_t *w) { |
| 176 |
w->sd = _mm_add_pd(w->sd, sse2_double_m_one); |
| 177 |
} |
| 178 |
|
| 179 |
/** |
| 180 |
* This function converts the double precision floating point numbers which |
| 181 |
* distribute uniformly in the range [1, 2) to those which distribute uniformly |
| 182 |
* in the range (0, 1]. |
| 183 |
* @param w 128bit stracture of double precision floating point numbers (I/O) |
| 184 |
*/ |
| 185 |
inline static void convert_o0c1(w128_t *w) { |
| 186 |
w->sd = _mm_sub_pd(sse2_double_two, w->sd); |
| 187 |
} |
| 188 |
|
| 189 |
/** |
| 190 |
* This function converts the double precision floating point numbers which |
| 191 |
* distribute uniformly in the range [1, 2) to those which distribute uniformly |
| 192 |
* in the range (0, 1). |
| 193 |
* @param w 128bit stracture of double precision floating point numbers (I/O) |
| 194 |
*/ |
| 195 |
inline static void convert_o0o1(w128_t *w) { |
| 196 |
w->si = _mm_or_si128(w->si, sse2_int_one); |
| 197 |
w->sd = _mm_add_pd(w->sd, sse2_double_m_one); |
| 198 |
} |
| 199 |
#else /* standard C and altivec */ |
| 200 |
/** |
| 201 |
* This function converts the double precision floating point numbers which |
| 202 |
* distribute uniformly in the range [1, 2) to those which distribute uniformly |
| 203 |
* in the range [0, 1). |
| 204 |
* @param w 128bit stracture of double precision floating point numbers (I/O) |
| 205 |
*/ |
| 206 |
inline static void convert_c0o1(w128_t *w) { |
| 207 |
w->d[0] -= 1.0; |
| 208 |
w->d[1] -= 1.0; |
| 209 |
} |
| 210 |
|
| 211 |
/** |
| 212 |
* This function converts the double precision floating point numbers which |
| 213 |
* distribute uniformly in the range [1, 2) to those which distribute uniformly |
| 214 |
* in the range (0, 1]. |
| 215 |
* @param w 128bit stracture of double precision floating point numbers (I/O) |
| 216 |
*/ |
| 217 |
inline static void convert_o0c1(w128_t *w) { |
| 218 |
w->d[0] = 2.0 - w->d[0]; |
| 219 |
w->d[1] = 2.0 - w->d[1]; |
| 220 |
} |
| 221 |
|
| 222 |
/** |
| 223 |
* This function converts the double precision floating point numbers which |
| 224 |
* distribute uniformly in the range [1, 2) to those which distribute uniformly |
| 225 |
* in the range (0, 1). |
| 226 |
* @param w 128bit stracture of double precision floating point numbers (I/O) |
| 227 |
*/ |
| 228 |
inline static void convert_o0o1(w128_t *w) { |
| 229 |
w->u[0] |= 1; |
| 230 |
w->u[1] |= 1; |
| 231 |
w->d[0] -= 1.0; |
| 232 |
w->d[1] -= 1.0; |
| 233 |
} |
| 234 |
#endif |
| 235 |
|
| 236 |
/** |
| 237 |
* This function fills the user-specified array with double precision |
| 238 |
* floating point pseudorandom numbers of the IEEE 754 format. |
| 239 |
* @param dsfmt dsfmt state vector. |
| 240 |
* @param array an 128-bit array to be filled by pseudorandom numbers. |
| 241 |
* @param size number of 128-bit pseudorandom numbers to be generated. |
| 242 |
*/ |
| 243 |
inline static void gen_rand_array_c1o2(dsfmt_t *dsfmt, w128_t *array, |
| 244 |
int size) { |
| 245 |
int i, j; |
| 246 |
w128_t lung; |
| 247 |
|
| 248 |
lung = dsfmt->status[DSFMT_N]; |
| 249 |
do_recursion(&array[0], &dsfmt->status[0], &dsfmt->status[DSFMT_POS1], |
| 250 |
&lung); |
| 251 |
for (i = 1; i < DSFMT_N - DSFMT_POS1; i++) { |
| 252 |
do_recursion(&array[i], &dsfmt->status[i], |
| 253 |
&dsfmt->status[i + DSFMT_POS1], &lung); |
| 254 |
} |
| 255 |
for (; i < DSFMT_N; i++) { |
| 256 |
do_recursion(&array[i], &dsfmt->status[i], |
| 257 |
&array[i + DSFMT_POS1 - DSFMT_N], &lung); |
| 258 |
} |
| 259 |
for (; i < size - DSFMT_N; i++) { |
| 260 |
do_recursion(&array[i], &array[i - DSFMT_N], |
| 261 |
&array[i + DSFMT_POS1 - DSFMT_N], &lung); |
| 262 |
} |
| 263 |
for (j = 0; j < 2 * DSFMT_N - size; j++) { |
| 264 |
dsfmt->status[j] = array[j + size - DSFMT_N]; |
| 265 |
} |
| 266 |
for (; i < size; i++, j++) { |
| 267 |
do_recursion(&array[i], &array[i - DSFMT_N], |
| 268 |
&array[i + DSFMT_POS1 - DSFMT_N], &lung); |
| 269 |
dsfmt->status[j] = array[i]; |
| 270 |
} |
| 271 |
dsfmt->status[DSFMT_N] = lung; |
| 272 |
} |
| 273 |
|
| 274 |
/** |
| 275 |
* This function fills the user-specified array with double precision |
| 276 |
* floating point pseudorandom numbers of the IEEE 754 format. |
| 277 |
* @param dsfmt dsfmt state vector. |
| 278 |
* @param array an 128-bit array to be filled by pseudorandom numbers. |
| 279 |
* @param size number of 128-bit pseudorandom numbers to be generated. |
| 280 |
*/ |
| 281 |
inline static void gen_rand_array_c0o1(dsfmt_t *dsfmt, w128_t *array, |
| 282 |
int size) { |
| 283 |
int i, j; |
| 284 |
w128_t lung; |
| 285 |
|
| 286 |
lung = dsfmt->status[DSFMT_N]; |
| 287 |
do_recursion(&array[0], &dsfmt->status[0], &dsfmt->status[DSFMT_POS1], |
| 288 |
&lung); |
| 289 |
for (i = 1; i < DSFMT_N - DSFMT_POS1; i++) { |
| 290 |
do_recursion(&array[i], &dsfmt->status[i], |
| 291 |
&dsfmt->status[i + DSFMT_POS1], &lung); |
| 292 |
} |
| 293 |
for (; i < DSFMT_N; i++) { |
| 294 |
do_recursion(&array[i], &dsfmt->status[i], |
| 295 |
&array[i + DSFMT_POS1 - DSFMT_N], &lung); |
| 296 |
} |
| 297 |
for (; i < size - DSFMT_N; i++) { |
| 298 |
do_recursion(&array[i], &array[i - DSFMT_N], |
| 299 |
&array[i + DSFMT_POS1 - DSFMT_N], &lung); |
| 300 |
convert_c0o1(&array[i - DSFMT_N]); |
| 301 |
} |
| 302 |
for (j = 0; j < 2 * DSFMT_N - size; j++) { |
| 303 |
dsfmt->status[j] = array[j + size - DSFMT_N]; |
| 304 |
} |
| 305 |
for (; i < size; i++, j++) { |
| 306 |
do_recursion(&array[i], &array[i - DSFMT_N], |
| 307 |
&array[i + DSFMT_POS1 - DSFMT_N], &lung); |
| 308 |
dsfmt->status[j] = array[i]; |
| 309 |
convert_c0o1(&array[i - DSFMT_N]); |
| 310 |
} |
| 311 |
for (i = size - DSFMT_N; i < size; i++) { |
| 312 |
convert_c0o1(&array[i]); |
| 313 |
} |
| 314 |
dsfmt->status[DSFMT_N] = lung; |
| 315 |
} |
| 316 |
|
| 317 |
/** |
| 318 |
* This function fills the user-specified array with double precision |
| 319 |
* floating point pseudorandom numbers of the IEEE 754 format. |
| 320 |
* @param dsfmt dsfmt state vector. |
| 321 |
* @param array an 128-bit array to be filled by pseudorandom numbers. |
| 322 |
* @param size number of 128-bit pseudorandom numbers to be generated. |
| 323 |
*/ |
| 324 |
inline static void gen_rand_array_o0o1(dsfmt_t *dsfmt, w128_t *array, |
| 325 |
int size) { |
| 326 |
int i, j; |
| 327 |
w128_t lung; |
| 328 |
|
| 329 |
lung = dsfmt->status[DSFMT_N]; |
| 330 |
do_recursion(&array[0], &dsfmt->status[0], &dsfmt->status[DSFMT_POS1], |
| 331 |
&lung); |
| 332 |
for (i = 1; i < DSFMT_N - DSFMT_POS1; i++) { |
| 333 |
do_recursion(&array[i], &dsfmt->status[i], |
| 334 |
&dsfmt->status[i + DSFMT_POS1], &lung); |
| 335 |
} |
| 336 |
for (; i < DSFMT_N; i++) { |
| 337 |
do_recursion(&array[i], &dsfmt->status[i], |
| 338 |
&array[i + DSFMT_POS1 - DSFMT_N], &lung); |
| 339 |
} |
| 340 |
for (; i < size - DSFMT_N; i++) { |
| 341 |
do_recursion(&array[i], &array[i - DSFMT_N], |
| 342 |
&array[i + DSFMT_POS1 - DSFMT_N], &lung); |
| 343 |
convert_o0o1(&array[i - DSFMT_N]); |
| 344 |
} |
| 345 |
for (j = 0; j < 2 * DSFMT_N - size; j++) { |
| 346 |
dsfmt->status[j] = array[j + size - DSFMT_N]; |
| 347 |
} |
| 348 |
for (; i < size; i++, j++) { |
| 349 |
do_recursion(&array[i], &array[i - DSFMT_N], |
| 350 |
&array[i + DSFMT_POS1 - DSFMT_N], &lung); |
| 351 |
dsfmt->status[j] = array[i]; |
| 352 |
convert_o0o1(&array[i - DSFMT_N]); |
| 353 |
} |
| 354 |
for (i = size - DSFMT_N; i < size; i++) { |
| 355 |
convert_o0o1(&array[i]); |
| 356 |
} |
| 357 |
dsfmt->status[DSFMT_N] = lung; |
| 358 |
} |
| 359 |
|
| 360 |
/** |
| 361 |
* This function fills the user-specified array with double precision |
| 362 |
* floating point pseudorandom numbers of the IEEE 754 format. |
| 363 |
* @param dsfmt dsfmt state vector. |
| 364 |
* @param array an 128-bit array to be filled by pseudorandom numbers. |
| 365 |
* @param size number of 128-bit pseudorandom numbers to be generated. |
| 366 |
*/ |
| 367 |
inline static void gen_rand_array_o0c1(dsfmt_t *dsfmt, w128_t *array, |
| 368 |
int size) { |
| 369 |
int i, j; |
| 370 |
w128_t lung; |
| 371 |
|
| 372 |
lung = dsfmt->status[DSFMT_N]; |
| 373 |
do_recursion(&array[0], &dsfmt->status[0], &dsfmt->status[DSFMT_POS1], |
| 374 |
&lung); |
| 375 |
for (i = 1; i < DSFMT_N - DSFMT_POS1; i++) { |
| 376 |
do_recursion(&array[i], &dsfmt->status[i], |
| 377 |
&dsfmt->status[i + DSFMT_POS1], &lung); |
| 378 |
} |
| 379 |
for (; i < DSFMT_N; i++) { |
| 380 |
do_recursion(&array[i], &dsfmt->status[i], |
| 381 |
&array[i + DSFMT_POS1 - DSFMT_N], &lung); |
| 382 |
} |
| 383 |
for (; i < size - DSFMT_N; i++) { |
| 384 |
do_recursion(&array[i], &array[i - DSFMT_N], |
| 385 |
&array[i + DSFMT_POS1 - DSFMT_N], &lung); |
| 386 |
convert_o0c1(&array[i - DSFMT_N]); |
| 387 |
} |
| 388 |
for (j = 0; j < 2 * DSFMT_N - size; j++) { |
| 389 |
dsfmt->status[j] = array[j + size - DSFMT_N]; |
| 390 |
} |
| 391 |
for (; i < size; i++, j++) { |
| 392 |
do_recursion(&array[i], &array[i - DSFMT_N], |
| 393 |
&array[i + DSFMT_POS1 - DSFMT_N], &lung); |
| 394 |
dsfmt->status[j] = array[i]; |
| 395 |
convert_o0c1(&array[i - DSFMT_N]); |
| 396 |
} |
| 397 |
for (i = size - DSFMT_N; i < size; i++) { |
| 398 |
convert_o0c1(&array[i]); |
| 399 |
} |
| 400 |
dsfmt->status[DSFMT_N] = lung; |
| 401 |
} |
| 402 |
|
| 403 |
/** |
| 404 |
* This function represents a function used in the initialization |
| 405 |
* by init_by_array |
| 406 |
* @param x 32-bit integer |
| 407 |
* @return 32-bit integer |
| 408 |
*/ |
| 409 |
static uint32_t ini_func1(uint32_t x) { |
| 410 |
return (x ^ (x >> 27)) * (uint32_t)1664525UL; |
| 411 |
} |
| 412 |
|
| 413 |
/** |
| 414 |
* This function represents a function used in the initialization |
| 415 |
* by init_by_array |
| 416 |
* @param x 32-bit integer |
| 417 |
* @return 32-bit integer |
| 418 |
*/ |
| 419 |
static uint32_t ini_func2(uint32_t x) { |
| 420 |
return (x ^ (x >> 27)) * (uint32_t)1566083941UL; |
| 421 |
} |
| 422 |
|
| 423 |
/** |
| 424 |
* This function initializes the internal state array to fit the IEEE |
| 425 |
* 754 format. |
| 426 |
* @param dsfmt dsfmt state vector. |
| 427 |
*/ |
| 428 |
static void initial_mask(dsfmt_t *dsfmt) { |
| 429 |
int i; |
| 430 |
uint64_t *psfmt; |
| 431 |
|
| 432 |
psfmt = &dsfmt->status[0].u[0]; |
| 433 |
for (i = 0; i < DSFMT_N * 2; i++) { |
| 434 |
psfmt[i] = (psfmt[i] & DSFMT_LOW_MASK) | DSFMT_HIGH_CONST; |
| 435 |
} |
| 436 |
} |
| 437 |
|
| 438 |
/** |
| 439 |
* This function certificate the period of 2^{SFMT_MEXP}-1. |
| 440 |
* @param dsfmt dsfmt state vector. |
| 441 |
*/ |
| 442 |
static void period_certification(dsfmt_t *dsfmt) { |
| 443 |
uint64_t pcv[2] = {DSFMT_PCV1, DSFMT_PCV2}; |
| 444 |
uint64_t tmp[2]; |
| 445 |
uint64_t inner; |
| 446 |
int i; |
| 447 |
#if (DSFMT_PCV2 & 1) != 1 |
| 448 |
int j; |
| 449 |
uint64_t work; |
| 450 |
#endif |
| 451 |
|
| 452 |
tmp[0] = (dsfmt->status[DSFMT_N].u[0] ^ DSFMT_FIX1); |
| 453 |
tmp[1] = (dsfmt->status[DSFMT_N].u[1] ^ DSFMT_FIX2); |
| 454 |
|
| 455 |
inner = tmp[0] & pcv[0]; |
| 456 |
inner ^= tmp[1] & pcv[1]; |
| 457 |
for (i = 32; i > 0; i >>= 1) { |
| 458 |
inner ^= inner >> i; |
| 459 |
} |
| 460 |
inner &= 1; |
| 461 |
/* check OK */ |
| 462 |
if (inner == 1) { |
| 463 |
return; |
| 464 |
} |
| 465 |
/* check NG, and modification */ |
| 466 |
#if (DSFMT_PCV2 & 1) == 1 |
| 467 |
dsfmt->status[DSFMT_N].u[1] ^= 1; |
| 468 |
#else |
| 469 |
for (i = 1; i >= 0; i--) { |
| 470 |
work = 1; |
| 471 |
for (j = 0; j < 64; j++) { |
| 472 |
if ((work & pcv[i]) != 0) { |
| 473 |
dsfmt->status[DSFMT_N].u[i] ^= work; |
| 474 |
return; |
| 475 |
} |
| 476 |
work = work << 1; |
| 477 |
} |
| 478 |
} |
| 479 |
#endif |
| 480 |
return; |
| 481 |
} |
| 482 |
|
| 483 |
/*---------------- |
| 484 |
PUBLIC FUNCTIONS |
| 485 |
----------------*/ |
| 486 |
/** |
| 487 |
* This function returns the identification string. The string shows |
| 488 |
* the Mersenne exponent, and all parameters of this generator. |
| 489 |
* @return id string. |
| 490 |
*/ |
| 491 |
const char *dsfmt_get_idstring(void) { |
| 492 |
return DSFMT_IDSTR; |
| 493 |
} |
| 494 |
|
| 495 |
/** |
| 496 |
* This function returns the minimum size of array used for \b |
| 497 |
* fill_array functions. |
| 498 |
* @return minimum size of array used for fill_array functions. |
| 499 |
*/ |
| 500 |
int dsfmt_get_min_array_size(void) { |
| 501 |
return DSFMT_N64; |
| 502 |
} |
| 503 |
|
| 504 |
/** |
| 505 |
* This function fills the internal state array with double precision |
| 506 |
* floating point pseudorandom numbers of the IEEE 754 format. |
| 507 |
* @param dsfmt dsfmt state vector. |
| 508 |
*/ |
| 509 |
void dsfmt_gen_rand_all(dsfmt_t *dsfmt) { |
| 510 |
int i; |
| 511 |
w128_t lung; |
| 512 |
|
| 513 |
lung = dsfmt->status[DSFMT_N]; |
| 514 |
do_recursion(&dsfmt->status[0], &dsfmt->status[0], |
| 515 |
&dsfmt->status[DSFMT_POS1], &lung); |
| 516 |
for (i = 1; i < DSFMT_N - DSFMT_POS1; i++) { |
| 517 |
do_recursion(&dsfmt->status[i], &dsfmt->status[i], |
| 518 |
&dsfmt->status[i + DSFMT_POS1], &lung); |
| 519 |
} |
| 520 |
for (; i < DSFMT_N; i++) { |
| 521 |
do_recursion(&dsfmt->status[i], &dsfmt->status[i], |
| 522 |
&dsfmt->status[i + DSFMT_POS1 - DSFMT_N], &lung); |
| 523 |
} |
| 524 |
dsfmt->status[DSFMT_N] = lung; |
| 525 |
} |
| 526 |
|
| 527 |
/** |
| 528 |
* This function generates double precision floating point |
| 529 |
* pseudorandom numbers which distribute in the range [1, 2) to the |
| 530 |
* specified array[] by one call. The number of pseudorandom numbers |
| 531 |
* is specified by the argument \b size, which must be at least (SFMT_MEXP |
| 532 |
* / 128) * 2 and a multiple of two. The function |
| 533 |
* get_min_array_size() returns this minimum size. The generation by |
| 534 |
* this function is much faster than the following fill_array_xxx functions. |
| 535 |
* |
| 536 |
* For initialization, init_gen_rand() or init_by_array() must be called |
| 537 |
* before the first call of this function. This function can not be |
| 538 |
* used after calling genrand_xxx functions, without initialization. |
| 539 |
* |
| 540 |
* @param dsfmt dsfmt state vector. |
| 541 |
* @param array an array where pseudorandom numbers are filled |
| 542 |
* by this function. The pointer to the array must be "aligned" |
| 543 |
* (namely, must be a multiple of 16) in the SIMD version, since it |
| 544 |
* refers to the address of a 128-bit integer. In the standard C |
| 545 |
* version, the pointer is arbitrary. |
| 546 |
* |
| 547 |
* @param size the number of 64-bit pseudorandom integers to be |
| 548 |
* generated. size must be a multiple of 2, and greater than or equal |
| 549 |
* to (SFMT_MEXP / 128) * 2. |
| 550 |
* |
| 551 |
* @note \b memalign or \b posix_memalign is available to get aligned |
| 552 |
* memory. Mac OSX doesn't have these functions, but \b malloc of OSX |
| 553 |
* returns the pointer to the aligned memory block. |
| 554 |
*/ |
| 555 |
void dsfmt_fill_array_close1_open2(dsfmt_t *dsfmt, double array[], int size) { |
| 556 |
assert(size % 2 == 0); |
| 557 |
assert(size >= DSFMT_N64); |
| 558 |
gen_rand_array_c1o2(dsfmt, (w128_t *)array, size / 2); |
| 559 |
} |
| 560 |
|
| 561 |
/** |
| 562 |
* This function generates double precision floating point |
| 563 |
* pseudorandom numbers which distribute in the range (0, 1] to the |
| 564 |
* specified array[] by one call. This function is the same as |
| 565 |
* fill_array_close1_open2() except the distribution range. |
| 566 |
* |
| 567 |
* @param dsfmt dsfmt state vector. |
| 568 |
* @param array an array where pseudorandom numbers are filled |
| 569 |
* by this function. |
| 570 |
* @param size the number of pseudorandom numbers to be generated. |
| 571 |
* see also \sa fill_array_close1_open2() |
| 572 |
*/ |
| 573 |
void dsfmt_fill_array_open_close(dsfmt_t *dsfmt, double array[], int size) { |
| 574 |
assert(size % 2 == 0); |
| 575 |
assert(size >= DSFMT_N64); |
| 576 |
gen_rand_array_o0c1(dsfmt, (w128_t *)array, size / 2); |
| 577 |
} |
| 578 |
|
| 579 |
/** |
| 580 |
* This function generates double precision floating point |
| 581 |
* pseudorandom numbers which distribute in the range [0, 1) to the |
| 582 |
* specified array[] by one call. This function is the same as |
| 583 |
* fill_array_close1_open2() except the distribution range. |
| 584 |
* |
| 585 |
* @param array an array where pseudorandom numbers are filled |
| 586 |
* by this function. |
| 587 |
* @param dsfmt dsfmt state vector. |
| 588 |
* @param size the number of pseudorandom numbers to be generated. |
| 589 |
* see also \sa fill_array_close1_open2() |
| 590 |
*/ |
| 591 |
void dsfmt_fill_array_close_open(dsfmt_t *dsfmt, double array[], int size) { |
| 592 |
assert(size % 2 == 0); |
| 593 |
assert(size >= DSFMT_N64); |
| 594 |
gen_rand_array_c0o1(dsfmt, (w128_t *)array, size / 2); |
| 595 |
} |
| 596 |
|
| 597 |
/** |
| 598 |
* This function generates double precision floating point |
| 599 |
* pseudorandom numbers which distribute in the range (0, 1) to the |
| 600 |
* specified array[] by one call. This function is the same as |
| 601 |
* fill_array_close1_open2() except the distribution range. |
| 602 |
* |
| 603 |
* @param dsfmt dsfmt state vector. |
| 604 |
* @param array an array where pseudorandom numbers are filled |
| 605 |
* by this function. |
| 606 |
* @param size the number of pseudorandom numbers to be generated. |
| 607 |
* see also \sa fill_array_close1_open2() |
| 608 |
*/ |
| 609 |
void dsfmt_fill_array_open_open(dsfmt_t *dsfmt, double array[], int size) { |
| 610 |
assert(size % 2 == 0); |
| 611 |
assert(size >= DSFMT_N64); |
| 612 |
gen_rand_array_o0o1(dsfmt, (w128_t *)array, size / 2); |
| 613 |
} |
| 614 |
|
| 615 |
#if defined(__INTEL_COMPILER) |
| 616 |
# pragma warning(disable:981) |
| 617 |
#endif |
| 618 |
/** |
| 619 |
* This function initializes the internal state array with a 32-bit |
| 620 |
* integer seed. |
| 621 |
* @param dsfmt dsfmt state vector. |
| 622 |
* @param seed a 32-bit integer used as the seed. |
| 623 |
* @param mexp caller's mersenne expornent |
| 624 |
*/ |
| 625 |
void dsfmt_chk_init_gen_rand(dsfmt_t *dsfmt, uint32_t seed, int mexp) { |
| 626 |
int i; |
| 627 |
uint32_t *psfmt; |
| 628 |
|
| 629 |
/* make sure caller program is compiled with the same MEXP */ |
| 630 |
if (mexp != dsfmt_mexp) { |
| 631 |
fprintf(stderr, "DSFMT_MEXP doesn't match with dSFMT.c\n"); |
| 632 |
exit(1); |
| 633 |
} |
| 634 |
psfmt = &dsfmt->status[0].u32[0]; |
| 635 |
psfmt[idxof(0)] = seed; |
| 636 |
for (i = 1; i < (DSFMT_N + 1) * 4; i++) { |
| 637 |
psfmt[idxof(i)] = 1812433253UL |
| 638 |
* (psfmt[idxof(i - 1)] ^ (psfmt[idxof(i - 1)] >> 30)) + i; |
| 639 |
} |
| 640 |
initial_mask(dsfmt); |
| 641 |
period_certification(dsfmt); |
| 642 |
dsfmt->idx = DSFMT_N64; |
| 643 |
#if defined(HAVE_SSE2) |
| 644 |
setup_const(); |
| 645 |
#endif |
| 646 |
} |
| 647 |
|
| 648 |
/** |
| 649 |
* This function initializes the internal state array, |
| 650 |
* with an array of 32-bit integers used as the seeds |
| 651 |
* @param dsfmt dsfmt state vector. |
| 652 |
* @param init_key the array of 32-bit integers, used as a seed. |
| 653 |
* @param key_length the length of init_key. |
| 654 |
* @param mexp caller's mersenne expornent |
| 655 |
*/ |
| 656 |
void dsfmt_chk_init_by_array(dsfmt_t *dsfmt, uint32_t init_key[], |
| 657 |
int key_length, int mexp) { |
| 658 |
int i, j, count; |
| 659 |
uint32_t r; |
| 660 |
uint32_t *psfmt32; |
| 661 |
int lag; |
| 662 |
int mid; |
| 663 |
int size = (DSFMT_N + 1) * 4; /* pulmonary */ |
| 664 |
|
| 665 |
/* make sure caller program is compiled with the same MEXP */ |
| 666 |
if (mexp != dsfmt_mexp) { |
| 667 |
fprintf(stderr, "DSFMT_MEXP doesn't match with dSFMT.c\n"); |
| 668 |
exit(1); |
| 669 |
} |
| 670 |
if (size >= 623) { |
| 671 |
lag = 11; |
| 672 |
} else if (size >= 68) { |
| 673 |
lag = 7; |
| 674 |
} else if (size >= 39) { |
| 675 |
lag = 5; |
| 676 |
} else { |
| 677 |
lag = 3; |
| 678 |
} |
| 679 |
mid = (size - lag) / 2; |
| 680 |
|
| 681 |
psfmt32 = &dsfmt->status[0].u32[0]; |
| 682 |
memset(dsfmt->status, 0x8b, sizeof(dsfmt->status)); |
| 683 |
if (key_length + 1 > size) { |
| 684 |
count = key_length + 1; |
| 685 |
} else { |
| 686 |
count = size; |
| 687 |
} |
| 688 |
r = ini_func1(psfmt32[idxof(0)] ^ psfmt32[idxof(mid % size)] |
| 689 |
^ psfmt32[idxof((size - 1) % size)]); |
| 690 |
psfmt32[idxof(mid % size)] += r; |
| 691 |
r += key_length; |
| 692 |
psfmt32[idxof((mid + lag) % size)] += r; |
| 693 |
psfmt32[idxof(0)] = r; |
| 694 |
count--; |
| 695 |
for (i = 1, j = 0; (j < count) && (j < key_length); j++) { |
| 696 |
r = ini_func1(psfmt32[idxof(i)] |
| 697 |
^ psfmt32[idxof((i + mid) % size)] |
| 698 |
^ psfmt32[idxof((i + size - 1) % size)]); |
| 699 |
psfmt32[idxof((i + mid) % size)] += r; |
| 700 |
r += init_key[j] + i; |
| 701 |
psfmt32[idxof((i + mid + lag) % size)] += r; |
| 702 |
psfmt32[idxof(i)] = r; |
| 703 |
i = (i + 1) % size; |
| 704 |
} |
| 705 |
for (; j < count; j++) { |
| 706 |
r = ini_func1(psfmt32[idxof(i)] |
| 707 |
^ psfmt32[idxof((i + mid) % size)] |
| 708 |
^ psfmt32[idxof((i + size - 1) % size)]); |
| 709 |
psfmt32[idxof((i + mid) % size)] += r; |
| 710 |
r += i; |
| 711 |
psfmt32[idxof((i + mid + lag) % size)] += r; |
| 712 |
psfmt32[idxof(i)] = r; |
| 713 |
i = (i + 1) % size; |
| 714 |
} |
| 715 |
for (j = 0; j < size; j++) { |
| 716 |
r = ini_func2(psfmt32[idxof(i)] |
| 717 |
+ psfmt32[idxof((i + mid) % size)] |
| 718 |
+ psfmt32[idxof((i + size - 1) % size)]); |
| 719 |
psfmt32[idxof((i + mid) % size)] ^= r; |
| 720 |
r -= i; |
| 721 |
psfmt32[idxof((i + mid + lag) % size)] ^= r; |
| 722 |
psfmt32[idxof(i)] = r; |
| 723 |
i = (i + 1) % size; |
| 724 |
} |
| 725 |
initial_mask(dsfmt); |
| 726 |
period_certification(dsfmt); |
| 727 |
dsfmt->idx = DSFMT_N64; |
| 728 |
#if defined(HAVE_SSE2) |
| 729 |
setup_const(); |
| 730 |
#endif |
| 731 |
} |
| 732 |
#if defined(__INTEL_COMPILER) |
| 733 |
# pragma warning(default:981) |
| 734 |
#endif |